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Abstract

The purpose of this note is to describe the underly-
ing insights and results obtained by the authors, and
others, in a series of papers aimed at modelling the
distribution of `natural' probability functions, more
precisely the probability functions on f0; 1gn which
we encounter naturally in the real world as subjects
for statistical inference, by identifying such functions
with large, random, sentences of the propositional cal-
culus. We explain how this approach produces a ro-
bust parameterised family of priors, Jn, with several
of the properties we might have hoped for in the con-
text, for example marginalisation, invariance under
(weak) renaming, and an emphasis on multivariate
probability functions exhibiting high interdependence
between features.

Keywords. Prior probability, imprecise probability,
random rentences, probabilistic reasoning, uncertain
reasoning.

1 Motivation

The motivation for the research described in this pa-
per can, at least partly, be traced back to our experi-
ences in the 1980's with so called expert systems, or
knowledge based systems, and the underlying `theo-
ries of uncertain reasoning, or imprecise probabilities'
on which they were founded. By that time there were
already numerous di�erent approaches to the prob-
lem of producing an expert system on the basis of
some knowledge base, and, not unnaturally perhaps,
the builders of these systems generally praised the
capabilities and accuracy of their inventions. How-
ever it seemed to us di�cult in practice to objectively
test the appropriateness of the methodology underly-
ing their construction, �rstly because expert systems
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were usually customized to one, very speci�c, situ-
ation with carte blanche to introduce whatever ad
hockery seemed bene�cial, and secondly because in
any case the `correct answers' against which to mea-
sure the systems were not known.

With this perception of the state of the art in ex-
pert system engineering at that time we considered
whether it might not be possible to objectively test
expert system methodologies, in a similar way, for ex-
ample, to the way that we might test the e�ectiveness
and accuracy of a computer algorithm or a statistical
decision procedure, by determining their performance
over the range, and distribution, of their expected or
intended applications.

Since we were predominantly interested in expert
systems which adopted various theories of `impre-
cise probabilities' in an attempt to infer probabilities
from a knowledge base consisting of probabilistic con-
straints, the test material we sought was a family, or
more precisely a distribution, of probability functions
(ideally ones from which we would be able to compute
basic probabilities) similar in distribution and struc-
ture to those encountered by expert system builders.
We shall refer to such probability functions as `natu-
ral', and to the posited distribution of such functions
as the `natural distribution'.

Whilst evaluation of expert system methodologies was
one of our main incentives for this research, the gen-
eral problem of selecting a prior in situations of igno-
rance is one with a long history in the foundations of
probability and has much wider implications within
the study of `imprecise probabilities'. In particular
the assumption of an initial prior before anything
is known is a central step in Bayesian Inference, al-
though the signi�cance of this choice is commonly dis-
missed through the observation that provided there is
a reasonably large supply of data the ultimate in
u-
ence of the prior is generally minimal. Nevertheless,
even here, given that the demands of AI often require
squeezing useful information from small samples (such



as we are apparently capable of learning from), the
prior problem is still very much of contemporary rel-
evance.

It would not be appropriate in the present paper to en-
ter into a detailed discussion of the history of the prior
problem. We do however feel it necessary to draw at-
tention to a key respect in which our approach to solv-
ing this problem di�ers fundamentally from that of
some of the more in
uential earlier approaches. Pre-
vious justi�cations by logical probabilists of particular
solutions to the prior problem have tended to concen-
trate on purely logical or analytic arguments. Thus,
whatever their di�erences such authors as Laplace
[9], Carnap [1], or Jaynes [7] or [8], have all empha-
sised the fundamental rôle of symmetry arguments,
of which the prototype was Laplace's principle of in-
di�erence (cf. Rosenkrantz [16] for a history of the
problem). Despite the obviously unsatisfactory na-
ture of the solutions given by the logical probabilists,
a rather curious feature of the debate between `logi-
cal' and subjective Bayesians has been a lack of seri-
ous discussion of the possibility of a coherent notion
of objective prior probability derived from consider-
ations which transcend the purely logical. Our own
analysis, sketched out in this paper, involves positing
a cognitive model of certain aspects of the process by
which random natural phenomena are presented to
us. [Such a model could, at least in theory, be partly
justi�ed (or refuted) by empirical testing.] The in-
tuition here is that the phenomena presented to us
`by nature' are logically complex in their underlying
structure and that this logical complexity itself in-
duces dispositions of prior probability. (For further
discussion see [15].)

It follows that the prior(s) that we shall describe in
this paper have a rather di�erent origin from those
espoused by the tradition of logical probability, being
based on the idea of attempting to model the uncer-
tainty that we encounter in the real world. As re-
gards the problem of choosing a prior in the absence
of any information, one could imagine a justi�cation
for our priors along the following lines: If I knew that
I would receive data from one of some, say, ten, pos-
sible probability functions, with each of which I was
well acquainted, then I could certainly come up with
an insightful prior based on the (ten point) distribu-
tion of these functions in some Dn . Now of course
the reality of my ignorance is that I do not know that
the data will come from one of some ten probability
functions. However, what in practice I might claim to
know, or at least feel justi�ed in believing, despite my
apparent ignorance, is that the data I shall receive will
come from some real world `experiment', some natural
probability function, it will not simply have been made

up. And in this case, according to my modelling, I do
have still have a prior distribution for such functions.

In order to make the ideas behind our construction
more precise we need to introduce some mathematical
notation. Let Ln = fq1; q2; :::; qng be a propositional
language with propositional variables q1; q2; :::; qn and
let SLn be the sentences of Ln built up from these
propositional variables using some set of connectives
including at least :;_;^ (with their usual meanings).
Within this framework a probability function on SLn
is a function w : SLn �! [0; 1] such that for all �; � 2
SLn,

(i) if j= � then w(�) = 1;
(ii) if j= :(� ^ �) then w(� _ �) = w(�) + w(�):

All the standard properties of probability functions
follow from this de�nition, for example for any �; � 2
SLn,

w(�) +w(:�) = 1;

w(� _ �) = w(�) +w(�) �w(� ^ �):

[For these and other basic facts, see, for example, [11].]

Such a probability function w is determined by its val-
ues on the atoms of Ln, that is on those 2n sentences
�1; �2; :::; �2n of Ln of the form

�q1 ^�q2 ^ :::^�qn:
Indeed, since for a probability function w on SLn we
must have that

w(�1) + w(�2) + :::+ w(�2n) = 1;

and
w(�) =

X
�ij=�

w(�i);

it is straightforward to show that the correspondence
between w and the 2n-tuple

< w(�1); w(�2); :::; w(�2n) >

provides a one to one correspondence, or identi�ca-
tion, between the probability functions w on SLn and
the points in the polyhedron

Dn = f < x1; x2; :::; x2n > j x1; x2; :::; x2n � 0

and
2nX
i=1

xi = 1 g:

The importance of this identi�cation is that it easily
allows us to say what we mean by a probability distri-
bution on the set of all probability functions on SLn,
namely it is just a countably additive normalisedmea-
sure on the (Borel subsets of the) polyhedron Dn , in



the sense of, say, [5] pages 30, 171. [As here, we shall
endeavour to use the expression probability function
when the domain is a set of sentences of a language
and probability distribution, or measure, when the do-
main is the Borel subsets of a subset of Euclidean
space.]

Returning now to our main theme, what we sought
was a distribution P on Dn such that for a Borel sub-
set I of Dn , P(I) somehow re
ected the `probability
of a random, natural, probability function w being
in I'. Expressed another way this is a version of the
`Prior Problem', that is the problem of picking a prior
distribution in a situation of ignorance.

It is worth re-emphasising here our intended status for
P. Although there are various alternative interpreta-
tions which one might give (see, for example, [15]),
for the purpose of this paper the intention is that the
likelihood that P assigns to any particular probabil-
ity function re
ects the likelihood of that probability
function being encountered, in nature, via an objec-
tive, recognisably random, independently repeatable
experiment. The method we describe in this paper for
approaching this goal involves attempting to provide
a general model of such `random, independently re-
peatable experiments', and then arguing, essentially
by an appeal to symmetry, about their distribution.

The reader may very well question at this point
whether such a notion makes any sense at all. With-
out doubt we are on thin ice here, and certainly this
notion of `natural' is very much bound up with the
categories we use to decribe our world. An argu-
ment however that might be advanced that this notion
is not devoid of meaning is to consider a very large
probability function, let us say based on all recorded
medical conditions, signs, and symptoms (so these are
what the propositional variables stand for) and look
at all the marginals of this function on sublanguages
of, say 4 propositional variables. These marginals cor-
respond to points in the polyhedron D4 and by giving
these points all equal probability, or measure (sum-
ming to 1), we could indeed claim that we have ob-
tained such a distribution, at least on medical proba-
bility functions on SL4.

An alternative `argument', which we shall largely pur-
sue in this note, is to press on regardless to produce
a tentative model which generates such a distribution
and then argue in favour of this model as capturing at
least some of the aspects of `natural probability func-
tions', that is the sort of probability functions which
we encounter in the real world.

There is, of course, one very natural candidate for
this distribution P which springs to mind immedi-
ately, namely the uniform distribution, �rst proposed

by Laplace, which, in e�ect gives all points in Dn equal
likelihood of being encountered. More precisely P is
just the standard normalised Lebesgue measure on
Dn . Unfortunately this choice for P su�ers from the
serious criticism that it does not marginalise. That
is, if we assume that all probability functions on SLn
are equally likely to be encountered and then subse-
quently restrict our attention to sentences from the
sublanguage SLn�1 we will not retain the uniform
distribution, the probability functions on SLn�1 will
no longer be all equally likely. Instead they will be dis-
tributed as a certain Dirichlet distribution. From this
it follows that if we assume the uniform distribution
for SLn, and not unreasonably demand also marginal-
isation, then we shall have to settle for (di�erent)
Dirichlet distributions for any subsequent marginal-
isations (and similarly if we wish to enlarge the lan-
guage). Hence if we want marginalisation and the
uniform distribution in some SLn we are forced to as-
sume a family of Dirichlet distributions. Indeed this is
well known to be equivalent to Carnap's �-continuum
of inductive methods for the �xed value of � = 2n.
This is clearly unsatisfactory in the context of natu-
ral probability distributions, �rstly because there is
usually no clear, �xed, number of propositional vari-
ables under consideration (for example in a medical
context new conditions could appear, or even disap-
pear, at any time) so it would seem perverse for this
parameter to play such a crucial role, and secondly be-
cause it would seem to be hard to justify the uniform
distribution for any one particular language whilst not
so doing for other languages. [For an alternative `so-
lution' to this problem see [13].]

A second criticism of assuming a uniform distribu-
tion (as already remarked in [12]), at least in the sort
of contexts where expert systems would normally be
seen as being applicable, is that for probability func-
tions w on SLn representative of such situations we
would expect the w(qi) to be rather variable and the
distinct qi; qj to be, at least somewhat, dependent i.e.
(w(qi ^ qj) � w(qi)w(qj))2 should be relatively large.
However for the uniformdistribution on the w we have
the expected values

E((w(qi)� 1=2)2) =
1

4(2n + 1)
;

E((w(qi ^ qj) �w(qi)w(qj))
2) =

2n

16(2n + 3)(2n + 1)
:

Essentially then, for all but very small n, a random
probability function w chosen according to this uni-
form distribution we can expect the w(qi) to be very
close to 1=2 and qi; qj to be practically independent.
This is certainly not the sort of fertile ground on which
expert systems germinate and thrive. As such then



the uniform distribution seems to provide an inappro-
priate likelihood of encountering natural probability
functions, at least as far as the objective testing of
expert systems is concerned.

Instead of simply opting for the uniform distribution
therefore we proceeded in [15], [12], [19] to develop
other candidates for P based on modelling natural
probability functions themselves. The plan of the
rest of this paper is as follows. In the next section
we shall describe this modelling for univariate nat-
ural probability functions, that is where n = 1 and
the language Ln has just a single propositional vari-
able. This required us to make one key assumption
about the general structure of such functions. In the
following section we shall describe how this modelling
was extended to covermultivariate natural probability
functions. To achieve this required making a second
key assumption as to how these arise and how cor-
rellations between the individual propositional vari-
ables originate. Throughout we shall avoid going too
deeply into the technical mathematical details. The
interested reader may �nd, up to straightforward gen-
eralizations, proofs of all the results we state in [15],
[12], [19].

2 Univariate natural probability
functions

In this section we restrict our attention to the case
where the language Ln has just one propositional vari-
able (i.e. n = 1), which we shall denote by q. Of
course this case is hardly directly relevant to the is-
sue of objectively testing expert system methodolo-
gies, where we would expect n to be relatively large.
However treating the univariate case is an essential
�rst step towards the multivariate case.

Notice that in the univariate case the atoms of L1

are just q and :q so, since w(:q) = 1 � w(q) for w
a probability function on SL1, we can more simply
identify w with the point w(q) 2 [0; 1], rather than
the vector < w(q); w(:q) >2 D1 . With this revision
then our goal was to develop a natural probability
distribution P on the real interval [0; 1].

It is interesting to consider at this stage what we
might expect P, or more precisely, successively �ner
histograms of P to look like. Three such features
seem, to our experience, evident. The �rst is sym-
metry about 1=2. In practice whether or not we have
choosen to denote a particular feature, or its nega-
tion, by any one particular propositional variable is,
one feels, entirely continguent, and in consequence P
should be invariant under renaming of propositional
variables and transpositions of a propositional vari-

able and its negation.

A second property of P that experience might lead
us to anticipate is that its histogram(s) should rise
rapidly around zero and one. The reason for this is
that, in our everyday lives, a seemingly dispropor-
tunate number of the probabilities we encounter are
close to 0 or 1. We expect the train to run, we ex-
pect three leafed clovers, we expect not to win the
lottery. Indeed the importance attached to default
logic, the study of reasoning with statements which
are usually true, would seem to con�rm the ubiquity
of such knowledge in our everyday world.

Finally, a third feature of everyday probabilities that
we might expect to be re
ected in P is that there
seems also to be a clustering of probabilities around
1/2, for example the toss of a coin, the sex of a baby.
One partial explanation for this might be that lin-
guistic categories that divide the population roughly
in half are descriptively more e�cient, although it is
hard to see that that can really account for the two
examples cited above! [Another possible explanation
for such clustering is given in [15].]

Putting together these three impressions then we
might anticipate that a histogram of such a P should
be symmetric about 1=2, exhibit a bump at 1/2 and
sharp rises at 0 and 1.

Returning now to our modelling, notice that in this
case where n = 1 we can think of a natural proba-
bility function w as a actual process which randomly
outputs 1's (corresponding to q being true) and 0's
(corresponding to q being false, i.e. :q being true)
with probability w(q) of outputing 1 (so w(q) is also
the expected value of the output). Armed with this
picture the key idea, or assumption, we adopted at
this point is that, in general, natural 0-1 random pro-
cesses in our everday macroscopic world are actually
very complicated a�airs in which any genuine ran-
domness is hidden at a very deep level. For example
the sex of a baby is not simply decided `randomly' at
the point at which the baby �rst enters the light of
day, or is scanned1. The sex of the baby is (largely)
determined when sperm meets ovum, but the crucial
issue of which sperm meets the ovum �rst is the main
in
uencing source of randomness and this lies at a
deeper level still. Even in the proverbial coin toss the
randomness is hidden deep, determined by the inner
chemistry of the tosser's thumb muscles, the detailed
physical contours of the surface it lands on, etc, etc.,
and does not simply `happen' at the point at which
we �rst observe the outcome.

With such a picture in mind we set about trying to

1For this paper we adopt this viewpoint, which we take
to be widely acceptable.



provide a general model of such processes. [This was
not our only `picture', see [15].] The model of a natu-
ral random 0-1 process that we alighted upon was as
the truth value of a very large sentence � of the propo-
sitional calculus where the only randomness is at the
level of the propositional variables, which themselves
were randomly, and independently, assigned truth val-
ues 1 (i.e. true) or 0 (i.e. false).

To give a toy example of what we mean here, if � is
the sentence

(:p2 _ (p1 ^ p3)) _ :p1
and the propositional variables p1; p2; p3 are indepen-
dently distributed with expected (truth) values 1/2,
1/3, 2/3 respectively (so that the atom p1 ^ :p2 ^ p3
has expected truth value 1=2 � (1 � 1=3) � 2=3 = 2=9
etc) then a straightforward calculation based on the
observation that � is true just if one of the incompat-
able :p1, p1 ^:p2; p1 ^ p2 ^ p3 are true shows that �
has expected value 17/18.

This choice of model for a natural 0-1 random process
is clearly only one amongstmany possible models, and
in part re
ects our own familiarity with logical calculi
and our predeliction to explain the world in logical
terms. Nevertheless we would suspect that somewhat
similar conclusions to those we have obtained would
hold for a wide range of similarly motivated models,
although these remain to be investigated.

Having made our choice of the basic model numerous
other choices now present themselves. Firstly how
should we choose the distribution of the expected val-
ues of the propositional variables? Isn't this surely
the very problem our model was intended to answer
for us?! We shall return to this question later, but
for the present let us suppose for simplicity that the
expected truth values of the propositional variables
are all 1/2. In other words the distribution, or mea-
sure, here just gives measure 1 to the single point 1/2
(more correctly to the singleton subset f1

2g of [0; 1])
and no measure anywhere else.

A second choice is which connectives to allow in our
sentences. In [15] we chose to include only the con-
nectives :;_;^. This led to some surprising con-
sequences, which we shall describe later, and which
suggested this was an inappropriate choice given the
goal we had in mind. In a subsequent paper, [12],
we expanded this list of connectives to :;_;^;$;l,
where l is the dual of $, that is � l � is true just if
�; � have di�erent truth values. With hindsight this
choice again seemed not perhaps the most appropri-
ate so in [19] the results were generalised to cover var-
ious combinations of binary connectives. From these
many choices the most justi�ed, in our opinion, and

the one which we shall make for this paper, is the set
of all binary connectives which genuinely depend on
both arguments2. For future reference let us denote
the set of such connectives by C. The reason for ex-
cluding the remaining binary connectives is that they
would be either essentially redundant in the random
processes we have in mind, or even, in the case of the
identically true or identically false, connectives, have
the power to remove the randomness altogether. The
justi�cation for not going beyond binary to ternary
and so on, is based on our intuition that in nature ba-
sic interactions almost invariably take place between
pairs of interagents.

Finally we need to resolve the question of what mea-
sure of size we are going to put on a sentence � in order
to say what we mean by `very large'. Here there is an
obvious solution. For the language L with proposi-
tional variables p1; p2; p3; ::: and set of sentences SL
of L built up using just the binary connectives from C
the size of a sentence � 2 SL will be measured by the
number of connectives occuring in �. In fact however,
our conclusions appear robust under sensible pertur-
bations of this de�nition; see for example lemma 2.7
of [15].

We assume that, as models of 0-1 random processes,
all sentences of a �xed size are equally likely to be
encountered. This may be regarded as another form
of the principle of indi�erence, although applied to
a di�erent `model' to that of Laplace. [See [15] for
further discussion.]

To sum up then, our initial model of a natural random
0-1 process is the truth value of a random, very large
sentence � 2 SL when the truth values of the proposi-
tional variables are randomly, and independently, as-
signed truth values 1 (i.e. true) or 0 (i.e. false) with
expected value 1/2.

Carrying through the intention described above this
modelling now yields a family Dn of probability dis-
tributions on [0; 1] de�ned as follows: For I a Borel
subset of [0; 1],

Dn(I) = Limm!1

� jf � 2 Am
n j E(�) 2 I gj
jAm

n j
�
;

where Am
n is the set of sentences of SL containing ex-

actly n connectives and only mentioning propositional
variables pi for 1 � i � m; and E(�) is the expected
value of � when the truth value of each proposition
variable is identically and independently distributed
with expected value 1/2.

Our only remaining immediate concern now is what
we mean by n being `large'. The central result which

2Notice that, e�ectively, negation is still present in the
language, albeit now as a derived, or de�ned, connective.



resolves this question is that for I a Borel subset of
[0; 1], the weak limit, D(I), as n ! 1 of the Dn(I)
exists and de�nes a countably additive measure on
[0; 1]. [This limit is rather robust in that there is con-
siderable 
exibility in the de�nition of D. We could,
for example, allow n and m to tend to in�nity in-
dependently, and/or replacing Am

n by, say, the set of
sentences with at most n connectives.]

This measure D could now be taken as our natu-
ral distribution of the expected values of 0-1 random
processes, equivalently probability functions on SL1.
Certainly it has the right shape, as discussed earlier,
in that its histograms rises at 0 and 1 and have a
discernible bump at 1/2.

One major criticism however, which we have already
noted, is that D has been constructed under the as-
sumption that the propositional variables all have ex-
pected truth value 1/2. Fortunately there seems now
to be a self evident way to address this de�ciency.
Namely, sinceD currently represents our best attempt
at a natural probability distribution, we should `im-
prove' our original assumption that all the proposi-
tional variables had expected value 1/2 by assuming
instead that all the propositional variables have ex-
pected values distributed acording to D.

If we do this, and repeat the whole process again we
�nd that the weak limit, D(2) say, again exists and
is a countably additive measure with the the `right
shape'. But now our best natural distribution is D(2)

so we should start over again with D(2) in place of
D to obtain D(3) and so on and so on. In this way
we obtain a sequence of better and better candidates,
D;D(2); D(3); D(4); ::: to our `natural probability dis-
tribution' and these again have a weak limit which we
denote as J (after J��tka Vil��mov�a).

J is, within this modelling of (univariate) natural
probability functions, our sought after `natural proba-
bility distribution'. It is continuous, and so countably
additive, and again has the `right shape', see Figure 1
for the relative frequency histogram approximation
computed using the method of Bernstein polynomi-
als based on the �rst hundred moments.

It is, furthermore, impervious to further improvement
in the sense that if we again repeat the process that
yielded D(2) from D but with J in place of D then
we get back J again. But more spectacularly, if we
repeat the whole process which yielded J not from
the initial distribution on the expected values of the
propositional variables which gave them all value 1/2
but with this distribution replaced by any symmetric
(about 1/2) countably additive measure T then, with
just one exception, we will again obtain J . That one
exception is when T is the measure U which spreads
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Figure 1:

all measure equally on the points 0 and 1. In that case
there is no randomness about the initial propositional
variables and the process just gives back U again.

It is interesting to compare this result with the con-
clusion we arrived at in [15] where we took instead
only the binary connectives which, with arguments
p,q, have the truth tables of

p^q; p^:q; :p^q; :p^:q; p_q; p_:q; :p_q; :p_:q:
[This is equivalent to taking sentences built up from
f�piji = 1; 2; 3; :::g using only the connectives ^;_
which is how it was actually done in [15].] In that
case the �nal weak limit of the D;D(2); D(3); D(4); :::
again exists, and is U ! In other words, in the limit all
randomness has disappeared! Furthermore we obtain
U no matter what countably additive measure T we
start from.

As the choice for the natural univariate prior under
ignorance J has some very pleasant properties, as we
shall see in the next section. Furthermore we `know'
what J is in the sense that we know all its moments.
Precisely, the expected values with respect to J are
given recursively by E(x0) = 1,

E(xk) =
2

5
E(xk)2 +

kX
r=0

2

5
(�1)rE(xr)2

�
k

r

�

+
kX

r=0

1

5
E(xr(1� x)k�r)2

�
k

r

�
:

We conclude this section by mentioning an alterna-
tive justi�cation for the choice of J as a natural prior
probability distribution: Consider some natural prob-
ability function (on SL1), or equivalently some ran-
dom 0-1 process in the real world. As we have al-
ready argued our experience of such natural probabil-
ity functions is that this process is ultimately a very



complex combination of other processes and that any
true randomness is hidden deep down at the micro-
scopic level. Now it seems reasonable to suppose that
on closer inspection this process will be seen to be
the result of a simple combination of some few other
natural processes, where, just as in the initial pro-
cess, the true randomness is again hidden deep down
at the microscopic level. Clearly then, if we suppose
that our initial natural probability function was dis-
tributed according to a natural priorK then we would
seem obliged to a�ord the same status to the these
`few other natural probability functions' whose sim-
ple combination yielded our initial function. If we
now further agree that the possible 'simple combina-
tions' are just those in C (and each of these are equally
likely here) this imposes a �xed point condition onK -
whose only solutions are J and U ! [See [12], Theorem
13.] Discounting U for reasons already given leads us
again then to the distribution J .

3 Multivariate natural probability
functions

In the previous sections we derived the prior proba-
bility distribution J on the probability functions on
SL1 (where Ln = fq1; :::; qng). In short the justi�ca-
tion for considering J as a prior on natural probability
functions was based on the assumptions that random-
ness in nature is the result of a very deep combination
of `microscopic' random events in processes and that
such processes can be adequately modelled as very
large sentences in SL.

In this section we turn our attention to extending J
from natural probability functions on SL1 to natural
probability functions on SLn, that is those probabil-
ity functions on SLn which we encounter in the real
world and which knowledge engineers endeavour to
approximate via expert systems.

The particular feature of such probability functions on
SLn is that the propositional variables qi correspond
to natural, and rather interdependent, features. For
example the relevant features a doctor might use in di-
agnosing, say, types of tumours. Indeed the existence
of such interdependencies is precisely what gives ex-
pert systems their hopes of success. In order to extend
J we needed to somehow model these interrelation-
ships.

It was here that we made our second key assumption.
We assumed that the dependencies we �nd between
such observable features arise because these features
are themselves combinations of certain other `basic',
independent, features and that the dependencies be-
tween the observable features arise as a result of hav-

ing these `basic' features in common.

In consequence of the conclusions stated in the pre-
vious section these `basic' features were assumed to
be (independently) distributed according to J whilst
the observable features were assumed to correspond
to sentences built up from these basic features, using
again the connectives in C.
More precisely we assumed that to a `natural' prob-
ability function, w say, on SLn there corresponded
sentences �1; :::; �n 2 Bk

m, where Bk
m is the set of

sentences built up from the propositional variables
p1; p2; p3; :::; pm without repetions and using exactly
k occurrences of connectives from C (here k;m are
�xed parameters), such that,

w(qi) = Expected truth value of �i

= Probability that �i is true:

In particular then, for an atom
Vn

i=1�qi of SLn,

w(
n^
i=1

�qi) = Expected truth value of

n^
i=1

��i

= Probability that

n̂

i=1

��i is true;

when the truth values of the pi are themselves deter-
mined by some random, natural, 0-1 process.

The natural distribution, or measure, Jn on these
probability function was then de�ned by assuming
that for such w all the (�nitely many) n-tuples
< �1; �2; :::; �n > of sentences in Bk

m were equally
likely to occur and that the expected truth values of
the pi; i = 1; 2; :::;m, were independently and iden-
tically distributed according to the distribution J .
There is thus a continuous aspect to Jn, correspond-
ing to the expected truth values of the propositional
variables pi, and a discrete aspect corresponding to
the particular combinations �j of these propositional
variables.

There are clearly a number of assumptions here that
deserve comment. Firstly, the choice to identify the
combinations of `basic' independent features with sen-
tences using connectives in C is just the natural ex-
tension of the same idea which was developed in order
to derive J . The choice of taking the same, �xed, k
and m for all the � was however made partly on prag-
matic grounds, to allow the consequent mathematical
analysis to run more smoothly, and transparently, and
partly because these provide natural parameters with



which to tweak the resulting distribution. (Strictly
these parameters should have appeared as additional
arguments in Jn but we suppress them simple to avoid
a surfeit of subscripts and superscripts.)

As far as this parametric aspect is concerned, for �xed
k having m small has the e�ect of making the corre-
lations between the qi more variable. The e�ect of k
is rather more subtle, basically having k large means
that overall there are more dependencies between the
qi. Having such parameters seems an unavoidable
part of what we are attempting here in the distribu-
tion Jn. For if we were to consider the sort of natural
probability functions which would be encountered as
suitable cases for expert systems then these clearly
have much stronger interdependencies between the qi
than when we considered natural probability func-
tions where the qi were just randomly chosen features
from the natural world. [Indeed in some approaches,
for example Walley's theory of imprecise probabilities
based on upper and lower probability, see [17], [18],
admitting a range of parameters here may be pos-
itively advantageous in that it accommodates also a
degree of ignorance as to the actual degree and nature
of interdependence between the variables present.]

A second, and more substantial, point is why we
chose sentences without repeated propositional vari-
ables. Again it must be acknowledged that in part
this choice was made both to simplify the ensuing
mathematics and because it gives the right answers!
However there is an argument for our choice which
touches on a rather fundamental problem in regard
to the goal of constructing a `natural probability dis-
tribution'. For suppose we had allowed our sentences
to have contained repeated propositional variables. In
such a case we would have been allowing the de�nite
possibility of choosing �i to be a tautology (or con-
tradiction) in which case qi would not be random at
all. Now in the context of constructing expert sys-
tems we (apparently) never do this. That is, we do
not include amongst our variables features which are
actually not variable at all. In this sense then we pre-
select our features, and our choice of sentences should
re
ect this preselection. Of course not all sentences
with repeated propositional variables are tautologies
or contradictions. Nevertheless we could see no nat-
ural, and workable, compromise which allows repeats
whilst avoiding the problem of tautologies and con-
tradictions. Our choice then of modelling, or approx-
imating, this preselection by the cavalier barring of
repeated variables is clearly not ideal (at least in the
absence of further justi�cation), but was one we made
nevertheless in order to facilitate further progress.

We should point out here that, in e�ect, preselection
of `random processes' was already implicit in our de-

velopment of J since our model only covered processes
which genuinely had an element of randomness. [It
might be conjectured that had we allowed into J en-
tirely non-random processes then our subsequent dif-
�culties with the multivariate extensions of J would
vanish. Unfortunately however this appears not to be
the case.]

With the above de�nition in place it turns out that
the Jn have many of the properties we would have
hoped for. Firstly the Jn marginalise. That is if we
take m > n and a Borel subset A of Dn then

Jn(A) = Jm(fw 2 Dm jw restricted to SLn is in A g):

Secondly, the Jn satisfy weak renaming. That is, if
� is a permutation of the literals �q1;�q2; :::;�qn of
Ln such that if �(qi) = �qj then �(:qi) = �qj and
we extend � to a bijection of SLn in the obvious way
(i.e. replacing �qi everywhere by �(�qi)) then for a
Borel subset A of Dn ,

Jn(A) = Jn(f w� j w 2 A g):

This is a clearly desirable property in this context be-
cause, informally, it amounts to saying that the likeli-
hood of encountering a particular probability function
on SLn does not depend on which names (i.e. �qi)
we had used to denote the features in question.

On the other hand the stronger property of full re-
naming does not hold for the Jn. Full renaming here
would amount to saying that for any Borel subset A
of Dn and permutation � of 1; 2; :::; 2n,

Jn(A) = Jn(f~x� j~x 2 Ag
where, for ~x =< x1; x2; :::; x2n >;

~x� =< x�(1); x�(2); :::; x�(2n) > :

It is not di�cult to see that weak renaming can also be
expressed in a similar way, but for a restricted class of
permutations � . On the face of it then full renaming,
which does hold for Dirichlet Priors, might appear
to be a very desirable symmetry condition. However
there are consequences of this property for induction,
see for example [6], which would cause us to question
this desirability in distributions with the pretentions
of these Jn. In consequence we actually view the fail-
ure of this principle with some satisfaction! [In [18]
it is suggested that `recategorisation' is also a desir-
able property in the general context of priors under
ignorance. Within the framework of this paper, how-
ever, the conditions under which recategorisation ap-
plies would themselves be enough to invalidate the
assumption of ignorance. For a detailed explanation
of this point see [14].]



A third property of the Jn which in our view is es-
sential is that J1 = J . It is interesting to note that
this is independent of the particular choice of k and
m. Clearly this is an important result as far as our
modelling of natural distributions is concerned. For it
would have been unfortunate, to say the least, if hav-
ing settled on J as our prior distribution on natural
probability functions on SL1 we were then to argue
for a prior on SLn which was di�erent in the case
n = 1. [It is primarily this property which rests on
our choice of `unrepeated variables' discussed earlier.]

We now turn to the question of the variability of the
P (qi)� 1=2)2 and (P (qi ^ qj)� P (qi)P (qj))2 for P a
probability function on SLn random according to Jn.
Recall that the �gures given earlier for these quan-
tities for the uniform distribution were argued to be
too low, certainly in the context of P representing the
underlying probabilities in a specialised area such as
expert systems frequently attempt to approximate. In
the case of Jn, for random P on SLn,

E((P (qi)� 1=2)2) = 1=8

whilst the values of E((P (qi^qj)�P (qi)P (qj))2) (i 6=
j) are given for some small sample values of k and m
by:

m k = 0 k = 1 k = 3 k = 5
1 0:02500
2 0:01250 0:01255
3 0:008333 0:005652
4 0:006250 0:003561 0:005198
5 0:005000 0:0025776 0:001749
6 0:004167 0:002012 0:0009597 0:0031175
8 0:003125 0:001393 0:0005142 0:0003562
11 0:002273 0:0009497 0:0003289 0:0001142

By comparison for the marginalising Dirichlet pri-
ors corresponding to a particular value of � (for
Carnap's �-continuum) the value of E((P (qi ^ qj) �
P (qi)P (qj))

2) has a maximum of 0.00837 when � =p
3 (see [10]).

The corresponding values given by the uniform dis-
tribution on probability functions on SLn (i.e. when
� = 2n) are:

n = 1 n = 2 n = 3 n = 4
0:008333 0:007143 0:005051 0:003096

n = 6 n = 8 n = 10 n = 12
0:0009185 0:0002432 0:00006080 0:00001524

What sort of meaningful conclusions can be drawn
from these �gures we shall not consider further here,
except to say that they clearly do con�rm our expec-

tation that for small values of m and k propositional
variables distributed according to the Jn are more in-
terdependent than in the family of uniform distribu-
tions, at least for moderately large n, and may there-
fore provide (in addition to their explanatory power)
a better general model of such specialised areas as
expert systems frequently endeavour to approximate.

One �nal pleasing property possessed by Jn (for n >
1) is that, as priors, they give non-zero probability to
P (�) = 0 for � an atom of SLn, and in consequence
may give non-zero probability to non-tautological uni-
versal sentences of SLn. The failure of the Dirichlet
priors (i.e. Carnap's continuum of inductive methods)
in this regard has sometimes been viewed as undesir-
able. For an interesting discussion of this property of
Dirichlet priors with respect to universal sentences,
called dogmatism by Gaifman and Snir in [3], see sec-
tion 3 of [4]. The fact that J1 is in this sense also
dogmatic, is, we would argue, an excuseable conse-
quence of `preselection'.

Having so readily pointed out what we view as the
Jn's good features we should at least mention a minor
problematic aspect to actually using these distribu-
tions at present. Namely, apart from the case n = 1,
we currently know of no simple general formulae for
their moments.

4 Conclusion

The work described in this note demonstrates, we be-
lieve, that the distribution J and its multivariate ex-
tensions Jn have a number of desirable properties as
candidates for `natural' priors, not least that they are
based on a clear model of random processes in the real
world.

Of course, this model depends on several debateable
assumptions, in particular:

1. That large sentences with the randomness hidden
deep down provided adequate models for natural
0-1 random processes.

2. That, as models of 0-1 random processes, all
sentences with the same number of connectives
(from C) are equally likely to be encountered.

3. That the dependencies we �nd between observable
features in nature arise because those features
are themselves certain simple Boolean combina-
tions (each with equal numbers of connectives
and without repeated variables) of overlapping
`basic' features.

4. That the problem of `preselection' of observable
features is adequately addressed by the restric-



tion to non-overlapping variables referred to in 3
above.

On the other hand since the very existence of the ob-
ject we seek, i.e. the distribution of natural proba-
bility functions, has not been proven, making some
speculative assumptions seems unavoidable. And at
least, having made these assumptions, we could argue
that the model gains some credibility through possess-
ing many of the properties we might have expected, or
hoped for, in a distribution on the natural probability
functions.

Whether or not these factors alone are enough to
conclude that `the distribution of natural probabil-
ity functions', has some meaning, and may even have
been approached, clearly remains problematic. Per-
haps at this stage the best interpretation we can put
on these results is that they provide a model which
could be correct in some universe. As a �nal remark,
we point out that in such a universe there would be
no need to explain, or seek the ultimate source of,
random phenomena. Randomness would have no be-
ginning.
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