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In this paper, we describe an approach to handling
partially speci�ed probabilistic information. We pro-
pose a formalism, called Partial Probability Theory
(PPT), which allows very general representations of
belief states, and we give brief treatments of problems
like belief change, evidence combination, and deci-
sion making in the context of PPT. We argue that
the generality of PPT provide new insights in all the
mentioned problem areas. More detailed treatments
of these issues can be found in several papers referred
to in the text.

partial probability theory, partial igno-
rance, probabilistic belief change, conditioning, con-
straining, evidence combination, decision under par-
tial ignorance, minimax regret, satis�cing.

In many situations, the available evidence does not
determine a unique probability function. Choosing a
so-called \least informative" probability function sat-
isfying the evidence may be the best general solution,
in case one insists on using probability functions to
represent belief states. However, in our opinion it
is better to represent the available information, and
no more than the available information, by means of
probabilistic constraints. Absence of information, or
ignorance, should lead to indeterminate, imprecise, or
partially speci�ed probabilities.

We propose a formalism called Partial Probability
Theory (PPT), which, as the name suggests, allows
probability assignments to be partially determined.
The partiality, or imprecision, of the probability as-
signments is not the only di�erence from classical
probability theory. As will be explained below, PPT
makes explicit some distinctions which cannot be
made within the classical probabilistic formalism. As
a direct result, several important aspects of handling

uncertainty (other than pure probabilistic reasoning)
become more visible in the partial case.

For example, even if the probability functions are fully
determined, PPT does not simply reduce to probabil-
ity theory, since in PPT it is possible to distinguish
probability assignments determined by hard evidence
from probability assignments based on some assump-
tions.

If probabilistic information is only partially speci�ed,
then it may be necessary to make some assumptions
in addition to the available evidence in order to draw
useful conclusions and make sensible decisions. The
explicit incorporation of these assumptions in PPT
is perhaps the most distinctive feature of PPT com-
pared to other general approaches to indeterminate
probabilities, such as [25].

Dempster-Shafer theory (DS theory) also allows the
representation of ignorance next to uncertainty. (See
[12].) PPT is not only more general than DS theory,
but also makes it possible (and necessary) to explicitly
formulate the assumptions underlying the controver-
sial Dempster's combination rule used in DS theory.
Dempster's rule has probably contributed much to the
popularity of DS theory, since such a combination rule
can be shown not to exist in the case of probability
theory, even though some ad hoc rules have been pro-
posed in this case. See, for example, [1]. However, the
justi�cation of Dempster's rule is rather problematic.

In PPT, the assumptions underlying Dempster's rule
can be stated clearly, and it can be argued that these
assumptions are very strong and unrealistic. The
following alternative, probabilistically justi�ed, ap-
proach to combining evidence is proposed: explicitly
add some (preferably weak) assumptions to the avail-
able partial probabilistic information, as long as these
assumptions are necessary to reach useful conclusions
by means of purely probabilistic reasoning. In section
4 we illustrate this approach.

Another area where the generality of PPT can provide
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2 Partial Probability Theory

De�nition 1 (PPT belief state)

Example 1

A
is a quadruple , where is a sample

space, and are sets of constraints on probability
measures over , and . The members of are
called belief or probability constraints, and is called
the set of assumptions.

Consider a robot which has to recharge
his battery. This can be done in two rooms, let us

new insights is the area of belief change. Presently,
the most popular theory, or paradigm, for studying
belief change operations is commonly known as AGM
theory. In this paradigm, the focus is typically on
changes of belief states represented by belief sets,
i.e., logically closed sets of propositional sentences,
but sometimes more re�ned representations of belief
states, such as probability functions, are considered.

In AGM theory, three distinct kinds of belief change
operations are distinguished: expansions, revisions
and contraction. An expansion is the incorporation
of new information which is consistent with the old
beliefs, a revision incorporates new information which
is (possibly) inconsistent with the old beliefs., and a
contraction is reduction of the old beliefs in order to
be consistent with the new information.

In the context of belief sets, an expansion of a belief
set with new information is uniquely determined:
the expanded belief set is obtained by adding to the
set and subsequently taking the logical closure. In
a probabilistic setting, expansion is not uniquely de-
termined, but it is widely accepted that conditioning
is the probabilistic version of expansion.

However, in section 3, it is argued that conditioning
is best considered to be a kind a belief change which
is di�erent than expansion and other kinds of belief
change that can be recognised in the abstract context
of belief sets. The argument is made in the context
of PPT which is su�ciently general to represent both
belief sets and probability functions.

An important aspect of handling uncertainty is deci-
sion making based on uncertain information. Tradi-
tionally, decision problems are divided into the follow-
ing three kinds: (1) decisions under certainty, where
the decision maker knows the state of nature, (2) deci-
sions under risk, where the decision maker is uncertain
about the true state of nature, but is able to quantify
this uncertainty through a probability measure over
the sample space consisting of the possible states of
nature, and (3) decisions under strict uncertainty, or
complete ignorance, where the decision maker is un-
certain about the true state of nature, and is not able
to quantify this uncertainty. In this case, he can only
list the possible states.

The case of partially quanti�ed uncertainty, or partial
ignorance, has not got the attention it deserves. This
case is studied in section 5. The main conclusions are
that decision making under partial ignorance is rather
complex, since it is more general than decision mak-
ing under complete ignorance, for which no generally
accepted decision rule exists, but it seems possible to
formalise several aspects of intuitively acceptable rea-
soning and decision making under partial ignorance.

The widely accepted decision rule for decisions under
risk, i.e., maximising expected utility, can easily be
extended to the case of partial ignorance, but this ex-
tended rule is in general rather weak. The reason is
that the natural extension of the maximum expected
utility (MEU) criterion to the partial case corresponds
to a preference relation which is only a partial or-
dering. If the probabilities are highly indeterminate,
then the extended maximumexpected utility criterion
leaves many choices open.

In section 5, we consider possible re�nements of ex-
tended MEU criterion. We de�ne extensions to the
partial ignorance case of some decision rules origi-
nally proposed for decision under strict uncertainty.
However, it is argued that these rules are not com-
pletely satisfactory as rules for optimising, and it is
proposed to consider them to characterise acceptable
actions. Especially the extension of what is known as
the minimax regret criterion seems promising in this
respect.

When using ordinary probability theory, the available
information, or the belief state of an agent under con-
sideration, is assumed to be represented by a proba-
bility space consisting of a sample space and a proba-
bility function over the sample space. In partial prob-
ability theory (PPT), a more re�ned representation is
used.

A PPT belief state contains four elements: (1) a sam-
ple space, (2) a set of constraints on probability func-
tions over the sample space representing hard, generic
evidence, (3) another set of such constraints repre-
senting assumptions, and (4) a subset of the sample
space representing the speci�c evidence. Formally, we
propose the following de�nition.

PPT belief
state 
 



 


Throughout the paper, the sample space 
 is assumed
to be �nite. The constraints in represent generic or
general information about the relevant probabilities,
whereas represent general assumptions about these
probabilities. The subset of the sample space 

represents speci�c information concerning the case at
hand.
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De�nition 2 (extended Bayesian conditioning)

Example 2
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call them room 1 and 2. The rooms are equally far
away from the robot. An example of generic informa-
tion might be: \the door of room 1 is at least 40%
of the time open". Suppose there is no other infor-
mation available, and let denote the probability of
door being open. Then . Since doors
are typically sometimes open and sometimes closed,
it might be reasonable to include in .
However, such additional assumptions should be in-
voked only when they are necessary, for example, in
case no reasonable decision can be made without as-
sumptions. A good example of speci�c evidence is in-
formation about the state of the doors obtained by the
sensors of the robot.

Let be a set of probability measures over , and let
, such that for some , . Then

is de�ned to be the set .

Consider again example 1, but now sup-
pose that according to one source one of the doors is
twice as likely to be open as the other one, whereas
according to a second source it is more probable that
door 1 is open than that door 2 is open. That is,

and .
Let be the set of probability measures compatible
with . Then supports the (intuitively cor-
rect) conclusion that door 1 is twice as likely to be
open as door 2 ( ). But this conclusion is not
supported by .

= 0 4

0 1

Depending on the application, one can put restric-
tions on the form of the constraints. This allows the
implementation of e�cient algorithms for computing
required probabilities, or probability bounds, in suf-
�ciently simple special cases. One can also make use
of the fact that there exist many probabilistic logics,
with varying complexity and power of expression. See,
for example, [3]. For many applications, a suitable
formal language can be found in which it is possible
to do formal reasoning with probabilistic constraints.
Without restrictions on the form of the constraints,
PPT has a high computational complexity, but it still
is useful as a formal tool.

In PPT, partial ignorance can be represented by al-
lowing the constraints not to determine a unique prob-
ability function. If desired, one can always add as-
sumptions, such as the maximum entropy principle,
to further constrain or even completely determine a
probability function. But in contrast to probability
theory, PPT distinguishes between hard evidence con-
straining the probabilities, and assumptions.

We write (
) for the set of all probability measures
over 
 which satisfy all the constraints in . By
de�nition, (
) (
). Therefore, the conclusions
warranted by (
) are (weakly) stronger than those
warranted by (
). However, it is intended to be
understood that the conclusions warranted by (
)
depend on the assumptions represented in .

The speci�c information is incorporated by essen-
tially conditioning the probability measures satisfying
the constraints on . More formally:

� 


 � ( ) 0

� : � ( ) 0

The conditioning information may seem to be re-
dundant, since at any time the belief state 

can be replaced with , where and A'

are sets of constraints on probability measures over .
However, the generality of de�nition 1 will turn out to
be convenient, in particular when belief changes are
studied. We return to this issue in section 3.

Conditioning a belief state 
 on results
in the belief state 
 . Given de�nition
2 , the PPT belief state 
 gives rise to the
set (
) of probability measures satisfying the be-
lief constraints, and to the set (
) of probabil-
ity measures additionally satisfying the assumptions.
Hence conditioning a PPT belief state essentially con-
sists of applying extended Bayesian conditioning to
two sets of probability measures.

It should be noted that the sets of probability mea-
sures induced be a PPT belief state are not necessarily
closed convex sets. One could of course use the closed
convex hull (�) of �, but taking these convex clo-
sures instead of the sets themselves, or the underlying
constraints, results in loss of information.

= = 2 = 2 =
�

(� � )

= 2
(� ) (� )

As is well known, sets of probability measures, induce
in a natural way (possibly non-additive) measures,
namely their lower and upper envelopes, and belief
functions of DS Theory and possibility functions of
Possibility Theory can be seen as special cases of such
measures.

Presently, the most popular theory, or paradigm, for
studying belief change operations is commonly known
as AGM theory [5]. In this paradigm, the focus is
typically on changes of belief states represented by
belief sets, i.e., logically closed sets of propositional
sentences, but sometimesmore re�ned representations
of belief states, such as probability functions, are con-
sidered. Since for any probability function, the set of
propositions which are assigned probability 1 forms a
belief set, there is indeed a natural precise sense in
which probability functions are re�nements of belief
sets.

In AGM theory, three distinct kinds of belief change
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De�nition 3 (constraining)

De�nition 4 (uncertainty)

De�nition 5 (ignorance)

Let be a set of prob-
ability measures over , and let be a probabilis-
tic constraint. Then is de�ned to be the set

satis�es .

Let be a set of proba-
bility measures. The of is de�ned
as follows.

where is the entropy of , and is the
closed convex hull of .

Let be a set of proba-
bility measures ove . The of is
de�ned as follows.

operations are distinguished: expansions, revisions
and contraction. An expansion is the incorporation
of new information which is consistent with the old
beliefs, a revision incorporates new information which
is (possibly) inconsistent with the old beliefs., and a
contraction is reduction of the old beliefs in order to
be consistent with the new information. In the con-
text of belief sets, an expansion of a belief set with
new information is uniquely determined: the ex-
tended belief set is obtained by adding to the set

and subsequently taking the logical closure.

It turns out that conditioning exactly corresponds to
expansion in the following sense: conditioning a prob-
ability function with associated belief set on in-
formation results in a new probability function
such that the belief set associated with is iden-
tical to the expansion of with . This is generally
assumed to be a good reason for considering condi-
tioning to be the probabilistic version of expansion.

However, in [19] it is argued that conditioning is best
considered to be a kind a belief change which is di�er-
ent than expansion and other kinds of belief change
that can be recognised in the abstract context of be-
lief sets. The argument is made in the context of PPT
which is su�ciently general to represent both belief
sets and probability functions.

In the context of PPT, there exists a belief change op-
eration, called constraining, which consists of adding
new constraints to the set of probabilistic constraints
and which can be shown to share several more prop-
erties with belief set expansion than the properties
common to expansion and conditioning. To make this
argument, it is essential to refer to the partial prob-
abilistic context, since completely determined prob-
ability functions cannot be constrained any further.
Therefore, the constraining operation does not apply
to completely determined probability functions in a
non-trivial sense.

Lets us formally de�ne the e�ect of constraining on a
set of probability measures.

�


�

: �

This de�nition allows adding a constraint which is
inconsistent with the old evidence. The resulting set
of probability measures is empty. One can imagine
several ways to de�ne an alternative operation which
in such a case returns an non-trivial belief state. Such
operations are called revisions, and the main subject
of AGM theory is to �nd reasonable conditions on
revisions. However, we concentrate on the case where

the new constraint is consistent with the old evidence.

In the context of belief sets, it is possible to obtain
any belief state from the ignorant belief state by a
series of expansions. In PPT, constraining, but not
conditioning, has the analogous property. This is one
of the main reasons we prefer to constraining and not
conditioning to be the probabilistic version of expan-
sion.

Roughly speaking, it can be argued that the prin-
cipal result of constraining is a decrease in igno-
rance, whereas conditioning is aimed at reducing un-
certainty. Of course, the measurement of ignorance
and uncertainty in a partial probabilistic setting is
a controversial issue, but in [19] we propose the fol-
lowing provisional measures of these notions which at
least allow the above statement to be made more pre-
cise.

�
uncertainty (�) �

(�) = max ( ) : (�)

( ) (�)
�

�

 ignorance (�) �

(�) =
(� ( ) � ( ))

2 2

In other words, the uncertainty of � is de�ned to be
the maximum uncertainty (measured in entropy) of
the probability measures in the set �, and its igno-
rance is an average of the ignorance with respect to
each event (measured in the di�erence between the
upper and lower probability bounds).

Both constraining and conditioning can be used to
change the maximally ignorant and maximally uncer-
tain belief state, which has no constraints and allows
all probability measures, into a belief state which is
minimally ignorant and minimally uncertain. Hence
we cannot claim that constraining is exclusively used
for reducing ignorance and conditioning is only used
to reduce uncertainty. However, there does exist some
bias.

For example, constraining is guaranteed to (weakly)
reduce ignorance. Also, constraining can be used to
strictly reduce the ignorance of all belief states which
are not minimally ignorant already. Neither property
holds for conditioning, although the second property
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De�nition 6 (minimal PPT combination)

Example 3
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The minimal combination of and
is de�ned to be the PPT belief state

.

Consider an autonomous vehicle which
has to perform some subtle manoeuvres for which it
needs to know its distance to its nearest obstacle with

an accuracy of 0.01 metre. To measure this distance,
it can use three sensors, let us call them , , and
. They each provide the vehicle's CPU with an inte-

ger between 0 and 999, representing the measurement
in centimetres. They cannot detect objects which are
removed 10 metre or more.

Each sensor is reliable of the time. That is,
of the time, the sensor is working properly and the re-
turned number is the correct distance. The remaining

of the time, the sensor is in some way disturbed
and the returned number is not properly related to the
true distance, although the number may of course hap-
pen to be correct by shear luck.

Suppose that on a particular occasion, all three sen-
sors return the number 454. Intuitively, this pro-
vides strong support that 454 is the actual distance
to the nearest obstacle, even though the sensors are
rather unreliable when taken in isolation. Of course,
such sensor information never gives complete cer-
tainty about the actual distance, but let us say that
a failure rate would still be acceptable. So if there
is at least a chance that a reading is correct, the
vehicle should use this reading to guide its manoeu-
vres.

is not true for a natural generalisation of condition-
ing known as minimum cross entropy update. On the
other hand, if a set contains just one probability mea-
sure, then constraining can not reduce its uncertainty,
whereas conditioning can.

Details of the above can be found in [19]. In [7] an
axiomatic characterisation of conditioning and con-
straining is given. We do not claim to be the �rst to
distinguish the notions of conditioning and constrain-
ing. For example, in [2] a similar distinction is made.

The combination of evidence is an extremely impor-
tant problem when reasoning with uncertainty. In-
stances of this problem include the pooling of opin-
ions of di�erent experts, the weighting of di�erent ar-
guments in favour of or against some conclusion, and
the fusion of several sensor readings.

In [17, 18, 21], the problem of combining evidence is
discussed in the context of PPT. In this context, the
assumptions underlying Dempster's rule can be stated
clearly, and it can be argued that these assumptions
are very strong and unrealistic. The following alterna-
tive, probabilistically justi�ed, approach is proposed:
explicitly add some (preferably weak) assumptions to
the available partial probabilistic information, as long
as these assumptions are necessary to reach useful
conclusions.

A rule for minimal combination, i.e., without adding
assumptions and even dropping the previously made
assumptions, can be formalised as follows.








In example 1, this combination rule was already ap-
plied. The combination is called minimal, since the
combined belief state does not contain any of the as-
sumptions present in the original belief states. The
reason is that some of these assumptions may be in-
consistent with . A less cautious combination
would include the assumptions , or a subset
of this set, if the full set is inconsistent with .
One can also consider some additional assumptions, in
particular concerning the interaction of the evidence.

In [17, 18, 21], the following concrete example involv-
ing sensor fusion is discussed in some detail.

50% 50%

50%

5%
95%

It can be argued that the approach of combining ev-
idence in PPT described above gives better results
than Dempster's rule using weaker (explicit) assump-
tions than the assumptions implicitly underlying the
application of Dempster's rule. For example, Demp-
ster's rule does not sanction the conclusion that 454
is the actual distance with the required 95% certainty,
whereas intuition and (under weak assumptions) PPT
do.

In DS theory, the evidence of the above example
can be represented by three identical mass func-
tions , and over the sample space 
 =
0 1 2 999 . Each of them assigns 0.5 mass to
454 and 0.5 mass to 
. Combining these three mass
functions by means of Dempster's combination rule
leads to the mass function , given by

( 454 ) = 0.875, and (
)
= 0.125. This result does not give the required 95%
guarantee that 454 is correct.

Moreover, in order to apply Dempster's rule, one has
to assume that the pieces of evidence are (DS) inde-
pendent, in the sense that the sources behave inde-
pendently. That is, the (un)reliability of one sensor
is independent form the (un)reliability of the other
sensors. More precisely, if we write for the propo-
sition that sensor is reliable, and for the propo-
sitional variable denoting either or . Then one
has to assume that ( ) = ( ) ( ), whenever
1 3.
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This assumption of DS independence is quite strong,
and practically never satis�ed by sensors, since they
usually have common causes for their unreliable be-
haviour (the movement of the vehicle, the size and
shape of the obstacles, et cetera). To make matters
worse, this assumption of DS independence is not suf-
�cient to justify Dempster's rule, as is shown in [16]
In addition, one has to assume that each instantiation
of is equally con�rmed by the evidence. This
additional assumption is explained below.

Let ( ) denote the fact that the reading
( ) is obtained from sensor ( ). In the case
of receiving evidence 454 454 454 , the assumption
of equal con�rmation is represented by the equation
( 454 454 454 ) = ( ).

The reasoning giving a con�dence of 0.875 in 454
goes as follows. The chance of 454 being the actual
distance is at least the probability that at least one
of the sensors is reliable. By DS independence the
prior probability of this event is 0.875, and by the as-
sumption of equal con�rmation, this probability is not
changed after receiving the evidence. The assumption
of equal con�rmation is not plausible since agreeing
sensors are more likely to be reliable (in which case
they to agree) than unreliable (in which case
there is only a very small chance of agreeing).

In PPT, the evidence provided by the reading 454
of sensor can be captured by the PPT belief
state � , where � is the set of triples

such that denotes the real distance to
the nearest obstacle, and and are as de�ned
above. It follows that 0 999, 0 999,

, and if = , then = . Further,
= ( ) = 0 5 , and = � =

454 .

Minimally combining the three pieces of evidence
gives the PPT belief state � , where �
is the set of tuples , where

0 999 , , and if = ,
then = the reading of sensor . Further, =

( ) = ( ) = ( ) = 0 8 , and is the sub-
set of � characterised by = = = 454.

In PPT one cannot conclude much based on the ev-
idence alone, since the available information about
the sensors simply does not allow strong conclu-
sions about the value of ( 454 454 454 ).
However, relatively weak additional assumptions are
su�cient to obtain at least as strong conclusions
as DS theory. For example, one could assume
that ( 454 454 454 ) ( ),
which is much weaker and far more plausible than the
corresponding equality.

In [17, 18, 21], we propose some relatively weak as-
sumption that result in a con�dence of approximately
0.999999 that 454 is the actual distance if all three
sensors say it is, and we show how even if only two of
the three sensors agree, a high con�dence of approxi-
mately 0.998 can be justi�ed.

An important aspect of handling uncertainty is de-
cision making based on uncertain information. For
decisions under risk, where the decision maker is un-
certain about the true state of nature, but is able to
quantify this uncertainty through a probability mea-
sure over the sample space consisting of the possi-
ble states of nature, maximising expected utility is
widely accepted to be a rational decision rule. Several
rules have been proposed for decisions under strict un-
certainty, or complete ignorance, where the decision
maker is uncertain about the true state of nature, but
is not able to quantify this uncertainty and can only
list the possible states.

If the probabilities are partially determined, the deci-
sion maker typically �nds himself somewhere between
these two extreme cases. Actually, the case of par-
tial ignorance is the general case, which includes both
risk and strict uncertainty. Therefore, it should be
no surprise that decision making under partial igno-
rance is rather complex, since it is more general than
decision making under complete ignorance, for which
no generally accepted decision rule exists. However,
it still seems possible to formalise several aspects of
intuitively acceptable reasoning and decision making
under partial ignorance.

In [20, 22] several naive decision strategies for partial
ignorance are described and formalised in the context
of PPT. These strategies can be informally described
as follows: (1) (try to) learn more, (2) be satis�ed with
satisfactory rather than (necessarily) optimal choices,
and (3) base one's actions on (reasonable) assump-
tions in addition to the available knowledge. It is
argued that sometimes a combination of these strate-
gies is necessary. For example, when deciding whether
either to learn more or to act on the basis of the avail-
able information, it may be necessary to make some
assumptions in order to su�ciently determine the (ex-
pected) value of the possible information acquiring
actions.

The widely accepted decision rule for decisions under
risk, i.e., maximising expected utility, can easily be
extended to the case of partial ignorance, by de�ning
the following preference relation on actions:

i� �( ( ) ( ))
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De�nition 7 (extended minimax regret)

Proposition 1

Example 4
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De�ne the -regret and the maximal
regret of an action as follows.

Here, = . According to
the extended minimax regret rule one should choose
an action with minimal maximal regret.

The extended minimax regret rule
generalises both Savage's minimax regret rule and the
ordinary MEU rule, and it re�nes the extended MEU
rule. More precisely,

1. In the case of complete ignorance, the extended
minimax regret rule reduces to Savage's minimax
regret rule.

2. In the case of decision under risk, the extended
minimax regret rule reduces to the ordinary MEU
rule.

3. The extended minimax regret rule re�nes ex-
tended MEU in the sense that implies

.

Consider again example 1, but now sup-
pose that we know that and

. Then and are incomparable ac-
cording to extended MEU (and both maximally pre-
ferred). The maximal regret of is higher than that
of , since = 0.2 and = 0.3. The ex-
pected security level of an action is de�ned
as , and the extended maximin return
rule prefers actions with higher expected security level.

Here � denotes the set of probability measures satis-
fying the constraints, and ( ) denotes the ex-
pected utility, given a probability measure and util-
ity function , of the action . Now choose an action
which is maximally preferred according to the above
relation .

This extension to the case of partial ignorance of the
maximum expected utility criterion is quite natural
and has been proposed before. In particular, in [4] and
[8] this criterion has been studied in case the proba-
bilities of the possible states of nature were not nec-
essarily exactly known, but could at least be .

However, this extended rule is in general rather weak.
For example, the rule does not allow the robot to make
a choice in the situation of example 1, whereas many
people would intuitively prefer going to room 1 for
which substantial evidence of being open is available.

The extended rule is weak since it corresponds to a
preference relation which is only a partial ordering.
(As is well known, [11] establishes a correspondence
between maximising expected utility and a total pref-
erence ordering when deciding under risk.) The corre-
spondence between preference and maximising utility
under partial ignorance has been made precise by [6].
If the probabilities are highly indeterminate, then the
extended maximum expected utility criterion leaves
many choices open.

Some authors propose that one should base one's deci-
sions on a particular probability measure compatible
with the available evidence. This probability measure
is sometimes allowed to be arbitrarily chosen from the
candidates, and sometimes it is assumed to be in some
sense least informative, such as the measure with the
maximum entropy or the pignistic probability mea-
sure of [15].

In [10] it is concluded that if one decides on the basis
of a single probability measure one could just as well
use the strict Bayesian approach from the start. How-
ever, even if decisions are based on a probability mea-
sure, a richer belief representation can still be used
for other activities, such as combining evidence or be-
lief revision. (Compare our argument using example
2 against the restriction to convex sets of probability
measures.) Other authors allow decision makers to be
indecisive between incomparable maximally preferred
actions. See, for example, [25]. See [9] for a more
extended overview of di�erent approaches to deciding
under partial ignorance.

In [20, 22] we propose to re�ne the extended MEU
criterion by introducing some additional criteria ob-
tained from decision rules originally proposed for de-
cision under complete ignorance. These re�nements

can support intuitive preferences not supported by the
extended MEU rule. For example, they support the
preference for room 1 in example '1.

In particular, we propose the following extended min-
imax regret rule.

( )
( )

( ) = ( )

( ) = sup ( ) : �

( ) :

This rule has been proposed before, and is known
as the �-minimax regret rule in the �eld of robust
Bayesian analysis. The following proposition sum-
marises some nice properties of this decision rule.

( ) ( )

However, there are some problems with using the ex-
tended minimax regret rule. For example, in [20, 22]
we also consider re�ning extended MEU with an ex-
tension of Wald's maximin return rule and since the
extended maximin return rule and the extended min-
imax regret rule do not necessarily agree, one has to
choose between the two rules (and other related rules).

0 4 0 8 0 5
0 6

( ) ( )
( )

inf ( )
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A perhaps even more serious (and well-known) prob-
lem is that the ordering obtained by comparing maxi-
mal regret does not satisfy independence of irrelevant
alternatives, i.e. a choice between two alternatives
based on the (extended) minimax regret rule can be
inuenced by the availability of a third alternative.

Since the maximum regret of an action gives some
upper bound on the suboptimality of the action, it
can be interpreted as a kind of satisfaction level of
the action. Although optimising based on compar-
ing extended maximal regret can be shown not to be
independent of irrelevant alternatives, this indepen-
dence does hold when one considers satis�cing based
on the maximal regret. Therefore, we propose to use
the minimax regret rule for satis�cing rather than for
optimising.

The connection between the extended minimax regret
criterion and the notion of satis�cing, as introduced
by Simon [13, 14], is made more precise in [24].

We described an approach to handling partially spec-
i�ed probabilistic information. Our proposed Partial
Probability Theory (PPT) allows very general repre-
sentations of belief states, and includes many previ-
ously proposed formalisms as special cases. Of of the
characteristic features of PPT is the explicit treat-
ment of assumptions.

We briey discussed problems like belief change, ev-
idence combination, and decision making in the con-
text of PPT. In the area of belief change, we ar-
gued that the probabilistic variant of the notion of
expansion of AGM theory is not conditioning, but
constraining. The point of view of partially speci�ed
probability is necessary to clearly distinguish condi-
tioning and constraining.

Concerning evidence combination, we pointed out
that in order to reach useful conclusions in a partial
probabilistic setting, it may be unavoidable to make
assumptions about the interaction of the pieces of ev-
idence to be combined. We used a concrete robotic
sensor fusion example to illustrate our approach and
to compare it with Dempster's combination rule.

In the area of decision making under partial igno-
rance, the rule of maximising expected utility is quite
weak and should be supplemented by other consider-
ations. We do not propose a simple stronger decision

rule, but we consider it in general unavoidable to base
one's decisions on assumptions or to opt for satis�cing
alternatives rather than to insist on optimising.

We do not claim that PPT automatically includes so-
lutions to all problems encountered when probabilities
are allowed to be partially speci�ed, but we propose
PPT as a tool for expressing these problems and com-
pare di�erent solutions.
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