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Abstract Possibility measures can be given the behavioural inter-

pretation of upper probabilities [8]. On this view, the value
II(A), A € p(Q) is interpreted as a subject’s infimum ac-
ceptable rate for betting against the evarft This means
“that the subject is willing to bet against the evdnat any

We consider discrete possibilistic systems for which the
available information is given by one-step transition pos-
sibilities and initial possibilities. These systems can be

represented by a collection of variables satisfying a possi- rateA > TI(A), giving him \ units of utility whenA does
bilistic counterpart of the Markov condition. This means
not occur, and\ — 1 units whenA occurs. The net reward

that, given the values assumed by a selection of Va”ablesésultmg from the bet at rafé(A) can also be written as:
the possibility that a subsequent variable assumes some

value is only dependent on the value taken by the most G(A) = I(A) — I4,

recent variable of the selection. The one-step transition

possibilities are recovered by computing the conditionalwherel4 is the indicator function off. The behavioural
possibility of any two consecutive variables. Under the interpretation of the possibility measufieimplies that all
behaviouralinterpretation as marginal betting rates againsgamblesG'(4), A € () are marginally acceptabléo
events these ‘conditional’ possibilities and the initial pos- the subject, meaning that he is disposed to aaG¢gl +
sibilities should satisfy the rationality criteria of ‘avoiding for all § > 0. Moreover, a rational subject should consider
sure loss’ and ‘coherence’. We show that this is indeed thepositive linear combinations of acceptable gambles as ac-
case when the conditional possibilities are defined usingeptable [8].

Dempster’s conditioning rule.
P g To ensure that the valu®F A4), A € p(12) are assessed in

tion, coherence, Dempster’s conditioning rule. numbern, for any non-negative real numbekg, < An
and for any eventdl,, ..., 4,, € p(), it must hold that

1 Introduction

sup ZAG —MWG(A) W) >0. (1)
Possibility measures are supremum preserving set map-  «w€2 | ;5
pings. They were proposed by Zadeh [10] for modelling _ _
linguistic information in natural language. Formally, a !f (1) fails and, = 0, then there is some > 0 such that
possibility measurdl on the power sep(Q) of a non-  2_j—; Aj[G(4;) + 6] < —4. This is a ‘sure loss’ since
empty set) is a (set) mapping taking elements ©of() there is a positive linear combination of acceptable gam-
to values in the real unit interv40, 1], such that for any ~ bles that is uniformly negative, meaning that the subject

collection(4; | j € .J) of elements of>(Q): cannot avoid losing some positive amount of utility. The
coherence condition (1) guarantees the subject avoids the
U A;j) = supII(4;). incurrence of sure losses.
J . .
i€J I If (1) fails and)\, > 0, then there is somé& > 0 such that

[T(Ay) =] = Ta, > X" 320, Aj[G(A;) + ). Since all
gamblesG(4;) + 6,4 € {1,. n} are acceptable to the
subject, the linear combmatldrg S ( )+6]
is acceptable too, and so is the gan{ﬂil(aA

The @ — [0, 1]-mappingr defined byr(w) = II({w}),
w € Qs called thaistributionof IT. ObviouslyIT is com-
pletely determined by, since foranyt € p(Q): II(E) =
sup, g m(w). The possibility measurH and its distribu-

tion 7 are callednormalif II(2) = sup,cq7(w) = 1. LAll gains and losses from betting are assumed to be mea-
The triple(Q2, p(2), 1) is called apossibility space sured on a linear utility scale.



as it yields a uniformly higher gain. As a result, the sub- assumes some valug € X, constitute a coherent model
ject can be induced to bet againkt at the ratd1(A,) — 4, if and only if the conditional possibilitiesy, ¢, (z1 | #,),
which is strictly smaller than hi;mfimumacceptable bet-  (z,,z1) € X, x X; satisfy

ting ratelI(A,). Coherence rules out this type of incon-
sistency. oMy 1£, (T1 | o) < 7y 17, (1 | @) < ey p, (21 | @0)
2

For the special type of upper probabilities, namely possi-

bility measures, we are dealing with here, coherence andvheneverr;, (z,) > 0. According to (2) the foregoing
avoiding sure loss both reduce to the requirement of normodel is coherent if and only if the conditional possibil-
ma“ty Thus a poss|b|||ty measuilé is a coherent upper ities are intermediate between those calculated by Demp—
probability provided that it is normal [3]. We shall fur- ster's rule and natural extension. Recall that for any couple
thermore call a distribution coherent when the possibil- Of elementgz,,z1) € X, x X1, Dempster’s conditioning

ity measure associated withis coherent, or equivalently, rule yields the following value for the conditional possi-

whenr is a normal distribution. bility pemy, |7, (21 | 25):

A model constituted by the assessments of a subject fac- (0. f1) (o, T1) i 0
ing uncertainty may be more complex. In Section 2, for o |1, (1 | To) = s, (7o) = iy, (20) >
instance, we consider a discrete possibilistic system that 1 if 77, (zo) =0,

is specified by one-step transition possibilities and initial
possibilities. We explain that this system can be mod-
elled by a collection of possibilistic variables. Similarly where the least committal, or most conservative, value
to a stochastic variable, a possibilistic variable [1, 2] hasis taken forpemy, |, (21 | 2,) whenny (z,) = 0. We
abasic spacé) and asample spac&. The available in-  shall denote bypelly, |r, (- | 7,) the possibility mea-
formation is represented by a possibility measlkkg on sure ongp(X;) that is associated with the distribution
(2, p(2)). Any Q@ — X-mappingf is then called a possi- ey, |7, (- | o). As the natural extension rule for condi-
bilistic variable inX. TheX — [0, 1]-mappingr;, given tioning has no further role in this paper, we refer to [9] for
foranyz € X by m¢(x) = Hao(f~"'({z})), is called the its explicit definition.

possibility distribution functiorof the possibilistic vari-
able f. We denote byll; the unique possibility measure
on p(X) with distributionn,. Thejoint possibility distri-

In Section 3 we investigate the coherence of models with
the following more general structure: the joint possibil-
ity distribution function of a finite collection of linearly

bution functionof a finite sequencé,, ..., fn, n € N of Lo )

L . i 01 ordered possibilistic variableg,, ..., fv, N € N\ {0}
possibilistic variables, having pasp spa_(@g p(€2), q) together with the conditional possibility distribution func-
and sample spacek,, ..., X,, is given in any element

(To, ... T0) € X7 X; by tions of any variablef,, 1, n € {0,...,N — 1}, given

that the preceding variabldy,, ..., f,,) jointly assume

n some valuéz,,...,z,) € X, x --- x X,,. Here as well,
T(forenfn) (@os -+ Tn) = Hg(ﬂ f[l({xi})). all variables are assumed_ to have a fini_te sampl_e_ space.
i=0 We show that coherence is guaranteed if we additionally

require that all conditional possibilities should be deter-
The possibility measure op(x,X;) with distribution  mined using Dempster’s conditioning rule.
T(fo,...fn) IS denoted bMI; . ). Using Dempster’s . . .
conditioning rule we explain in Section 2 how the one-step':rom this result we may conclude that a behavioural in

transition possibilities can be recovered as, or interpreteéﬁrgretat'on of thde_moddel Irt] terms of ptotsh5|b|llst|_c va?a_bltes
as, the conditional possibilities of any two consecutive atwe proposed n order to represent th€ previously intro-

variables. In fact, we indicate that the variables also sat-duced discrete possibilistic system makes sense, provided

isfy a possibilistic counterpart of the well-known Markov that all initial possibilities are normal and that the one-

condition in the theory of stochastic Markov processes [4], St€P_transition possibilities are computed using Demp-
ster’s conditioning rule.

If we want to give a behavioural interpretation to the initial
possibilities and the one-step transition possibilities, it i52
mandatory that we verify whether or not the models these
possibilities are used to construct are coherent. It has bee
proven by Walley and De Cooman [9] that the uncondi-
tional joint possibility distribution functiom s, () of any

two possibilistic variableg, and f; having finite sample
spacesX, and X; together with the conditional possibil-
ity distribution functionsr, ¢, (- | z,), z, € X, — cal- Assume that we have the following information about the
culated by some conditioning rule — ¢f, given thatf, system:

Discrete Possibilistic Systems

guppose that we are dealing with a discrete possibilistic
system having the set of all natural numbgras its time
set. N is taken to be ordered by the usual linear ordering
< of natural numbers.



e X,, n € Nis the set of all possible states for the corresponding sample spaces are givenXgy n € N,
system at time; such that

e initial possibilitiesy, i.e., aX, — [0, 1]-mappingg T(forenfa) = T{0,.n}s VR EN. ()
such thag(z) is the possibility that the system is in  To establish this, the following choices can be made:
stater € X, at time0;

_ = (2 Ra) = (x5 X, p(x{55 X)),

e aX, x X,+1 — [0,1]-mapping,P, n € N such that,

for any couplez, y) € X, x X+ 1, nP(z, 1) denotes — for Il take the possibility measurdly on
Y coupler, y) 11, nF(z, 9) (xF X3, p(x £ X;)) with distribution 7 whose

theone-step transition possibilifyom stater at time =o

n to statey at timen + 1, and that is normalized as Val‘if in a sequence = (z,,...,%n,...) €
follows: x> X; is given by

_ an(z) = inf 70 1 (@0, ..., 20)

sup P(z,y) =1, VzeX,. nen 0o

yEXn 41 . . . .
Note thatmy is the pointwise greatest (least commit-

_ tal or most conservative) distribution on;;oiji whose
Consequently, the partial mapping?(«,-) is the dis-  marginal onx_, X;is 7y, foralln € N.
tribution of a unique, normal possibility measure on ) S
(Xns1, p(Xni1)) for every element € X, wheren € We now give a justification for t.hglfo'rmulag (3)—(5). Any
N. The mappingj can be viewed as the distribution of a collection (f, | n € N) of possibilistic variables repre-

unique possibility measui@ on (X,, p(X,)). senting the informationry,, . ., n € N as expressed

. o _ . _ by (3)—(5) satisfies a possibilistic analogon of the Markov
Using this information we want to determine a consistentcondition [4, 5]. To establish this result, we use Demp-
collection of distributions giving the possibility that the ster's conditioning rule.
system visits a finite number of states, ..., z,,n € N . . )
at the corresponding timéks . . . , n. We are furthermore The following, obvious relation then holds between the
interested in determining tHestep transition possibilities transition possibilities and the conditional possibilities,
of the system, wherg > 2. We shall first give a number formed with the possibilistic variables in the collection

of formulae for these possibilities, and then show how the(/» | n € N). Consider two natural numbersandk # 0
formulae can be justified. and let(z,y) € X,, x X,4«, then it follows from (3)—(5)
that
. iy I
We define thek-step transition possibility, P , =(k .
P POSSIDINE” (02) ey a1 2) =B (@p) iy, ) > 0. )

from statex € X, at timen to statey € X, 4 at time

n+ k as: The possibilistic variable¢f, | n € N) are furthermore
conditionally independent in the following way. Consider
—(k) nikol a finite subsefn; | i € {1,...,k}} of the time seN such
WP (2 y) = sup - II PGz thatk € N\ {0} andn; < --- < n;. Letn € N such that
(Z"’Q;L’z:"g;fé“li:é@" Xi j=n ng <n. lfz=(zn,,...,2,) € x¥_ X, andy € X,
(3) then
For k = 1 the above formula naturally simplifies to DET fo|(fny o) W | ) = 06T g1, (4 | #ny)s (M)
P @,y) = JPz,y). In a similar way we define  providedthatr, . (z) > 0. Condition (/) can be
the possibilityr (o 41 (2o, - .., ,) that some ‘joint state’ regarded as a possibilistic analogon of the Markov con-
z = (zo,...,2,), n € Nis assumed by the system at the dition [4]. In [5] we used conditiorn(}/) as a starting
corresponding time8, . .. , n as: point for the development of a formal, measure-theoretic
account of possibilistic Markov families (processes), i.e.,
a(z,) H?;Ol Plzj,zjp) ifn>1 families of possibilistic variables satisfying propetfy/ ).
T(0,...n} (7) = 7(x) if n =0. Families of possibilistic variables satisfying condi-

(4) tion (M) also satisfy an analogon of the Chapman-
Kolmogorov equation [4].
Obviously,my, ... »; can be considered as the distribution
of a possibility measure o i, Xi, p(x i, Xi))- 3 Consistency Criteria for Unconditional
By invoking our possibilistic Daniell-Kolmogorov the- and Conditional Possibilities
orem [6, 7], it is possible to construct a possibility

space(Q2, Rq, 1) and a family of possibilistic variables Inthe behavioural theory of imprecise probabilities two ra-
(fn | n € N) with basic spacé, Rq, Iln), for which the  tionality criteria have a central part: avoiding sure loss and



coherence. If we want to give a behavioural interpretationi.e., for all B € p(X,):

to the previously introduced initial possibilities, transition

possibilities, etc., it is mandatory that we verify whether My n(B | y) = max{m,n(z | y) |z € B}. (7)
or not these criteria are satisfied for the models in terms of .

possibilistic variables constructed from these possibilities.consIder a subseB of X, and an elemeny =

This is the problem discussed in the present section. ~ (Ymus+-->¥m,) Of Xy. Two interpretations may be given
to I, (B | y) [8]. Under theupdating interpretation

Consider a finite collection of possibilistic variablgs I, (B | y) is the marginally acceptable upper rate for
... fn, N € N\ {0}. LetX,, ..., Xx be their corre-  petting againsiB that a subject would adopt after learn-
sponding sets of possible values. Assume that all the setihg that h. = y. Under thecontingentinterpretation
Xo, ..., Xy arefinite. For notational ease we denote thelI , (B | y) is the marginally acceptable upper rate for
Cartesian product Y. X; by X' betting againsiB contingent onh = y, i.e., the betting
is called off unles$. = y. Under both interpretations the

Let be the joint possibility distribution function
Josewnf) J P ty net reward is the gamble

of the variablesf,, ..., fn, and letIl; . ;) be the
ossibility measure op(X') generated b , that
possibilly pX) g ¥idortn) Gyn(B | y) = Io, [Myu(B | y) — o)

onX, where
s,y (A) = maxws, o) (@), VA€ p(X).
Cy ={(o, -, 2N) € X (Timys ooy Tm,) =y}
Cp ={(zo,...,xN) € X: (Tp,,...,2Tn,) € B},
It will be assumed thall; . ,) is normal. Conse- o .
quently,IT;, ;. and all marginals that can be derived andIc, andlc, are the indicator functions af!, and
fromII(;, ;v are coherent upper probabilities. For any Cs. By theUpdating Principle[8], IT, (B | y) should

subsetd of X the valuell ;, _ ;.)(A) may be interpreted have the same value under both interpretations.

asa subject’'s marginally accepjtable upper rate f(_)r b?tti”%imilarly to whatwe did before fd;, _ ), we now re-
againstd. The net reward resulting from such betis given qire that all conditional possibility distribution functions
by Ton(- | y), y € Ay should be normal. On the updating
G(A) =TI (4) -1 interpretation this requirement ensures that the new pos-
(fornsfN) A sibility distribution functionm,, (- | y) the subject would
adopt if he learned only thatassumes the valugavoids
sure loss. Actually, as we already explained in the In-
troduction, normality of a distribution is a sufficient and
a necessary requirement for the corresponding possibility
measure to avoid sure loss, and to be coherent. Let us now
(nilie{l,....k}} interpr.etﬂg‘h(B |'y.),. (B,y) € p(Xy) x Ay, as conFingent
conditional possibilities. Suppose thaj,, (- | y) is not
wherek € N\ {0} suchtha) < ny < --- < ny < N, normal for some valug € A},. Then any befc, [ — Ix]

wherel 4 is the indicator function ofd.

=

Consider now two non-empty, disjoint subsets o
{0, ..., N} specified as follows:

and against the sure eveff, contingent o = y, at a rateu
such thafll |, (X, | y) < p < 1, is acceptable. Wheh
{m;|je{1,...,¢}} assumes the valug such bet produces a sure losd efy,
and otherwise it is called off. To avoid the acceptance of
where ¢ € N\ {0} such that0 < m; < --- <  such bets, we have to require again that all distributions
my < N. The possibility distribution function of = Ton(- | ¥), y € Xy should be normal.

(fnis---» fny,) is given by the marginak (s, . r  of

T(fson)- Similarly, the possibility distribution func- ASSUme thatgy, hu), ..., (g5, hs) wheres € N\ {0} are

tion of A = (fm fm.) is given by the marginal couples of possibilistic variables that are determined in a

172 e . . g wge . .

T rfoy OF T(p o). For notational ease we de- similar way as the possibilistic variablés, h).a'b.ove. We
roime o ‘ have already argued why we want the possibility measures

note the Cartesian products’_, X,,, and Xi1Xm; by I andIl (19) 9 € Xn,r € {1 s} —

X, and Ay, since they are the domains of the possibility _ (fo:--/~) gr|he 1Y) Y & b o

distribution functions ofy andh. or the distributionsry, ...z andﬂ;"""‘ﬂ(' | 9),y € X,
r € {l,...,s} — to be normal: this guarantees that

For ally € A} write m,,(- | y) for the conditional pos-  considered separately, these models avoid sure loss and
sibility distribution function ofg given thath assumes are coherent. We now introduce additional rationality re-
the valuey — calculated by some conditioning rule from quirements to be imposed any, . ;) andmy 5, (- | y),
information contained inrs ;). LetIly,(-|y) be  y€ Ay, r€{1,...,s}, which guarantee th@utualcon-

the possibility measure gn(X;;) generated by, (- | v), sistency of these distributions [8].



First of all, mz, . rvy @Ndmg 1. (- 1Y), ¥y € X, 7 €
{1,...,s} avoid sure lossf for all non-negative func-
tions A on p(X) and for all non-negative functions,,

r € {1,...,s} on p(X,.) x A}, there is an element
x € X such that

> MMy, pa) (A) = Ta(@)]
A€p(X)

s
+>. D> m(By)Gyn, (B ly)(x) 20. (8)
r=1 Bep(Xy,.)
YyEXh,

Secondly, 7z, . vy @ndmy (1Y), y € X, v €
{1,...,s} arecoherentif for all non-negative functions
A on p(X) and for all non-negative functions,, r €
{1,...,s}onp(X,, ) x &, :

(1) forall C € p(X), there is an element € X" such
that

Y Ay, pa) (A) = La(@)]
A€p(X)

+3 > w(BY)Gy (B y)(@)

r=1 Bep(Xy,.)
YEX,.

> g, (C) = Ic(x);  (9)

(i7) forall (D, z) € p(Xy,) x X, wheret € {1,...,s},
there is an element € X such that

> MMy, . 1) (A) = Ta(@)]
A€p(X)

+Y° > w(By)Gy . (B | y)(2)
=1 Bep(X,,)
YEXh,,

> Gy, pn, (D | 2)(2). (10)

For the case of two variables, i.éV, = 1, Walley and De
Cooman have proven the following result [9].

Theorem 3.1. Suppose that the conditioning rule satisfies
forall (z,,z1) € X, x X;) the following condition:

ﬂ'(fmfl)(a:o,wl) =1= 7Tf1|fo(.7:1 | .7:0) =1. (11)

Thenmy, ) andmy, iz, (- | @o), o € X, avoid sure loss.
Provided the rule satisfied 1) and the analogous condi-
tion with z, andz, interchangedr s, ), 77,17, (- | Zo),
z, € X,,andmy, ¢, (- | 21), 71 € X, avoid sure loss.

Moreover, 7y, ) and mz s (- | 20), ©o € X, are
coherent if and only if the conditional possibilities
ot (@1 | 20), (0, 71) € X, x X satisfy

0ETfy o (T1 | To) < Tpy g, (71 | To) < neypy g, (T1 | o)

12)

whenevetry, (z,) > 0.

As already explained in the Introduction, in (12)
NET £, £, (Z1 | T,) denotes the value that is produced by the
technique of natural extension for the conditional possibil-
ity that f; assumes the valug given thatf, is equal to
To-

Walley and De Cooman’s result can be generalised for a
finite number of possibilistic variableg,, ..., fn, N €

N\ {0}, provided that Dempster’s conditioning rule is used
to compute the conditional possibilities.

Theorem 3.2. The  distributions (s, . 7y and
DEan+1|(fo,---,fn)(' | .’L’), T € XZT»L:OXZ', n e {0, ey N—]_}
are coherent. Moreover, if the possibilistic variables
fo,---, fn satisfy the Markov condition, i.e., for all
x = (To,...,Tpn) € x?:"'olXi andy € X, where
nef{0,...,N -1}

DEﬂ-fnJrl\(foy---yfn)(y | 17) = DET froi1|fn (y | xn) (MI)
wheneverm . sy(x) > 0, then m, s,y and
DET fo il fn (| @), € Xp, (n,k) € N x N\ {0} such
that0 <n < n + k < N are coherent.

Sketch of the prooffFor the coherence of the model
formed bymy,,...zx) @Nd e, 41 (s0,.otn) ([ ), @ €
x™ Xi,n € {0,...,N — 1} it is necessary and suffi-
cient that there is a non-empty class of finitely additive
probability measures op(X’) such that

(a) Hy,,..sy) is the upper envelope ot i.e., for all
A e p(X):

(s, fx) (A) = sup{P(A) | P € M};

(b) foralln € {0,...,N — 1}, forallz € x ,X;, and
forall A € p(X,41):

el gy 4| ) (A ] @)

P(CzA)
> _nal
> sup{ PC. | Pe M,} (13)
where
CI:{(yOP",yN)eX:(yo,...,yn)ij};
OA:{(?JOa;yN)EXyrH_IEA},
Cm,A:CmﬂcA;

M, ={P| P € M such thatP(C,) > 0},

and the equality in holds whenever

Mg i) (XN C) < 1.

(13)

For the model formed by s, .. ¢y) @ndoemy, ., 17, (- | ©),

z € Xp, (n,k) € Nx N\ {0} suchthad <n <n+k <

N, a sufficient and necessary condition for coherence now
lies in the existence of a non-empty clas$ of finitely
additive probability measures @{X') such that:



(a) s,y is the upper envelope ot i.e., for all
A€ p(X):

H(foy---ny)(A) = sup{P(A) | Pe M},

(v") forall (n,k) € NxN\{0} suchthad <n < n+k <
N,forallz € X, forall A € p(X,11):

P(CI,A)
pelly, onlr, (A [ 2) > Sup{m | P e Mz}
(14)
where
Cm :{(yoa"'ayN) EXyn:Jf},
CA:{(yO""’yN) eX:yn+k EA}’
Cz,A = Cz n CA;

M, ={P | P € M suchthatP(C,) > 0},

and the equality in holds whenever

O ) (XN Co) < 1.

(14)

For the construction of a suitable collection of finitely ad-
ditive probability measures we need the following map-

pings.

For any elementt € {0,...,N — 1}, let g, n+1 be
the x7 o X; — x?jolXi-mapping that assigns to an el-
ementz = (x,,...,&y) Of X X; an elementy =
(Yo, - - -, Yn+1) Of x 2 X; such that

{

Let us furthermore denote hy, ,, the identical permuta-
tion of x ( X;, n € {0, ..., N}. Using the equation

i€{0,...,n}
= T(fyof) (2)-

Yi
T(forortnsn) (Y)

= Ty,

(15)

9kn = In—1,n © Gk,n—1,

where(k,n) € N? such thah < k < n < N, aclass of
mappingsgk », (k,n) € N? suchthat) < k < n < N
can recursively be generated such that

— for any couple(k,n) € N? suchthad < k <n < N
and for any element = (z,,...,z;) € x¥ X

{

— for any triple(k,1,n) € N* suchthad < k <1< n:

= Ty,

i€{0,...,k}
= 7T(f077fk)('r)’

gk,n(l“)i
T(fororfn) (Gh,n(T))

9k,n = Gi,n © k.-

Finally, consider an elemen of X, such thatry, (c,)
1. Such an element can always be choosen singces

assumed to be a normal possibility distribution function
on a finite set.

To each element = (z,,...,xx) € X we may assign
a finitely additive probability measui®, on p(X) that is
uniquely determined by the following conditions:

— Pe({z}) =75, ) (2);

— for all natural numberg € {0,..., N — 1} such that

ﬂ-(‘f""""f’“)(xo7 o .,Jfk) > ﬂ-(fonnyfk+1)(x07 s ,.Z'k+1):
Pm({gk’n(l’g, e ,l'k)})
= T(forfi) (Tos - - > Th)
= T foreosfror1) (Tos - Tt 1)

e ({90,n(co)}) =1 —mp, (o) if 7p, (o) <1

— P,({y}) = 0inany other element of X.

It can be shown that the clasét = {P, | =z € &X'}
has propertiega) and(b). Consequentlygs, . (., and
DEan+1|(fo,---,fn)(' | .’L’), T € X?:oXi: n € {0, - ,N —

1} constitute a coherent model. When the variables
fos---, fn have the Markov propertyM/'), then M also
satisfies(d’). To see this, take into consideration that, for
any elementt = (z,,...,2,) € X% ,X;, then + 2-

th component of,, ,+1(z) only depends on the + 1-

th componentz,, of the given element. This follows
from the normality of all conditional possibility distribu-
tion functions and the following formula that can now be
written down for the joint possibility distribution function
of the variables,, ..., fn,n € {0,...,N}:

n—1

TGty (@) =75, (@0) T[] 7500115 (i | 25)

j=o

wherer € xj_(X;.

4 Conclusion

The results in this paper point towards two interesting con-
clusions. First of all, they show by means of a concrete
example that it is possible to work with imprecise prob-
abilities in modelling Markov processes. Secondly, they
indicate that the Dempster conditioning rule is of special
importance in a specifically possibilistic context, for two
reasons: (i) as Theorems 3.1 and 3.2 indicate, it is the most
specific (or least conservative, or most committal) condi-
tioning rule that is coherent in the context of possibilistic
Markov processes; and (ii) it is very easy to work with,
which makes a possibilistic theory of Markov processes
computationally tractable.
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