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From (18), if for any i, f�i (a) < 2�, allowing the corre-
sponding di to go to in�nity results in a sup of in�nity,
so (18) cannot be satis�ed. Hence the supremum is
attained when di = 0 for all i. Thus (18) further
simpli�es to �nding a value �0 of � such that

inf
a�0

�
(f1

i
(a) � �f2

i
(a))Ifa�0:f�

i
(a)�2�;8i�N (a)

�
= 0:
(19)

Now there are two cases to be considered separately.
Since the supremum of P �(L � 0 j i) corresponds
to a small value of �, �nd the value of a for which
f1
i
(a)=f2

i
(a) is a minimum. If that value of a satis�es

the constraint mini f�
i
(a) > 2�, then the supremum

has been found. If not, then the constraint is binding.
In this case, because f1

i
(a) � �f2

i
(a) is continuous in

a, the in�mum in (19) occurs when f�
i
(a) = 2� for

some i�N .

Thus the search for a solution of (19) in the second
case can be found at the points a at which

min
i�N

f�
i
(a) = 2�; (20)

and then

�(a) = f1i (a)=f
2
i (a): (21)

If there are several points a satisfying (20), the small-
est �(a) in the set corresponds to the in�mum in (13).
This can be accomplished by a one-dimensional search
over possible values a.

To �nd inf��A p
�(L � 0 j i), simply reverse the roles

of inf and sup in (13). This can be done by reversing

the roles of f1i (a) and f
(2)
i (a) in each of the subsequent

formulas.

Finding the extrema for the class B is quite similar to
�nding them for class A. Here the constraints (10) are
replaced by the constraints (8), which are equivalent
to

sg�(i
0) � g�(i

00) for all i0; i00�N: (22)

Hence equation (10) is replaced by

Z 1

0

f�
i
0
;i
00 (a)dF (a) � 0 for all i0; i00�N; where

(23)

f�
i
0
;i
00 (a)

= 1
a

R a
0 s(f

i
0(L) + f

i
0(�L)) � (f

i
00 (L) + f

i
00(�L))dL;

and f�
i
0
;i
00(0) is de�ned by continuity.

The same linearization can be applied, leading to the
following analog of (16):

0 = sup
d

i
0
;i
00 �0

i
0
;i
00
�N

inf
F�F0

Z 1

0

h(a)dF (a) (24)

where

h(a) =

2
4f1

i
0
;i
00(a)� �f2

i
0
;i
00 (a)�

X
i
0
;i
00
�N

d
i
0
;i
00f�

i
0
;i
00
;s
(a)

3
5

By exactly the same arguments, this results, in the
case in which the constraints are binding, in �nding
the set of a's such that

min
i
0
;i
00
fi0;i00;s(a) = 0

and then choosing the smallest �0(a) from the result-
ing set. Again, the in�mum over the class B is found
by reversing the roles of f1 and f2.
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�(L) =

Z 1

L

1

a
dF (a); (9)

where F is a distribution function in the set F =
fF (�) :

R1
0

dF (a) = 1
2 ,

Z 1

0

f�
i
(a)dF (a) � � > 0 for all i � Ng

(10)

where

f�
i
(a) =

1

a

Z a

0

(f
i
(�L) + f

i
(L))dL ; a > 0

and f�i (0) is de�ned by continuity.

The quantity of interest is the probability of fL � 0g
posterior to observing i when the prior is �(L)�A.
This can be rewritten as

P �[L � 0 j i] =

"
1 +

R
L�0

f
i
(�L)�(L)dLR

L�0 fi(L)�(L)dL

#�1
(11)

or, equivalently as

PF [L � 0 j i] =

"
1 +

R1
0 f1

i
(a)dF (a)R1

0 f2
i
(a)dF (a)

#�1
(12)

where

f1
i
(a) = 1

a

R a
0
fi(�L)dL;

f2
i
(a) = 1

a

R a
0
f
i
(L)dL;

and F (�) � F :

Then the supremum of the posterior probability that
L � 0 can be written as

sup
��A

p�(L � 0 j i) = sup
F�F

pF (L � 0 j i)

=

"
1 +

inf

F�F

R1
0 f1

i
(a)dF (a)R1

0 f2
i
(a)dF (a)

#�1
:

(13)

By the linearization algorithm ([11], the in�mum in
(13) is the unique solution in � of the equation

inf
F�F

Z 1

0

h
f1
i
(a) � �f2

i
(a)
i
dF (a) = 0:

(14)

Once �0 has been found,

sup
��A

P �(L � 0 j i) = (1 + �0)
�1: (15)

Using [10] (see also [14] and [12], (14) can be rewritten

0 = sup
d
i
�0

i�N

8<
:�

X
i
0
�N

d
i
0 + g (16)

where

g =

inf
F�F0

Z 1

0

2
4f1

i
(a)� �f2

i
(a)�

X
i
0
�N

d
i
0f�
i
0(a)

3
5 dF (a)

9=
;

and where F0 is the class fF (�) :
R1
0

dF (a) = 1=2g.

While (16) may look formidable, and hence not a sim-
pli�cation, it has important consequences. First, the
internal in�mumoccurs at an F that puts all its prob-
ability at a single point a. This means that the ex-
tremum will occur at a single uniform distribution for
L. Thus

inf
F�F0

Z 1

0

2
4f1

i
(a) � �f2

i
(a)�

X
i
0
�N

d
i
0f�

i
0(a)

3
5 dF (a)

= inf
a�0

1

2

2
4f1

i
(a)� �f2

i
(a)�

X
i
0
�N

di0f
�
i
0(a)

3
5 ;

(17)

which permits reduction of (16) to

0 = sup
d
i
�0

i�N

inf
a�0

8<
:f1i (a)� �f2

i
(a)�

X
i
0
�N

(f�
i
0(a) � 2�)d

i
0

9=
; :

(18)



s Inf. Sup s Inf. Sup
105 :99 1:00 107 :97 :97
106 :92 1010 :95
3 106 :77 1012 :90
4:5 106 :61 1014 :74
5 106 :5 1015 :54

Wave I Wave II

s Inf. Sup s Inf. Sup
106 :17 :18 103 :97 :99
108 :24 105 :89
109 :31 106 :75
1010 :41 2 106 :66
3 1010 :50 3:2 106 :54

Wave III Wave IV

s Inf. Sup
1024 :998 :999
1030 :992
1034 :957
1036 :886
1037 :810
1038 :680
3 1038 :569
4 1038 :500
Combined Waves

Table 5: Upper and lower bounds on the posterior
probability of age discrimination for Class B as a func-
tion of s.

It may be, however, that predictive probabilities
themselves are hard to think about, because they de-
pend so much on the margins taken to be �xed. This
consideration led to the construction of a second class
of prior distributions, class B. The idea here is to con-
strain the ratio of predictive probabilities, i.e. so that

max
i

g�(i)

min
i

g�(i)
� s (8)

for some s > 1 (among �'s unimodal and symmetric
around zero). Here there is a minimum value of s
below which the class again goes empty. Respectively,
those values are 2.94, 4.52, 3.40, 3.57 and 77.1. Here
again it makes sense to allow variations of one or two
orders of magnitude (factors of 10 to 100). Again,
the appendix shows how the calculations were done.
Table 5 records the results.

Again, variations of one or two orders of magnitude on

the minimum s do not a�ect the results. Thus these
calculations con�rm the results of [8] and [13] that
the calculations are robust. The classes considered
are indeed very wide, allowing a pletora of di�erent
behaviour, but at the same time obeying the natural
requirement of being neutral and non-dogmatic, in
order to be fair in the �nal judgement, whatever the
outcome of the data.

4 Conclusions

The Robust Bayesian analyses performed here lead
to two kinds of conclusions. Qualitatively, they show
that there are two sensitive areas of prior elicitation,
close to L = 0, and L very large in absolute value.
Neither of these comports well with the idea of judi-
cial neutrality: not favoring either litigant and being
open to being in
uenced by the data. Quantitatively,
the analyses con�rm the impression gained from the
earlier studies, that for this particular application and
data sets, the results are satisfactorily robust.

What have we learned from RBA to judicial weighting
of the evidence? That a RBA is the natural imple-
mentation of the Bayesian approach to convey that a
conclusion is very reliable.

On the other hand, what have we learned from this
representative case study to RBA in general? That
a RBA should take into account the likelihood of the
priors in the class. This is encapsulated in the princi-
ple that classes that claim to model judicial neutrality,
should yield non-negligible likelihoods of any possible
outcome. It is our hope that this study will moti-
vate similar principles in other realms of knowledge,
and make closer to current judicial practice sensible
Robust Bayesian analyses.

A Finding the Extrema for Classes A
and B

The data may consist of a single table, or of several
tables. In either case, the sample space is discrete.
For a single table, it consists of integers i such that
v � i � w. For several tables indexed by t, it consists
of a vector of integers of length T , i = (i1; : : : ; iT )
such that vt � it � wt for all t, 1 � t � T . Let N
denote this sample space.

The likelihood function may then be written as fi(L).
The class A is then de�ned in equation (7), with the
modi�cation above in the case of more than one table.
Using Khinchine's representation, the set of priors in
A can be expressed as the set of distribution functions
F satisfying



Predictive distributions are a particularly useful way
to think about the consequences of a prior distribution
because it refers to what a neutral arbitrator might
expect about the number of employees over forty �red,
after learning the age structure of the work force and
the number of employees to be �red. Berger (1994)
interestingly points out that the predictive distribu-
tion is in fact the likelihood of the prior (for a �xed
likelihood), and a limitation of some RBA studies is
that robustness might be missing due to priors which
have a very low (posterior) likelihood. In other words
lack of robustness might be caused by priors which
are ruled out by the data. Berger's insight seems to
be consistent with the following principle in our sit-
uation: Neutrality might be considered in terms of
not being too surprised at any way the data might
come out. More formally, suppose that the prior is
�(L), and the likelihood is fi(L) where i = n11 is the
datum. Let

g�(i) =

Z 1

�1

fi(L)�(L)dL: (6)

Then the neutral class A can be de�ned as

A = f�(L) : �(L)is unimodal and symmetric
around 0; and g�(i) � � for all i; v � i � wg

(7)

The parameter � of this class is then the minimum
prior predictive probability of the possible data. The
idea of this class is that it constrains the neutral arbi-
trator to have at least probability � > 0 on each possi-
ble data point. In other words, only priors which have
a non-negligable likelihood, for all possible data, are
allowed in our neutrality class. Every � > 0 prevents
U (1�) as a possible prior. To prevent U (0+) from
being a possible prior, it would be necessary to have

� > min
i

f(0 j i):

On the other hand, it is necessary to have � < 1=(w�
v + 1) in order for the class to be non-empty.

For each wave and for the combined waves as given in
Table 1, there is a maximum value of epsilon, above
which the class A is empty. For waves I to IV, and the
combined waves, these maxima are .032, .016, .023,
.041, and 8.57 10�32, respectively. Thus any useful
choice for epsilon must not exceed these numbers for
the associated data set. It seems reasonable to al-
low epsilon to be one tenth or one hundredth of this
maximum value, and to see the extent to which the
posterior probability of positive L varies as a result.

Another base that might be used is the height that the
predictive distribution would have if it were uniform,
namely 1=(w�v+1) and then taking 1=10 or 1=100 of
this base. For waves I to IV, and the combined waves,
these heights are .053, .027, .036, .063, and 3:2�10�6,
respectively. For the individual waves, these numbers
are larger than but the same order of magnitude as
the maxima reported above. However, this idea is
infeasible for the combined table, as it leads to an
empty class.

Epsilon Inf. Sup Epsilon Inf. Sup
4 10�8 :50 1:00 10�16 :50 :97
5 10�8 :69 5 10�16 :67
10�7 :86 10�15 :72
10�6 :98 10�14 :83
10�5 :997 10�12 :92

10�8 :97
Wave I Wave II

Epsilon Inf. Sup Epsilon Inf. Sup
10�11 :17 :50 10�8 :50 :99
5 10�11 :45 10�7 :64
10�10 :32 10�6 :86
10�8 :20 10�5 :94
10�6 :17 :011 :98

Wave III Wave IV

Epsilon Inf. Sup
10�42 :50 :999
10�41 :68
10�40 :81
10�39 :89
10�37 :96
10�35 :98
Combined Waves

Table 4: Upper and lower bounds on the posterior
probability of age discrimination for Class A as a func-
tion of �.

Table 4 records the results for the data in Table 1.
(The appendix to this paper shows how the computa-
tions were done). The computations in Table 4 show
that the upper and lower bounds come together as
the class of priors narrows by increasing epsilon, as
expected. It also shows that each computation is un-
a�ected by epsilons much smaller than one or two or-
ders of magnitude below the maximum or the height
the predictive distribution would have if it were uni-
form. Thus the calculations look quite insensitive to
selection in class A with �'s chosen as suggested above.



Operational Wave
Prior � I II III IV Combined

1.5 1.000 .952 .116 .971 .997
2 1.000 .937 .090 .961 .996

J 3 1.000 .909 .062 .944 .993
4 1.000 .882 .047 .926 .991
5 1.000 .857 .038 .909 .989

1.5 1.000 .865 .128 .899 .976
2 1.000 .828 .099 .896 .969

C 3 1.000 .763 .069 .816 .953
4 1.000 .707 .052 .769 .939
5 1.000 .658 .042 .939 .925

1.5 1.000 .942 .132 .949 .998
2 1.000 .924 .103 .933 .997

N(0,1) 3 1.000 .891 .071 .903 .996
4 1.000 .859 .054 .875 .995
5 1.000 .830 .044 .848 .993

DeRobertis/
Hartigan .996 .893 .268 .916 .982
Class

(From [13])

Table 3: Lower bound for the Posterior Probability that L > 0 as a function of the class of prior

to see that f(n11 j L) ! 0 exponentially fast. Now
consider the posterior that results from the prior (3).

PfL � 0 j n11g =
(1=2)pf(n11 j L = 0)

pf(n11 j L = 0) + (1� p)A

where A = lim
m!1

Z m

�m

1

2m
f(n11 j L)dL (4)

But since f(n11 j L)! 0 exponentially fast, the limit
in the denominator of (4) is zero, so

PfL � 0 j n11g = 1=2 (5)

for all members of the class (3), irrespective of the
data n11. We were surprised by this property of the
class (3).

This fact already suggests at least one qualitative
result: a subclass of all unimodal priors symmetric
around zero can lead to a non-trivial bound only if
it avoids putting too much probability close to zero,
and avoids allowing too much probability to be put on
extremely high and low values of L. This explains the
failure of a number of our early attempts to restrict
the class of unimodal, symmetric priors: (i) by �xing

the height of � at 0,1(ii) by bounding the variance of �
from below, and (iii) by �xing a quantile of �. In each
case, a member of (3) can be found to satisfy the con-
straint, thus showing that the class, even restricted, is
uninterestingly broad, in the sense that 1/2 would be
one of the possible values of PfL > 0g, regardless of
the data. This demonstration that class (3) leads to
trivial bounds cannot be taken as evidence that only
class (3) leads to trivial bounds.

The priors U (0+) and U (1�) are not satisfactory
representations of judicial neutrality. The former says
essentially that the neutral arbitrator is sure, before
hearing any evidence, that if there were age discrim-
ination at all, its magnitude is so small as to have a
negligible e�ect. The prior U (1�) is also unreason-
able, as it puts all its predictive weight on v and w.
Thus a neutral arbitrator holding this prior is sure,
before seeing the data, that all the �rings will be of
employees under forty or all will be of employees over
forty. Not only is this not generally the case, but it is
not a good model for a neutral arbitrator either.

1To see this, suppose that �(0) � h for some �xed h.
Consider a prior that puts �(x) = h for �� � x � �, and
puts 1� h� probability on U(1�). For each � > 0, such
a prior has PfL � 0 j n11g nearly 1/2 independent of the
data n11. Hence as � decreases, this continues to be the
case.



Cell
Notation: 1,1 1,2 2,1 2,2
Numbers n11 n12 n21 n22
Probabilities p11 p12 p21 p22

I 18 0 129 102
Wave II 26 10 105 83

III 13 14 92 66
IV 13 2 81 52

Category Fired, 40+ Fired, 40- Retained, 40+ Retained, 40-
(from [8])

Table 1: Ages of those �red and retained in four �ring waves: Notation and Data

Prior Wave
I II III IV Combined

N (0; 1) 1.000 .960 .183 .965 .999
N (0; 22) 1.000 .967 .169 .981 .999
N (0; 42) 1.000 .969 .165 .985 .999
N (0; 82) 1.000 .970 .164 .986 .999
N (0;1) NA .970 .164 .987 .999
C .997 .906 .248 .930 .984
CE .997 .904 .246 .925 . 984
J 1.000 .968 .165 .980 .998
JE 1.000 .969 .170 .984 .999

(from [8] and [13])

Table 2: Posterior Probability of L > 0 (older than
40 disadvantaged) as a function of the prior.

and x0 = n1+n+1=n, denoted C here. This choice is
nearly, but not exactly, symmetric around zero. Con-
sequently they suggest the even part of the conjugate
prior, which is symmetric by construction (CE). Ad-
ditionally, they report the consequences of the Jef-
freys prior, and its even part (denoted here J and
JE respectively) shown in Perez (1994) to be proper.
These results of Kadane and Perez and Pericchi are
summarized in Table 2, which shows a broad, general
consistency in the results.

None of these re
ect a class of priors, so, even to-
gether, they do not address fully the issue of the ro-
bustness of the inference. To address this, Perez and
Pericchi study two kinds of classes of prior.

The �rst, following [5], and [4], considers the class of
all priors �(L) satisfying

�(L)

�(L)
� � 8L; (2)

where �(L) is a �xed operational prior and � � 1. Us-
ing as operational prior C, J, and N(0,1), they com-

pute lower bounds for P (L > 0) for several �'s.

The second class studied by Perez and Pericchi uses an
idea introduced by [2]. They consider the class of un-
normalized prior distributions �(L) satisfying `(L) �
�(L) � u(L) for almost all L, where `(L) and u(L) are
speci�ed and need not integrate to unity. Using the
choices `(L) = N (0; �2), where �2 is chosen so that

`(0) = C(0) and u(L) = max
L

(CE(L)) �
max
L

�
`(L)
CE(L)

�
,

they again derive lower bounds for the posterior prob-
ability that L is positive. These results are given in
Table 3. Again, they indicate a certain qualitative
robustness. But these classes do not articulate well
with the idea that the class of priors should represent
judicial neutrality in some sense.

3 Robust Neutrality

The most natural class, from the viewpoint of judicial
neutrality, is the class of unimodal priors symmetric
around 0. However, as the analysis below shows, this
class turns out to be too broad.

According to the Khinchine representation theorem
(see [3] p. 10, every prior in this class can be rep-
resented as an arbitrary mixture of uniform densities
symmetric around zero. [8] remarks that a prior that
puts all its weight uniformly on [��; �] will put pos-
terior probability 1/2 on the set L > 0, (as � ! 0)
regardless of what the data are. Denote this prior (re-
ally a limit of priors) as U (0+). Another important
prior is U (1�), found by taking a uniform prior on
[�m;m] as m !1. Consider now the prior mixture
of two uniforms:

�p(L) =

�
p U (0+)

1� p U (1�)
(3)

for some p � (0; 1]. Also suppose there are no zeros in
the data table (thus excluding Table I), which corre-
sponds to v < n11 < w. Then as j L j! 1, it is easy



\a satisfactory range of appropriate skeptical opin-
ions," and report reasonable robustness in stopping
the trial.

[6] uses an �-contamination model in which the class
of priors considered is

f(1� �)�o + �q : q�Qg

where �o is the tentatively believed prior, and Q is
all possible prior distributions. As � # 0, the poste-
rior probability of a set C approaches that under �o;
as � " 1, the bounds on a set C become the trivial
bounds 0 and 1. They �nd that a cancer trial was
appropriately stopped, but that the ECMO decision
is more equivocal.

Finally,[7] considers a testing framework in which they
want to discern which of four models is favored by the
data. They choose a main prior, and consider four
variants of it to show robustness.

A general and more radical approach that focus on
upper and lower probabilities, is presented in [15].

This paper re-analyses the age-discrimination data of
[8]. In that paper, four �ring waves were studied
using two-by-two doubly constrained contingency ta-
bles. Since the likelihood in this case has a single pa-
rameter with a natural interpretation, it is reasonable
to hope that a broad class of priors might lead to rea-
sonable bounds. This application has the di�culty,
however, that the decision maker (judge or juror) is
unavailable for prior elicitation. For this reason, it
might be argued that RBA is unavoidable here. Hence
we seek the prior of an idealized \judicially neutral"
person.

Section 2 reviews the application and previous e�orts
at a robust analysis of it, which are still too narrow.
Section 3 proposes some new classes of priors, and
examines the conclusions that might be drawn from
them. Section 4 concludes the paper with a discus-
sion of the implications of our �ndings for the appli-
cation, and for robust Bayesian analysis in general.
The computational methods we used are described in
the appendix.

2 Age Discrimination

[8] analyzed the data in Table 1 using a 2�2 contin-
gency table. He took both the marginal distribution
by age (over and under 40) and the marginal distribu-
tion by employment status (�red or retained) as �xed,
since they are legally irrelevant. Thus both the age
structure of the work force and the number �red are
neutral happenstances, and the examination is based
on who (by age) was chosen to be �red or retained.

The likelihood for a single �ring wave is

f(n11 j L) =�
n

n11;n1+�n11;n+1�n11;n�n1+�n+1+n11

�
en11LPw

j=v

�
n

j;n1+�j;n+1�j;n�n1+�n+1+j

�
ejL

; (1)

where v = max(0; n1++n+1�n), w = min(n1+; n+1).
The parameter L has the interpretation of being the
log-odds-ratio, i.e. L = log(p11p22=p12p21), the log-
odds of being �red if an employee is over forty com-
pared to one under forty. Therefore L = 0 means that
the �ring policy is age-neutral, L > 0 means that the
�ring policy disadvantages people older than 40, and
conversely, L < 0 means that younger workers are
disadvantaged. Since L � 0 is legal, while L > 0
is not, there are only two decisions available to the
decision maker. Thus we concentrate on P [L > 0].
Notice, in passing, that one of the advantages of the
Bayesian approach, preserved under the RBA, is its
probability coherence. Thus the conclusions are in-
variant under smooth transformations of the parame-
ter L, although this is a very natural parametrization
of the likelihood.

To be useful in court, a prior for this problem needs to
represent not the real prior opinion of an expert wit-
ness, but rather an opinion that is judicially neutral,
i.e. that does not bias the analysis in either direction.
This consideration led Kadane to propose symmetry
for L around zero and unimodality as reasonable fea-
tures for such a neutral prior to have.

For convenience, Kadane chose the normal family
with zero mean, and calculated posteriors using stan-
dard deviations of 1, 2, 4, 8, and 1. This is an
example of parametric robust inference, in that the
families of priors permitted are indexed by a parame-
ter, here the standard deviation. Kadane put greatest
stress on large standard deviations, in�nity for waves
II, III, and IV, and eight for wave I (in wave I, the
zero in the table leads to an improper posterior under
an unbounded uniform prior).

[13] noticed that the likelihood (1) belongs to the Ex-
ponential Family which can be written, in obvious
notation as:

f(n11 j L) / exp[n11L �M (L)]g(n);

so that a natural conjugate prior exists of the form,

�(L j n0; x0) / exp[n0x0L� n0M (L)]:

[13] explore this conjugate family, which has hiper-
parameters x0 and n0. They suggest using n0 = 1
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Abstract

This paper explores the usefulness of robust Bayesian
analysis in the context of an applied problem, �nding
priors to model judicial neutrality in an age discrim-
ination case. We seek large classes of prior distribu-
tions without trivial bounds on the posterior proba-
bility of a key set, that is, without bounds that are
independent of the data. Such an exploration shows
qualitatively where the prior elicitation matters most,
and quantitatively how sensitive the conclusions are
to speci�ed prior changes. The novel non-parametric
classes proposed and studied here represent judicial
netrality and are reasonably wide, so that when a
clear conclusion emerges from the data at hand, this
is arguably very reliable.

Keywords. Discrimination, elicitation, law, lin-
earization, moment problem

1 Introduction

Robust Bayesian analysis (RBA), as championed by
Berger and others [1] examines the maximum and
minimum over a set of prior distributions, of a quan-
tity of interest, like the posterior expectation of a
function in the parameter space, for instance, the pos-
terior probability of some set C. This paper explores
what can be learned from such an analysis in the con-
text of a speci�c example, the modeling of judicial
neutrality in employment discrimination lawsuits.

What might be learned from a robust Bayesian anal-
ysis? We think there are at least two senses in which
it can shed light on a standard Bayesian analysis that
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used a single, or a very few, prior distributions. The
�rst is qualitative. If the class of prior distributions
is unrestricted, for example if it contains both priors
putting probability zero and probability one on the
set C, the posterior probability will also be bounded
by zero and one, independent of the data. This phe-
nomenon, bounds attained whatever be the data, is
referred in this paper as a set of priors leading to
trivial bounds. At the other extreme, a class of prior
distributions consisting of a single prior distribution
is indistinguishable from an ordinary Bayesian anal-
ysis. However, if one can �nd a large class of prior
distributions leading to non-trivial bounds, such an
analysis can be informative about what aspects of the
prior are particularly important to the determination
of C's posterior probability. This qualitative informa-
tion, in turn, can help direct attention in elicitation
to the aspects of the prior that matter most for the
application.

The second kind of information that might be gleaned
from an RBA is quantitative, namely how much the
probability of C changes as the class expands in a
qualitatively sensitive direction. This in turn can lead
to a judgment of whether a Bayesian analysis is su�-
ciently robust to changes in details of the prior speci�-
cation to be relied upon in a speci�c application with
speci�c data. Robust Bayesian analyses, with rea-
sonable wide classes of priors ("reasonable" meaning
that dogmatic priors are excluded), are particularly
well suited to judicial weighting of evidence.

While there has been a rich theoretical development
in RBA (which this paper uses to guide the calcula-
tions), applications have been fewer. One reason is
that in settings involving several parameters, the ex-
trema over large classes of prior distributions tend to
be di�cult to �nd (analytically or computationally),
and the bounds tend to be extreme.

[9] discuss the famous ECMO trial ([16]) from a robust
Bayesian viewpoint. They report having calculated
with 84 di�erent priors, spanning what they claim is


