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Abstract

Bayesian implicative analysis was proposed for sum-
marizing the association in a 2�2 contingency table in
terms possibly asymmetrical such as, e.g., \presence
of feature a implies, in general, presence of feature b"
(\a quasi-implies b" in short). Here, we consider the
multivariate version of this problem: having n units
which are classi�ed according to q binary questions,
we want to summarize the association between ques-
tions in terms of quasi-implications between features.
We will �rst show how at a descriptive level the no-
tion of implication can be weakened into that of quasi-
implication. The inductive step assumes that the n
units are a sample from a 2q-multinomial population.
Uncertainty about the patterns' true frequencies is ex-
pressed by an imprecise Dirichlet model which yields
upper and lower posterior probabilities for any quasi-
implicative statement. This model is shown to have
several advantages over the Bayesian models based on
a single Dirichlet prior, especially whenever 2q is large
and many patterns are thus unobserved by design.

Keywords. Quasi-implication, logical model, mea-
sure of association, multivariate implicative index,
Boolean methods, Bayesian inference, upper and
lower probabilities.

1 Introduction

Our purpose in this paper is to propose a new method
for analyzing binary questionnaires, i.e. data in the
form of n units providing responses to q binary ques-
tions. Most existing methods for analyzing a binary
questionnaire take a symmetrical view of association
between questions. Our purpose is, on the contrary,
to possibly reach asymmetrical conclusions of the type
\response a to question A implies, in general, response
b to question B" which we abbreviate to \a quasi-
implies b". The present work is thus directly related
to \Scaling methods" ([13] and [18]) and, more gen-

erally, to methods that put forward Boolean/ordinal
structures on the modalities, such as \Galois lattice
theory" ([1] and [23]) and \Boolean analysis of ques-
tionnaires" ([7] and [10]).

Previous research in that �eld focussed on the qual-
itative analysis of exhaustive datasets merely based
on the presence/absence of patterns. This approach
leads to characterizing the structure of associations
in the data by a set of implicative relations between
modalities (see [8] and [12]). But, when q is large,
the implicative structure may be quite complex and
calls for some kind of simpli�cation or approximation.
Introducing quantitative elements has been envisaged
by �ltering out the rarest patterns ([10] and [9]) but,
as pointed out by [15] and [5], rarity of patterns on its
own does not constitute a satisfying basis for de�ning
quasi-implications.

Hildebrand et al. [15] investigated bivariate question-
naires for which they proposed the \Del" index as
a measure of the agreement between the observed
data and some given logical model. Inferences about
this index were envisaged using frequentist methods,
which presented serious di�culties for small samples
and extreme data (see [15, ch. 6]). Bernard & Char-
ron [5] proposed an alternative Bayesian approach free
from these di�culties. Hildebrand et al.'s proposals
for generalizing the Del index to multivariate binary
data do not satisfy some minimal requirements of in-
variance by logical equivalence (see [15, ch. 7]) and
the related inferential technique they propose su�ers
from the same limitations as in the bivariate case.

The aim of this paper is to propose an alternative
approach for multivariate binary data. At the de-
scriptive level, it provides a descriptive summary ex-
pressed in terms of quasi-implications whose de�ni-
tion is based on a new descriptive index d, called the
multivariate implicative index . The quasi-logic that
we de�ne generalizes standard logic and is shown to
satisfy several of its properties (e.g. transitivity).



For the inductive step, we assume that the data
constitute a random sample from a 2q-multinomial
population characterized by some unknown patterns'
true frequencies (parameters). This step is envisaged
within the Bayesian framework of inference: some
prior state of uncertainty about parameters is up-
dated to a posterior state of uncertainty by means of
Bayes' theorem. One major advantage of the Bayesian
approach is that it provides a straightforward means
to make inferences about any derived parameter of
interest and, more generally, about any property that
parameters may satisfy. This point is particularly im-
portant for our present purpose| searching for an ap-
proximate implicative summary of the data |, since
this requires making inferences about complex indices
and properties.

More speci�cally, inference is envisaged from a \data
analysis viewpoint" [4], i.e., with the aim of bringing
out what the data have to say about the parameters
regardless of any prior information. In the Bayesian
framework, this viewpoint amounts to choosing a
prior state of prior ignorance about parameters. The
usual Bayesian solutions to this problem, which we
call \objective Bayesian models", all involve choosing
a unique Dirichlet prior distribution for the param-
eters. We say \solutions" because several of them
have actually been proposed as representing a prior
state of ignorance. None of them simultaneously sat-
is�es all desirable principles for formalizing prior ig-
norance, but, in problems involving a small number of
categories, they generally lead to close numerical re-
sults. In our present context, however, the categories
are the possible patterns and their cardinal, 2q, may
be quite large.

Another solution is to resort to an imprecise probabil-
ity model, that is, to a model where prior uncertainty
about parameters is described by a set of prior distri-
butions rather than by a single one. As a result any
prior or posterior statement about parameters is as-
sociated with a probability interval instead of a single
probability value. A thorough presentation of statis-
tical models based on imprecise probabilities may be
found in [20].

Walley [21] recently proposed the imprecise Dirichlet
model (IDM) for analyzing multinomial data. This
model satis�es several general principles of inference
(e.g., the likelihood principle, coherence). Two other
important principles it satis�es are the \embedding
principle" and the \representation invariance princi-
ple"; these last two principles ensure that two iden-
tical parameters (possibly de�ned for di�erent num-
bers of categories) will receive the same inferential
treatment (either prior or posterior); most objective
Bayesian models do not satisfy them. For these rea-

sons, the IDM appears to be a better model for for-
malizing prior ignorance than any objective Bayesian
model (for more details, see [21] and [22]). Another
important feature is that, through the degree of im-
precision of probabilities, the IDM distinguishes be-
tween a relative lack of information (high imprecision)
and a more substantial state of knowledge (low im-
precision). This is particularly striking in our present
context when the number of questions q is large and,
thus, many of the 2q patterns are unobserved by de-
sign. In such a case, some objective Bayesian models
lead to the surprising conclusion that any unobserved
pattern is absent from the whole population. In con-
trast, the IDM distinguishes between those which
truly point to an incompatibility of modalities and
those which might just result from a small sample size
and the independent conjunction of rare modalities.

The de�nition of quasi-implications will �rst be adres-
sed in Sections 2 and 3 at a descriptive level, i.e.
considering that the data constitute the entire pop-
ulation. We will turn to the inferential aspect of our
method in Sections 4 (objective Bayesian inference)
and 5 (IDM). An application to the analysis of a soci-
ological survey is then described in Section 6. Finally,
Section 7 provides some directions for future research.

2 Binary questionnaire and

associated implications

2.1 Binary questionnaire

Let U = fu1; � � � ; ung be a set of n units which may
possess or not some of the q features amongst the set
of features fa; b; c; : : :g. Each feature a is associated
with a binary question A = fa; a0g whose modalities
denote the presence (a) or the absence (a0) of the fea-
ture. The data can thus be described as a question-
naire about n units, each providing responses to q bi-
nary questions, A = fa; a0g, B = fb; b0g, C = fc; c0g,
etc.. Any unit is described by some pattern p 2 P ,
where P = A � B � C � � �; for example, a unit which
possesses features b and c, but not feature a, will be
described by a pattern of the type p = a0bc : : :.

In a statistical context, the set U of units typically
constitutes a sample from a larger population, the el-
ements of which need not be distinguished. At the
same time, the interest will typically lie in study-
ing the association between features, so that features
or questions always need to be distinguished. With
this asymmetrical view, the data can be described
as a weighted protocol composed of weighted patterns
p 2 P , with associated weight np, where np represents
the number of units having pattern p.



As a simple example, we consider a �ctitious ques-
tionnaire with q = 3 questions, A, B and C and
n = 100 units given in the form of a weighted pro-
tocol, (p; np)p2P (see Table 1).

np b b0

c c0 c c0

a 13 0 0 7
a0 1 1 61 17

Table 1: Questionnaire with q = 3 binary questions,
A, B and C, and n = 100 units (�ctitious data).

Basic patterns are de�ned with reference to some ba-
sic set of q questions Q = fA;B;C; : : :g. A weighted
protocol on Q can be projected on any non-trivial
subset Q0 � Q. Basic patterns are then projected
into partial patterns whose weights are obtained by
adding up those of the constituent basic patterns. For
instance, in the example of Table 1, projection onto
Q0 = fB;Cg leads to four partial patterns bc, bc0, b0c
and b0c0 with respective weights 14, 1, 61 and 24.

2.2 Logical expressions

In what follows, features a; b; c; : : : will be assimilated
to elementary propositions which may be true or false.
We use concatenation (e.g. in ab) for logical \and"
between modalities, the prime symbol (e.g. in a0) for
negation, and the symbol \=)" for logical implica-
tion. We shall also use symbols \^" and \_" for log-
ical \and" and \or" respectively, and the symbol \;"
for designating the false proposition.

For any three propositions r, s and t, it will easily be
checked that,

r =) ; � r0; (1)

(r ^ s) =) t � r =) (t _ s0); (2)

(rs =) ;) ^ (rs0 =) ;) � r =) ;; (3)

where symbol \�" indicates logical equivalence be-
tween two propositions.

2.3 Implications between modalities

If interest is focussed on strict dependencies between
modalities of the questions, the only aspect in the
data that matters is whether each pattern p is present
(np � 1) or absent (np = 0). At this qualitative level,
the observed protocol can be characterized by a list
of implications between modalities (see [10] and [12]).

Elementary implications. The absence of one ba-
sic pattern p 2 P in the protocol is simply expressed
by the logical statement p0 (p is false), that is, using

identity (1), by the elementary implication

p =) ;;

where the adjective \elementary" indicates that the
implication bears on a single basic pattern.

In the example of Table 1, pattern ab0c is absent, i.e.
ab0c =) ;. By identity (2), this can also be expressed
by either ab0 =) c0, b0c =) a0 or ac =) b. The
last expression, ac =) b (\the conjunction of a and
c implies b"), is the most simple for interpretative
purposes. However, we shall prefer to use the form
r =) ; which identi�es absent patterns (basic or par-
tial) since those play a central role in our method.

Implicative structure of the protocol. The si-
multaneous absence of several basic patterns, p1, p2,
p3, : : :, is expressed by the conjunction

(p1)
0 ^ (p2)

0 ^ (p3)
0 ^ � � � ;

or equivalently, using (1), by a conjunction of elemen-
tary implications

(p1 =) ;) ^ (p2 =) ;) ^ (p3 =) ;) ^ � � � :

In the example of Table 1, both patterns abc0 et ab0c
are absent, that is abc0 =) ; and ab0c =) ;. Using
(2), the implicative structure of the protocol can thus
be expressed by

(ab =) c) ^ (ac =) b):

Binary implications. The recursive application of
identity (3), when it is applicable (which is not the
case in our example), enables one to condense the list
of elementary implications into a more synthetic list
of implications, each of which expresses the simulta-
neous absence of several basic patterns. Eventually,
the most compact form will contain implications in
which only two questions appear, such as ab0 =) ;
or a =) b, and which are of particular interest for
the interpretation of the data. We call them binary
implications .

3 Descriptive analysis:

quasi-implications

When some patterns, though present, are rarely
observed, one would like to weaken the qualita-
tive distinction \present/absent" into the quantita-
tive one \well represented/quasi-absent", and thus to
weaken the notion of implication into that of quasi-
implication. This will lead us to summarize the data
by an approximate implicative structure.

We shall �rst de�ne the notion of a quasi-implication
(q-implication in short) on a descriptive basis, that
is by only considering the relative frequencies of pat-
terns, f = (fp)p2P , with fp =

np
n
.



3.1 Two binary questions (q = 2)

Bernard & Charron [5] based the implicative analysis
of a 2 � 2 contingency table (q = 2) on the \Del"
index, proposed in this context by [15] and de�ned,
for any i 2 fa; a0g and j 2 fb; b0g, by

dij=); = 1�
fij
fifj

; (4)

where fi and fj are the marginal frequencies of i and
j respectively.1 This index measures the degree of
agreement of the data with the logical model ij =) ;:
It takes the value 1 whenever ij =) ; is veri�ed (i.e.
cell ij is empty) and the value 0 when the two ques-
tions are independent (in which case, fij = fifj for
any i; j). Intermediate values can thus be considered
as representing various degrees of q-implication from
i to j. For some �xed non-negative reference value
dquasi � 1, a q-implication at degree dquasi, denoted
by \ij �! ;", was de�ned in [5] by

ij �! ; i� dij=); � dquasi: (5)

As an example, consider the projection of the proto-
col in Table 1 onto Q0 = fB;Cg. For each partial
pattern p in the set fbc; bc0; b0c; b0c0g, the index dp=);

takes the values �0:24, 0:73, 0:04 and �0:13 respec-
tively. If we take dquasi = 0:50, we thus �nd a single
q-implication, bc0 �! ; i.e. b �! c.

This example illustrates that this type of analysis pro-
vides the means to specify the precise direction of the
association between variables: The present analysis,
not only says that there is a positive association be-
tween B and C, but also states that \b q-implies c"
(and not the reverse).

3.2 Generalization to several binary
questions (q > 2)

A �rst direction for generalizing q-implications to
more than two questions is to focus on binary impli-
cations, i.e. to only consider pairs of questions from
the overall questionnaire. Unfortunately, this �rst ap-
proach may lead to a non-transitive summary of the
protocol. Other attempts have been made by try-
ing to express elementary implications in such a way
as to bring them back to the case of two questions,
using either some conditioning or some asymmetrical
compounding (see [15, ch. 7]). However, as these last
authors acknowledge, these attempts lead to incon-
sistent results since they produce statements that are
not invariant by logical equivalence (see also [6]).

1This descriptive index is also known in the literature
as \Loevinger's homogeneity index" [18].

3.2.1 Multivariate implicative index

Instead, we propose a new index which generalizes
(4), called the multivariate implicative index . For any
pattern p = ijk : : :, with i 2 fa; a0g, j 2 fb; b0g, k 2
fc; c0g, etc., this index is de�ned as

dp=); = 1�
fp

fifjfk � � �
; (6)

where fi, fj , fk, etc. denote the marginal relative fre-
quencies of i, j, k, etc. respectively.

The multivariate implicative index dp=); constitutes
a local measure of the departure of the protocol from
complete independence, which is de�ned as: fp =
fifjfk : : :, for all p = ijk : : : (see [17, p. 600]). This
measure is local because it measures a departure in
some speci�c direction, the one of the logical model
p =) ;. The index dp=); varies within ] � 1; 1];
it takes the value 0 in case of local independence
(fp = fifjfk : : :), positive values whenever pattern
p is under-represented (fp < fifjfk : : :), and equals 1
whenever pattern p is absent (fp = 0).

3.2.2 Quasi-implications

Given some non-negative reference value dquasi, we
generalize the notion of an elementary implication
\p =) ;" into that of an elementary q-implication,
denoted by \p �! ;", by de�ning

p �! ; i� dp=); � dquasi; (7)

which reads \pattern p quasi-implies ; (at degree
dquasi)" and which we shall also express as \pattern
p is quasi-absent" (q-absent in short). When needed,

we shall also write \p
ABC:::
�! ;" with an explicit men-

tion of the level of projection at which elementary
q-implications are de�ned.

The lower the reference value dquasi, the higher is the
number of observed patterns treated as q-absent. In
the sequel of this paper, we shall often use the value
dquasi = 0:50 which corresponds to patterns that are
under-represented by 50% relative to the case of com-
plete independence.

Non-elementary q-implications are de�ned by the re-
cursive use of the same combination rule (identity
(3)) as for strict logic. Formally, we thus de�ne a
q-implication r �! s for any propositions r and s by

r
Q
�! s i�

8 p 2 P; if (r =) s) =) (p =) ;);

then p
Q
�! ;; (8)

where all elementary q-implications are assessed with
the same reference value dquasi.



3.2.3 Properties of this quasi-logic

Generalization of standard logic. Standard log-
ic is obtained for dquasi = 1: dp=); � 1 is equivalent
to dp=); = 1, and hence to p =) ;.

Invariance. The de�nition (8) of q-implications in
terms of elementary q-implications, at a unique level
of projection, guarantees invariance of q-implications
by logical equivalence:

If (r =) s)() (u =) v); then

8 dquasi � 0; (r
Q
�! s)() (u

Q
�! v): (9)

Transitivity. Invariance by logical equivalence also
ensures that q-implications satisfy transitivity. From
de�nition (8), any valid q-implicative statement
is equivalent to a conjunction of elementary q-
implications and several such conjunctions cannot
generate any contradiction.

Coherence by projection. Another important
property is the coherence by projection of q-
implications. Assume that \abc : : : �! ;" and
\a0bc : : : �! ;" both hold; this can be summarized by

\bc : : :
ABC:::
�! ;", where \ABC : : :" indicates the level

of projection. It can be shown that \dbc:::=);" is a
weighted average of \dabc:::=);" and \da0bc:::=);", so

that having \bc : : :
ABC:::
�! ;" implies \bc

BC:::
�! ;" (see

[6]).

The recursive application of this result entails that
any q-implication satis�ed at some level Q of projec-
tion is necessarily satis�ed at any less re�ned level,
Q0 � Q. Contrarily to what happens in standard
logic, the reverse is not true. This is the major dif-
ference between the quasi-logic presented here and
standard logic: in standard logic, the level of pro-
jection is not relevant, whereas in our quasi-logic, q-
implications are preserved by projection but not nec-
essarily by re�nement of the questionnaire.

3.3 Descriptive implicative summary of the
protocol

The implicative summary of the protocol at the de-
scriptive level consists in the set of patterns p 2 P
such that p �! ; holds. When data allow it, ele-
mentary q-implications may be combined into more
synthetic q-implications and, eventually, into binary
ones.

When dquasi is varied, several nested implicative sum-
maries are obtained, from the qualitative vision of
the protocol where only absent patterns are identi�ed
(dquasi = 1) to the most drastic summary (dquasi = 0)
which considers that any under-represented pattern

(fp < fifjfk � � �) is q-absent. For the example in Ta-
ble 1, for any dquasi 2 [0:90; 1:00], only the two pat-
terns abc0 and ab0c give rise to a q-implication; for
dquasi 2 [0:68; 0:89], an additional q-absent pattern,
a0bc, is found; for dquasi 2 [0:00; 0:66], there is another
extra q-absent pattern, a0b0c0. For this last choice of
dquasi, the implicative summary is thus

(b ! ac) ^ (a0 �! c):

4 Objective Bayesian inference

4.1 From description to Bayesian inference

For the inductive step, we assume that the weighted
protocol n = (np)p2P is a multinomial sample (with
K = jP j = 2q categories) of size n from an in�nite
population characterized by the parameters, or true
relative frequencies, � = (�p)p2P : n �Mn(n;�).

In the usual version of the Bayesian framework, the
state of uncertainty about parameters � is, at any
moment (prior or posterior to the data), described
by a unique probability distribution. For categorical
data, prior uncertainty is usually expressed by a dis-
tribution from the conjugate Dirichlet family. From
a Dirichlet prior on �, � � Di(�), with � = (�p)p2P
a vector of non-negative reals, Bayes' theorem leads
to an updated Dirichlet posterior on � conditionally
on the observed data: �jn � Di(n+�). The K
hyper-parameters composing vector � can be thought
of as prior strengths put on the various patterns; each
prior strength, �p, is incremented by the observed fre-
quency of the pattern, np, and thus updated into the
posterior strength np + �p. We denote by � the total
prior strength: � =

P
�p.

2

The posterior expectations of � are given by the rel-
ative posterior strengths, i.e.

E(�p) =
np + �p
n+ �

: (10)

Let P(:) be some property of interest that a K-
dimensional vector of relative frequencies might sat-
isfy. Within the Bayesian approach, inference consists
in deriving the posterior probability Prob(P(�)) from
the overall posterior on �. If this probability is greater
than some given guarantee 
, then the property can
be assessed for the population with guarantee 
.

A typical property of interest here is that a single ele-
mentary q-implication p �! ; (or that some more

2The standard de�nition of the Dirichlet distribution
involves strictly positive �p's. We extend this de�nition
by allowing the possibility of null values for some (but not
all) �p's; a posterior strength np+�p should be understood
as meaning that �p = 0.



complex model composed of several elementary q-
implications) is satis�ed. More precisely, for some
pattern p = ijk : : :, consider the derived parameter
�p=); = g(�) which is the population counterpart of
the descriptive index dp=); = g(f):

�p=); = 1�
�p

�i�j�k � � �
; (11)

where �i, �j , �k, etc. denote the population marginal
relative frequencies of i, j, k, etc. respectively. Here,
the goal of inference will be to provide probabilis-
tic statements about properties of the type P(�) =
\�p=); � dquasi".

4.2 Usual reference priors and their
di�culties

In the \data analysis approach to inference" [4], the
K prior strengths � must be chosen so as to express
a \prior state of ignorance", so that the posterior dis-
tribution essentially expresses the information on pa-
rameters brought by the data. Several reference pri-
ors have been proposed to achieve such a goal includ-
ing Bayes-Laplace's (8p, �p = 1), Haldane's [14] (8p,
�p = 0), Je�reys' [16] (8p, �p = 1=2) and Perks' [19]
(8p, �p = 1=K).

Bernard & Charron [5] used Perks' prior as a refer-
ence prior for the case q = 2. However, for the multi-
variate case, especially when q is large, all of the four
above priors appear quite unsatisfactory. The number
of possible patterns K = 2q increases exponentially
with q, so that when q is large enough, K will typi-
cally be much larger than n, K >> n. In such a case a
large number of the possible patterns are unobserved
by construction. Haldane's prior leads to the conclu-
sion that these unobserved patterns are absent from
the population. Perks' prior, in which the total prior
strength � also does not depend on K (� = 1), allo-
cates a very small prior strength to any pattern and
thus tends to lead to the same undesirable conclusion.
On the other hand, for the other two proposed pri-
ors, � depends on K (� = K in Bayes-Laplace' prior,
� = K=2 in Je�reys'), so that the total prior strength
will be much larger than n, the total strength provided
by the data: the weight of evidence is overwhelmed
by the prior. When K << n, the four Bayesian pri-
ors actually lead to very similar inferences, but when
K >> n, large discrepancies appear between them,
especially for rare patterns.

5 Imprecise Dirichlet model (IDM)

5.1 Presentation of the model

Instead of using a single prior, an alternative idea
is that of using several priors within a restricted ig-

norance zone ([2] and [4]). This suggestion is also
made by [21] under the name of an imprecise Dirich-
let model (IDM). The IDM consists in �xing the total
prior strength � and considering all possible Dirichlet
priors satisfying the constraint:

0 � �p and
X

�p = �: (12)

Each Dirichlet prior in this set is then updated into
a Dirichlet posterior using Bayes' theorem. Posterior
uncertainty about � is thus described by the resulting
set of Dirichlet posteriors. For any property of interest
about �, P(�), the IDM yields a lower and an upper
probability for statement P(�), respectively denoted
by Prob(P(�)) and Prob(P(�)).

The IDM as de�ned in (12) depends on the choice of
�. The constant � determines how fast the lower and
upper probabilities converge one towards the other
when n increases. Walley [21] gives several arguments
for chosing � between 1 and 2 and notes that � = 2
might be overly cautious. For a one-sided test about
a proportion in the case K = 2, the value � = 1 en-
compasses all above Bayesian solutions and several of
their frequentist alternatives (see [2]). In the follow-
ing, we shall use � = 1 for which the range of the
resulting posterior imprecise probabilities always cov-
ers those obtained from both Haldane's and Perks'
solutions.

5.2 Inductive implicative summary of the
protocol

Under the IDM, the q-implication p �! ; is said to be
inductively satis�ed (at degree dquasi, with guarantee

), if and only if

Prob(�p=); � dquasi) � 
: (13)

As we shall see, the degree of imprecision in the prob-
abilities re
ects prior ignorance. Basing the above
inductive statement upon a lower probability Prob(:)
amounts to producing a cautious statement: we may
ensure that the property of interest, �p=); � dquasi,
has at least probability 
.

The conjunction of the elementary q-implications that
are inductively satis�ed constitutes a logical model
which is an inductive implicative summary of the pro-
tocol (relative to dquasi and 
). (In a further step, one
could also compute the lower probability of this log-
ical model considered as a whole, which we shall not
do here.)

5.3 Lower expectation for �p=);

Finding the lower probability required by (13) ap-
pears to be a hard task. Instead, we propose an in-
direct approximate procedure which, as intuition sug-
gests, might actually provide the exact answer. The



�rst level of approximation consists in trying to mini-
mize the posterior expectation E(�p=);). In addition,
since �nding a closed form for this posterior expecta-
tion does not appear very easy either, we resort to a
second level of approximation using a simple approx-
imation for E(�p=);).

Under a single Dirichlet prior, Di(�), a simple
approximate value for the posterior expectation
E(�p=);) is given by replacing each �p in (11) by
E(�p) given in (10), that is,

E?(�p=);) = 1�

np+�p

n+��
ni+�i

n+�

��
nj+�j

n+�

��
nk+�k

n+�

�
� � �

; (14)

where �i, �j , �k, : : : are the marginal sums of the
�p's.

It can be shown that the minimum value of E?(�p=);)
with respect to � constrained by (12) and � = 1, is
attained for�

�p = 1; �p00 = 0; p00 6= p if fp < fp0

�p0 = 1; �p00 = 0; p00 6= p0 if fp0 � fp ;
(15)

where p0 = i0j0k0 : : : is opposite to pattern p = ijk : : :.

For each pattern p, we shall take as an approxi-
mate value for Prob(�p=); � dquasi) the probability
Prob(�p=); � dquasi) obtained from a single Dirichlet
distribution with prior strengths given in (15).3

5.4 Computational issues

The proposed method involves heavy computations
because each Dirichlet posterior distribution bears on
(K�1 = 2q�1) parameters. A general computing al-
gorithm consists in Monte-Carlo (MC) sampling from
each Dirichlet posterior, as suggested by [11, pp. 76{
77], and [4]; this method is easy to implement using
independence properties of the Dirichlet distributions
(see e.g. [3]).

In the general theory, the IDM model requires an ad-
ditional level of computational complexity since MC
sampling must be performed for every Dirichlet pos-
terior constrained by

P
�p = 1. But, as we saw in

the previous Section, if we are only interested in state-
ments of the type \�p=); � dquasi", a single vector
� (composed of one \1" and 2q � 1 \0"'s) needs to

3A similar approximate procedure can be used for the
upper probability Prob(:) by �nding the vector � which
maximizes (14). In brief, the solution consists in allocat-
ing the total prior strength to a single pattern (in general)
or to several patterns (in some cases) among the patterns
that are neighbours of p (patterns which di�er from p by
a single feature), depending on the marginal observed fre-
quencies of the various features.

be considered for the approximate procedure we sug-
gest. All numerical results given further are obtained
in this way.

5.5 Properties of the IDM

Several general properties of the IDM are given in
[21] and in [22] from a predictive viewpoint. We shall
only stress here some properties that are particularly
important for our present purpose.

Prior ignorance. An important property of the
IDM is that it distinguishes the case of a relative
lack of information for some statement | it then pro-
duces a wide posterior probability interval | from
the case of a more substantial state of knowledge
| the interval is then narrower. In particular, the
prior IDM yields vacuous probability intervals for
any q-implication; for any pattern p 2 P and any
dquasi 2 [0; 1], we have

Prob(�p=); � dquasi) = 0; and

Prob(�p=); � dquasi) = 1: (16)

Absent patterns and inference. A related prop-
erty is that patterns that are absent in the data
(p =) ; descriptively) are treated quite di�erently
according to whether the product frequency associated

with p = ijk � � �, dfijk��� = fifjfk � � �, is close to 0 or
not.

Consider the example in Table 1 for which both pat-
terns abc0 and ab0c are absent. For this protocol,
the marginal frequencies of the various features are
fa = 0:20, fb = 0:15 and fc = 0:75. Pattern
abc0 thus appears to be composed of rare modali-
ties only and, so, the associated product frequency,dfabc0 = fafbfc0 = 0:0075, is small. If there was ac-
tually complete independence between A, B and C,
out of a sample of n = 100 units one would expectdnabc0 = ndfabc0 = 0:75 unit for pattern abc0, and, even
in such a case, the observation that nabc0 = 0 would
not appear surprising. The absence of pattern abc0

in the data does not necessarily point towards some
incompatibility between modalities a, b and c0, but
might only result from independence between ques-
tions together with a pattern composed of rare modal-
ities and a relatively small sample size.

The IDM expresses this uncertainty: though the de-
scriptive step leads to the most extreme statement,
dabc0=); = 1, the probability interval for the induc-
tive statement �abc0=); � 0:50 is very wide: [0:31; 1].
In other words, the data allow neither to conclude
that pattern abc0 is q-absent (0:31 is too low), neither
to conclude in the opposite direction (1 is too high).



For the absent pattern ab0c, on the contrary, we �nddfab0c = 0:1275 and dnab0c = 12:75, and the hypothesis
of complete independence does not appear very com-
patible with the observation nab0c = 0. Here the prob-
ability interval for �ab0c=); � 0:50 is [1:00; 1] and the
inductive conclusion is that pattern ab0c is q-absent
(for dquasi = 0:50) with a guarantee close to 1.

To summarize, the IDM separates truly q-absent pat-
terns in the population from unobserved patterns
which were actually likely not to be observed in a
small sample only because they are composed of rare
modalities.

Coherence by projection. Another important
property of the IDM in our present context is that it
satis�es the representation invariance principle; this
principle states that inferences about �, and hence
about any derived parameter g(�), should not depend
on the number of categories K used for de�ning �.

For example, inferences (lower and upper probabili-
ties) relative to �ab=); are identical whether, (i) one
considers the protocol projected onto fA;Bg and uses
the IDM on the 22 partial patterns so de�ned, or,
(ii) �ab=); is decomposed into �abc=); and �abc0=);

and the IDM is de�ned at the fA;B;Cg projection
level, i.e. on the 23 basic patterns. This result ensures
that coherence by projection is satis�ed by inferences
about q-implications from the IDM.

6 Application: the \Religion data"

The following real example is taken from [7]. A sam-
ple of n = 1524 individuals were asked q = 4 binary
questions about their religious opinions or behaviour.
The weighted protocol on the K = 2q = 16 patterns
is shown in Table 2.

c c0

d d0 d d0

ab 100 2 14 2
ab0 9 0 17 0
a0b 302 7 89 15
a0b0 172 16 455 324

Table 2: Religion data. Weighted protocol for a bi-
nary questionnaire on n = 1524 individuals with q = 4
questions: A (Do you often pray? ), B (Do you go to
church regularly? ), C (Do you believe in paradise? ),
and D (Do you or will you give your children any re-
ligious education? ); \yes" answers are denoted a, b, c,
d; \no" answers are denoted a0, b0, c0, d0. From a 1967
study of the \Institut Fran�cais d'Opinion Publique",
presented in Degenne [7, pp. 37{39].

6.1 Descriptive analysis

Table 3 gives the value of the descriptive index dp=);

for each pattern p. If we take dquasi = 0, 12 patterns
out of 16 are q-absent (exceptions are abcd, a0bcd,
a0b0c0d and a0b0c0d0), so that the implicative structure
in the protocol may be summarized by

a �! (b ! c) �! d:

This summary can be expressed as: \Praying of-
ten" q-implies both \Church attendance" and \Be-
lief in paradise", which are q-equivalent and which
both q-imply \Religious education for children". Very
schematically, this list of q-implications seems to indi-
cate that personal religious beliefs tend to imply reli-
gious social behaviour, but not the reverse. Of course,
this �rst summary is rather brutal since it considers as
q-absent any pattern which is under-represented rel-
ative to the independence case (dquasi = 0). In fact,
this summary discards more than 20% of the individ-
uals (343 out of 1524).

c c0

d d0 d d0

ab �5:58 0:58 0:39 0:72
ab0 0:68 1:00 0:60 1:00
a0b �1:07 0:85 0:59 0:78
a0b0 0:37 0:81 �0:11 �1:50

Table 3: Religion data. Descriptive index dp=); for
each pattern p.

Higher values for dquasi are likely to provide a more
subtle | but also more complex | summary of the
data. With the more selective choice of dquasi = 0:50,
10 of the 12 under-represented patterns are found to
be q-absent (the two excluded patterns are a0b0cd and
abc0d) and the implicative structure can now be de-
scriptively summarized by

(a �! b �! d) ^ (c �! d) ^ (b �! a _ c):

This second summary covers about 90% of the indi-
viduals (1367 out of 1524) and reads as follows: (i)
\Praying often" q-implies \Church attendance" which
in turn q-implies \Religious education for children";
(ii) \Belief in paradise" also q-implies \Religious ed-
ucation for children"; (iii) \Church attendance" q-
implies either \Praying often" or \Belief in paradise".

6.2 Inductive analysis

Out of the 12 patterns that were found to be under-
represented descriptively, all but one (abcd0) are also
under-represented inductively, with guarantee 0:90.
The implicative inductive summary of the data (for



dquasi = 0 and 
 = 0:90) may be written

(a �! (b ! c)) ^ (b �! a _ d):

This summary can be expressed as: (i) \Praying of-
ten" q-implies both \Church attendance" and \Belief
in paradise", which are q-equivalent; (ii) \Church at-
tendance" q-implies either \Praying often" or \Reli-
gious education for children".

For the reference value dquasi = 0:50, amongst the 10
patterns that were found q-absent at the descriptive
level, 7 are found inductively q-absent (for 
 = 0:90)
as shown in Table 4. The resulting inductive summary
(for dquasi = 0:50 and 
 = 0:90) may be expressed by

(ac �! b) ^ (c �! a _ d)

^ (b �! a _ c) ^ (a �! b _ d):

This last summary is more di�cult to express in a
few simple words, because it only involves non-binary
q-implications. Nevertheless, it contains substantial
information as it indicates that 7 patterns out of the
16 possible ones are certi�ed (with guarantee 0:90) to
be highly under-represented (at least a 50% under-
representation relative to the case of complete inde-
pendence.)

c c0

d d0 d d0

ab 0:00 0:43 0:18 0:71
ab0 0.91 0.99 0:82 1.00
a0b 0:00 1.00 0.99 1.00
a0b0 0:00 1.00 0:00 0:00

Table 4: Religion data. For each pattern p,
lower probability that the q-implication p �! ;
is inductively satis�ed (with dquasi = 0:50), i.e.
Prob(�p=); � 0:50). Quasi-absent patterns at guar-
antee 
 = 0:90 appear in boldface.

6.3 Comments

We have given four di�erent summaries of the same
data and, clearly, others are possible by varying dquasi
and 
. Which of them should be preferred? First of
all, the descriptive summaries only answer the ques-
tion: \If the data were the entire population, what
would we be entailed to conclude? Varying dquasi pro-
duces a sequence of nested summaries, from dquasi = 1
which yields only the absent patterns, i.e. the strict
implications, to dquasi = 0 which indicates which
patterns are under-represented, however slightly. We
suggest that considering this sequence of nested sum-
maries is the better way to analyze the data.

When the question is how to generalize from the data
to the underlying population, the answer is provided

by inductive summaries. They can be thought of
as �lters of the corresponding descriptive summaries
which �lter out patterns that cannot be certi�ed to
be under-represented (at a given guarantee 
). Here,
varying the value of 
 will also produce a sequence
of nested summaries corresponding to a more or less
strong �ltering. Statistical conventions suggest using
a high value for 
, such as 0:90, 0:95 or 0:99.

7 Conclusions

We would like to conclude by mentionning a few di-
rections for future research:

(1) The method we have proposed here is suited
when there is no prior information about the pat-
tern's true frequencies. However, a questionnaire
could incorporate structural constraints between the
questions which indicate a priori incompatibilities be-
tween modalities. We think that our method could be
easily adapted by specifying null prior strengths for
patterns that are structurally unobservable and using
the IDM on the remaining patterns. The incorpora-
tion of other types of a priori knowledge needs to be
investigated as well.

(2) An inductive summary produced by the method is
a joint statement where each elementary q-implication
is obtained separately at a given guarantee. It may
be of importance to investigate how to compute the
lower probability of this joint statement considered as
a whole. A related issue is to provide a global prob-
ability assessment for any quasi-logical model, and
in particular one which would be constructed partly
from the results of our method, and partly using less
blind criteria such as, e.g., domain knowledge or com-
prehensibility.

(3) Based as it is on a lower probability, the inductive
summary is designed to be a cautious one: Certi�ed
q-absent patterns are the only ones it separates out.
The other patterns could be separated into those that
are ensured to be over-represented (or highly repre-
sented), and those for which lack of information dom-
inates. A few of our experiments seem to indicate
that this last category covers an increasing propor-
tion of patterns as q increases. Far from diminishing
the interest of our method, the eventual con�rmation
of this fact would serve as a reminder to the analyst
that having (at least) as many points as there are di-
mensions is a prerequisite for saying anything serious
about a highly multidimensional space. This funda-
mental limitation would imply that our method can
only produce useful results when n >> 2q.
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