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Abstract

This paper reviews algorithms for local computation
with imprecise probabilities. These algorithms try to
solve problems of inference (calculation of conditional
or unconditional probabilities) in cases in which there
are a large number of variables. There are two main
types depending on the nature of assumed indepen-
dence relationships in each case. In both of them the
global knowledge is composed of several pieces of lo-
cal information. The objective is to carry out a sound
global computation but mainly using the initial local
representation.

Keywords. Propagation algorithms, valuations
based systems, imprecise probabilities.

1 Introduction

This paper reviews local computation algorithms to
compute with imprecise probabilities. In general, it is
assumed the case closed and convex sets with a �nite
set of extreme probability distributions.

Local computation techniques have been successfully
applied to the case of classical probabilities [30, 23].
With the development of algorithms in an abstract
framework [36, 6], these techniques have also been ap-
plied to other formalisms of representing uncertainty
including convex sets of probabilities.

Several and very di�erent methodologies have been
designed for the computation with imprecise probabil-
ities. In this paper, these approaches are classi�ed ac-
cording to the underlying independence relationships.
Section 2 considers the fundamentals of the calculus
with convex sets. The concepts of marginal, condi-
tional and 'a posteriori' information are given. Two
de�nitions of independence [11, 8] are also given. The
�rst one is called unknown interaction. It is a rather
weak notion and it is not a generalization of classi-
cal stochastic independence. The second one, called

strong independence, generalizes stochastic indepen-
dence and it is the most common type of indepen-
dence that can be found in the propagation of impre-
cise probabilities literature. Section 3 introduces local
computation techniques in an abstract way, following
Shafer and Shenoy [36]. Section 4 is devoted to lo-
cal computation algorithms for the case of unknown
interaction (this problem is often known as propaga-
tion of probabilistic restrictions). Section 5 is devoted
to the algorithms under strong independence. It is
shown how this problem can be transformed in an op-
timization problem by adding new variables which are
called transparent variables [4]. Then, some general
global optimization techniques to solve this problem
are considered, such as simulated annealing, gradient
techniques or genetic algorithms. Finally, Section 6 is
devoted to the conclusions.

2 Basic Notions of Convex Sets of

Probability Distributions

Assume that we have a population 
 and a n-
dimensional variable (X1; X2; : : : ; Xn) de�ned on 

and such that each Xi takes its values on a �nite set
Ui. For each I � f1; : : : ; ng, XI will denote the vari-
able (Xi)i2I , taking values on set

Q
i2I Ui (denoted

by UI).

In this paper our knowledge of a problem will be given
by convex sets of probabilities or conditional proba-
bilities. In general, a piece of information relating the
variables in I will be a closed and convex set, H , of
mappings: h : UI �! IR, with a �nite set of extreme
points.

As UI is �nite, a mapping is given by the vector of
values (h(u))u2UI . By this reason we shall use the
word vector or point to refer to a mapping h. This
point has jUI j dimensions, where jUI j is the number of
elements of UI . The convex set will be usually degen-
erated in this space (some linear equation satis�ed).
For example, in the case of probability distributions



the di�erent values have to add one.

If h is a function from UI onto IR, and J � I , then
the marginal of h to UJ is the function h#J de�ned
on UJ and given by, h#J(u) =

P
v#J=u h(v), where

v#J is the element from UJ obtained by deleting the
coordinates in I �J . If H is a convex set of functions
on UI , with extreme points, Ext (H) = fh1; : : : ; hkg,
and J � I then the marginalization of H to J is the
convex set given by,

H#J = CH fh#J1 ; : : : ; h#Jk g (1)

where CH stands for the convex hull operator (the
minimum convex set containing a given set).

H#J is equal to the marginalization on UJ of all the
functions h in H . However not all the marginal of
the extreme points are extreme and it is possible that
some of the functions h#Ji are not extreme in H#J .

Assume that h is a function from UI onto IR and h0

a function from UJ onto IR, then the multiplication
of these two functions is a function, h:h0, de�ned on
UI[J and given by, h:h0(u) = h(u#I):h0(u#J).

This operation is extended to convex sets of functions.
IfH is a convex set of mappings in UI , andH

0 is a con-
vex set in UJ , with Ext(H) = fh1; : : : ; hkg;Ext(H

0) =
fh01; : : : ; h

0
lg. Then the combination of H and H 0 will

be a convex set of mappings in UI[J , H 
 H 0 given
by

H 
H 0 = CHfh1:h
0
1; ::; h1:h

0
l; : : : ; hk:h

0
1; ::; hk:h

0
lg
(2)

An important remark of this operation is that H
H 0

is not equal to the set obtained by multiplying all the
functions on H and all the functions on H 0, because
this set may be non-convex. It is the minimum convex
set containing it.

Another important operation with convex sets is the
intersection. If H is a convex set of mappings in UI ,
and H 0 is a convex set in UJ , then H \ H 0 is the
convex set of mappings h de�ned on UI[J verifying
that h#I 2 H and h#J 2 H 0. H \H 0 is also a closed
and convex set with a �nite set of extreme points.

We shall consider that our 'a priori' knowledge about
how a variable takes its values is represented by a
closed and convex set of probability distributions,
H , with a �nite set of extreme points Ext(H) =
fp1; :::; pkg. Each pi is a probability distribution on
U and Ext(H) are the extreme points of H .

In the following, we give the elementary concepts to
work with several variables under convex sets of prob-

ability distributions. We shall assume that (X;Y ) is
a pair of variables, X taking values on a �nite set U ,
and Y on a �nite set V . If H is an 'a priori' piece
of information about (X;Y ), that is a convex set of
probability distributions on U �V , then the marginal
of this information for variable X , HX , is the convex
set of probabilities H#U .

A conditional information about Y given X will be a
closed and convex set, HY jX , of mappings, h : U �
V �! [0; 1], verifying

X
v2V

h(u; v) = 1; 8u 2 U

and with a �nite set of extreme points, Ext(HY jX) =
fh1; : : : ; hlg.

This is more general than assuming that a conditional
piece of information is a convex set of probabilities for
every possible value of X , that is, for every element
u 2 U [7].

From a marginal convex set HX and a conditional
information HY jX , we can calculate a global informa-
tion about (X;Y ): H = HX 
HY jX . However, it is
very simple to prove that every global convex set of
probabilities can not be decomposed this way [28].

Above, we have considered the problem related with
general probabilistic information, that is, information
valid for all the population under study. Now, a di�er-
ent aspect is considered: in front of a particular case,
How to particularize the general knowledge to the ob-
servations we have carried out on it? This is called
focusing conditioning [13]. The resulting information
will be called 'a posteriori' information.

Here we shall only consider the most usual de�nition
of conditioning consisting in focusing all the possible
probability distributions. Other alternatives can be
found in Moral and Campos [29].

Assume a convex set for variable X : H =
CHfp1; : : : ; pkg and that we have observed 'X belongs
to A', then the result of conditioning is the convex set,
H jA, generated by the points fp(:jA) : p 2 H; p(A) 6=
0g.

The de�nition can be extended to the case in which
l is a general likelihood function, l : U ! [0; 1]. H jl
is equal to the set generated by points fp(:jl) : p 2
H;Ep[l] 6= 0g, where p(:jl) is calculated by applying
Bayes's rule and Ep is the mathematical expectation.

If we have variables X and Y taking values on U and
V respectively and H is a global convex set of prob-
ability distributions for these two variables, then by
HX j(Y 2 B) we will denote the conditioning of H to
the set U �B and the marginalization of the result to



U . That is, HX j(Y 2 B) = (H jU �B)#U .

The concept of conditional independence is funda-
mental for propagation algorithms. Here we shall con-
sider only two types of independence: unknown in-
teraction and strong independence. A more detailed
study of independence with alternative de�nitions can
be found in De Campos and Moral [11] and in Couso,
Moral, and Walley [8], where di�erent justi�cations
and conditions for their application are considered.

Intuitively, X and Y are conditionally independent
given Z, when they are independent under a perfect
knowledge of the value of Z.

De�nition 1 (Unknown Interaction) If HX;Y;Z

is a convex set of probability distributions for
(X;Y; Z), then we say that there is unknown inter-
action of X and Y given Z if and only if HX;Y;Z =
HX;Z \HY;Z.

This is a very weak de�nition of conditional indepen-
dence and it is not a generalization of probabilistic
conditional independence. It does not imply that
there is no relationship between the variables given
Z. Only implies that knowing the probability about
Z there is not inuence between the knowledge of
the probability distributions about X and Y . In that
sense, it is some type of independence. In fact, it is
the minimum we can ask to make the local computa-
tion possible. When there is unknown interaction, the
joint set HX;Y;Z is the natural extension of marginal
sets HX;Z and HY;Z (the least informative set with
these marginals). As this de�nition is very weak and
is not really a generalization of stochastic indepen-
dence, this case in usually referred in the literature
as not assuming independence relationships. In some
cases we will use this expression, though as we have
said earlier it implies the veri�cation of a weak inde-
pendence property.

De�nition 2 (Strong conditional independence)
If HX;Y;Z is a global convex set of probabilities for
(X;Y; Z), we say that X and Y are conditionally
strong independent given Z if and only if, HX;Y;Z =
HX;Z 
HY jZ or HX;Y;Z = HY;Z 
HXjZ .

This de�nition is really a generalization of stochastic
independence. If we have two joint sets HX;Y;Z

1 and

HX;Y;Z
2 with the same marginals and such that un-

known interaction is satis�ed in HX;Y;Z
1 and strong

independence in HX;Y;Z
2 , then it is easy to show that

HX;Y;Z
2 � HX;Y;Z

1 . So strong independence produces
more informative joint sets (there are less possible
probability distributions) than unknown interaction.

This is the usual condition considered in the litera-
ture when it is said that independence relationships

are assumed, without specifying which type of inde-
pendence relationships are being considered.

If we have a variableX taking values on a �nite set U ,
then a convex set of probabilities, H , can be given by
a set of linear restrictions, R. Each element in r 2 R
is an inequality:

r �
X
u2U

�u:p(u) � � (3)

The set of probability distributions verifying a set
of restrictions R is always a convex set, which will
be denoted as H(R). The set of all the restrictions
which are veri�ed by a convex set H will be denoted
as R(H). It is immediate that R � R(H(R)) and
that H(R(H)) = H .

If H(R) = H we will say that the set of restrictions
R de�nes the convex set H . In general, given a con-
vex set of probability distributions with a �nite set of
extreme points, there is a �nite minimal set of restric-
tions de�ning it.

A set of restrictions R is said to be minimal if and
only if for every set of restrictions R0 � R such that
H(R) = H(R0) we have that R = R0. A restriction
r 2 R is said to be redundant if and only if H(R) =
H(R� frg).

For a convex set, H , we can use the representation
given by a �nite set of points including its extreme
points or the one given by a �nite set of restrictions
de�ning it. In both cases, it is preferable for the rep-
resentation to be minimal.

Algorithms to calculate minimal representations and
to make transformations between them are classical in
the theory of Convex Sets. In concrete we can point
out the following ones:

{ Convex Hull calculation.- These algorithms are
used to remove all the non-extreme points of a
�nite set. At the same time, they calculate a
minimal set of restrictions de�ning the convex
hull containing these points. Descriptions can be
found in [14, 32].

{ Redundancy elimination.- These algorithms re-
move the set of redundant constraints from a �-
nite set. A survey can be found in [20].

{ Vertex enumeration.- These algorithms calculate
all the extreme points of the convex set de�ned
by a set of linear constraints. A survey can be
found in [26].

Depending on the operations we want to carry out,
some representations are more appropriate than the



others. For the intersection the restrictions represen-
tation is more appropriate. If H(R1) = H1;H(R2) =
H2, then it is immediate to show that H(R1 [ R2) =
H1 \H2. A redundancy elimination algorithm can be
used to obtain a minimal representation of H1 \H2.

For the combination the most appropriate represen-
tation is the use of the extreme points. In fact this
operation is de�ned by means of (2) in terms of the ex-
treme points de�ning the convex set. However not all
the calculated points are extreme, and a convex hull
algorithm should be used if we want to keep minimal
the representation.

The marginalization is expressed in (1) in terms of the
extreme points. So the extreme points representation
is appropriate for this operation. As in the case of
combination a convex hull algorithm is necessary if we
want to remove the non-extreme points. If the convex
set is represented by means of linear restrictions, it is
not a good idea to enumerate all the extreme points
and then to calculate the marginalization. Direct al-
gorithms to carry out the marginalization of a convex
set given by linear restrictions are available and much
more e�cient [22]. The direct algorithm calculates all
the extreme points of the marginalized set and not of
the original convex set.

3 An Axiomatic View of Propagation

Algorithms

In this section, we briey describe the Shafer and
Shenoy axiomatic framework for local computation
[34, 36]. A valuation is a primitive concept meaning
the mathematical representation for a piece of infor-
mation in a given uncertainty theory. In our case,
a valuation will be a convex set, which could repre-
sent an 'a priori' set of probability distributions, or
a set of conditional probability distributions, or an 'a
posteriori' conditional information.

We shall assume that for each I � f1; : : : ; ng there is a
set VI of valuations de�ned on the Cartesian product,
UI . If V 2 VI we shall say that V is de�ned on UI or
that UI is the frame of V . We shall also say that V
is de�ned on I .

V will be the set of all valuations V = [I�f1;:::;ngVI

Two basic operations are necessary:

� Marginalization.- If J � I and V1 2 VI then the
marginalization of V1 to J is a valuation V #J

1 in
VJ .

� Combination.- If V1 2 VI and V2 2 VJ , then
their combination is a valuation V1 
 V2 in VI[J

The following axioms are assumed to be veri�ed by
these operations:

Axiom 1 V1 
 V2 = V2 
 V1; (V1 
 V2) 
 V3 =
V1 
 (V2 
 V3).

Axiom 2 If I � J � K, and V 2 VK , then

(V #J)
#I

= V #I .

Axiom 3 If V1 2 VI , V2 2 VJ , then (V1 
 V2)
#I =

V1 
 V2
#(J\I).

Then, local computation algorithms are developed
and expressed in terms of these operations with val-
uations. In general, the problem they try to solve is
the following: Let R = fV1; : : : ; Vmg be a set of val-
uations where each Vi is de�ned on s(Vi) = Ii. We
are interested in the projection on Uj of the combi-
nation of all the valuations in R. That is, we want to
calculate[34]:

Rj =
�O

R
�#fjg

= (V1 
 : : :
 Vm)
#fjg

for a value j 2 f1; : : : ; ng.

The propagation algorithms use the following basic
step (deletion of k) [34]:

� Let k 2 f1; : : : ; ng, k 6= j. Consider K =
fVi 2 R : k 2 s(Vi)g and L = s(

N
K) � fkg.

Then R is transformed into

R�K [ f(
O
V 2K

V )#Lg (4)

This step is repeated deleting all k di�erent from j.
In that moment, all the valuations are de�ned on fjg
and the desired valuation, Rj , is the combination of
all the valuations R in K.

This procedure is much more e�cient than combining
all the valuations and marginalizing afterwards and it
is known as the deletion algorithm.

More sophisticated procedures have been developed.
Most of them are based on organizing these calcula-
tions in graphical structures (join trees) [34, 23, 7, 30],
to improve the e�ciency of the computations, but all
of them can be considered variations of this basic dele-
tion algorithm.

4 Propagation under Unknown

Interaction

The problem can be stated in the following way: we
have an n-dimensional variable (X1; : : : ; Xn), each
one of the Xi taking values on a �nite set Ui.



We have m pieces of information, each one of them a
convex set of probability distributions Hj about some
of the variables in the problem, XIj , i.e. a convex set
of probability distributions on UIj . Our objective will
be to calculate the induced information about some
variables of interest, XJ , which is given by:

(H1 \H2 \ : : : \Hm)
#J (5)

Each Hj is given by a set of linear restrictions, Rj ,
which may represent bounds on events; or bounds in
conditional probabilities; or in the expected value of
any real valued function de�ned on UIj . See Hansen
and Jaumard [18] for a detailed description of how
this representation can be e�ectively carried out.

The objective is to know which are the possible proba-
bilities induced by H1; : : : ; Hm in the set of variables
XJ . In general, this is more general than calculat-
ing the bounds for the probability of an event p(aJ).
If HJ is calculated then, the bounds for p(aJ ) can be
easily obtained by linear programming from the linear
restrictions de�ning HJ . Even if we want to calculate
the conditional probability p(aI jaJ), this can be done
by calculating H#I[J and then by solving the cor-
responding fractional programming problems. How-
ever, we think that when we only want to calculated
bounds on events or conditional events, it is more ef-
�cient to apply linear programming techniques to the
original problem H1 \ : : : \ Hm, instead of calculat-
ing the marginalization in a previous step. There are
linear programming algorithms based on the column
generation technique able to cope with problems of
bounds calculations with a large number of linear re-
strictions [18]. The algorithms in this section should
be applied when our objective is to calculate the re-
strictions de�ning H#J . In this case, if we further
want to know the bounds for an event associated to
UJ , we could apply the column generation technique
to the restrictions de�ning H#J .

The local computation algorithm is a consequence of
veri�cation of Shafer and Shenoy axioms for the con-
vex sets marginalization and the intersection as com-
bination operation. More details about the algorithm
can be found in Verdegay [39].

The most important aspect in the implementation of
these algorithms is how operations are carried out. If
the convex sets are represented by linear restrictions,
then combination has no problem: we only have to
make the union of sets of restrictions. If we want
to keep always a minimal set of restrictions, then we
should remove redundant restrictions. However, in
general, we think that the gaining in simplicity does
not compensate for the cost of redundancy elimina-
tion operation. Anyway, we could apply an algorithm

detecting some of the redundancies (it is not com-
plete) but running in a very short time, i.e., we only
reduce the simpler redundancies. An example of this
type of algorithms is given by Imbert and Van Henten-
ryck [19]. The marginalization operation can be also
implemented so that it does not generate redundant
restrictions. Therefore, we can wait and not eliminate
redundancy until a marginalization is carried out.

Marginalization is more di�cult in terms of linear re-
strictions. Hansen and Jaumard [18] claim that this
operation involves the enumeration of the vertices of a
convex set which is a very time consuming operation.
This is true but the marginalization can be done by
enumerating essentially the points of the marginal-
ized set, H#I , instead of the original convex set H .
This makes marginalization much more e�cient be-
cause the number of extreme points of the marginal-
ized set is much more smaller. An example of this
type of algorithms can be obtained by applying the
quanti�er elimination technique by Lassez and Lassez
[22].

4.1 Constraints Propagation

In this section we describe some procedures of prop-
agating general knowledge based on the application
of local rules. In general, in all these procedures it is
not possible to propagate every type of restrictions,
but only some particular types, usually bounds in the
conditional probabilities. The proposed rules are al-
ways sound (the results are correct) but, in most of
the cases, they are not complete (there is no guarantee
that we obtain the optimal bounds). The most rele-
vant work in this direction can be found in Amarger,
Dubois, and Prade [1], Dubois et al. [12], Th�one [38],
Lukasiewicz [25], and Salo [33].

Amarger, Dubois, and Prade [1], Th�one [38], and
Lukasiewicz [25] consider propositional variables
fA1; : : : ; Ang, that is taking only two possible val-
ues: true and false, and then rules which can be of

the form A
x1;x2
�! B, with the meaning that P (A) > 0

and 0 � x1 � P (BjA) � x2 � 1. It is also possi-

ble to work with bidirectional rules A
x1;x2
 !
y1;y2

B where

(x2 = 0 , y2 = 0) and the meaning that A
x1;x2
�! B

and B
y1;y2
�! A. They provide local rules to obtain

new bounds for events of this type from given bounds.
Dubois et al. [12] generalize these bounds to the case
of linguistic probabilities (only a linguistic value is
assigned to the probability of an event).

Salo [33] gives another local rules which are not always
precise but they are given for more general cases of
linear restrictions. Only two variables are considered,
which will be called X and Y . First we have a set of



linear constraints

nX
i=1

aki p(ui) � �k; k = 1; : : : ;K (6)

representing a convex set HX , the marginal informa-
tion about X .

For each probability p(vj jui) for a �xed vj , we have a
convex set, HY=vj jX , given by a set of linear restric-
tions:

nX
i=1

blip(vj jui) � �l; l = 1; : : : ; L (7)

Salo provides procedures to calculate the induced con-
vex sets for the values of p(uijvj).

5 Propagation Algorithms under

Strong Independence

In this case, the problem is as follows: we have a
convex set of probabilities H about n-dimensional
variable (X1; : : : ; Xn). It is assumed the existence
of strong independence relationships represented by a
directed acyclic graph G [30], allowing a decomposi-
tion of H :

H = H1 
 : : :
Hn (8)

where each Hi is a conditional convex set about vari-
able Xi given its parents in the graph G: Xpa(i).

This situation is the one that is obtained when we
start with a probabilistic Bayesian network in which
there is one probability distribution with stochastic
independence relationships given by graph G, and we
do not know in a precise way the values of the condi-
tional probability distributions. The only thing that it
is known is that they belong to the given convex sets.
Furthermore, it is necessary to assume that we do not
have more information about these probability distri-
butions, in particular any joint information making
additional restrictions about the unknown probability
distributions. For example, in the case that we have
intervals for the conditional probabilities, if we know
that if P (Xi = aijpa(Xi)) is in the upper limit then
so is P (Xj = aj jpa(Xj)), then this situation is not
directly representable in this model (it can be done,
but adding more variables to the representation).

This convex set H represents the general knowledge
about the problem. Then we have a particular case
and an evidence or set of observations on it:

e = fXi1 = a0i1 ; : : : ; Xil = a0ilg (9)

and a variable of interest Xj . Our objective is to cal-
culate the 'a posteriori' information marginalized on
Xj . This 'a posteriori' information can be calculated
as Hj je = (H je)#j .

Under evidence e = fXi1 = a0i1 ; : : : ; Xil = a0ilg, the 'a
posteriori' informationH je can be expressed asH je /
(H1
 : : :
Hn)
 (fli1g
 : : :
flilg), where lij is the
likelihood associated to observation Xij = a0ij ; [7; 4].

In the sense that each probability in H je is propor-
tional to a point in (H1
: : :
Hn)
(fli1g
: : :
flilg).
So calculating this set is enough to obtain H je. The
marginal 'a posteriori' information for variableXj can
be expressed analogously as:

Hj je / (H1 
 : : :
Hn 
 fli1g 
 : : :
 flilg)
#j

(10)

And this can be calculated by means of propagation
algorithms, taking into account that 
 and marginal-
ization verify the basic propagation axioms [7].

The main problem with convex sets of probabilities
propagation is that if convex H1 is given by m1 ex-
treme points and valuation H2 is given by m2 points,
then we have to do m1�m2 pointwise multiplications
of vectors. This may produce that if H1; : : : ; Hn are
the convex sets with which we have speci�ed the prob-
lem, and each valuation Hi has mi points, then in the
calculation of the 'a posteriori' information we may
have m1 � � � � �mn points.

A �rst method to reduce the complexity is the
use of convex hull algorithms to remove the non-
extreme points after each operation of combination
or marginalization. However, it is not convenient to
apply these algorithms in spaces with a high dimen-
sion for the two following reasons:

{ The complexity of the applying a convex hull al-
gorithm increases a lot with the dimension of the
space. For example, in the case of the gift wrap-
ping algorithm with m points on a space of di-
mension k is O(n[k=2] log(n)), where [k=2] is the
integer part of k=2, [32].

{ The number of non-extreme points decrease with
the dimension of the space.

So, in most of the cases we should apply approximated
or Monte-Carlo algorithms.

5.1 Approximate Algorithms

Cozman [9, 10] has given approximate methods based
on gradient based search, Expectation-Maximization
techniques or the Lavine's bracketing algorithm [24].



To explain them, �rst consider a transformation of
our problem on an equivalent one [4, 5]. For each
variable Xi, originally we give a conditional convex
set Hi with extreme points fh1; : : : ; hlg. Then, we
add a new node, Ti, with l cases fc1; : : : ; clg and that
will be called the transparent node associated to vari-
able Xi. This node is made a parent of variable Xi.
On this node we consider that all the probability dis-
tributions are possible (that is the valuation for this
node is a convex set with l extreme points, each one
of them degenerated in one of the possible cases of
Ti). If pa(i) are the original parents of node Xi then
the conditional probability of Xi given pa(i) [ Ti is
determined in the following way: Given Ti = ck then
the conditional probability of Xi given pa(i) is hk, i.e.
P (Xi = uijTi = ck; Xpa(i) = up(i)) = hk(ui; upa(i)).

With this transformation, the structure of the prob-
lem does not change. The only thing that has been
done is that our lack of knowledge about the condi-
tional probabilities has been made explicit with the
help of an additional node expressing all the the pos-
sible conditional probability distributions. Nothing is
known about this node.

The main point about nodes Ti is that when we de-
termine a value for each transparent node, then we
have a completely speci�ed probabilistic system and
then a probabilistic propagation can be carried out.

Let �ik be the unknown probability P (Ti = ck). Call
� the vector of all �ik. Fixed a value of �, then
we have a completely speci�ed probabilistic directed
acyclic graph de�ning a global probability distribu-
tion P�. Let Xj the variable we want to calculate
the 'a posteriori' information and u 2 Uj . Cozman
[9, 10] expresses the problem of calculating the upper
value for the probability of Xj = u as an optimization
problem:

P (Xj = uje) =

max fP�(Xj = uje) : � is a vector of probabilities g

Cozman says that this problem is similar to the prob-
lem of estimating the vector of parameters � given
evidence e. To apply gradient based techniques, he
de�nes the log-likelihood for � as,

L(�) = logP�(Xj = uje) =

logP�(Xj = u; e)� logP�(e)

The gradient of L(�) is obtained by computing,

@L(�)

@�ik
=

P�(Ti = ckjXj = u; e)

�ik
�
P�(Ti = ckje)

�ik

These values can be obtained by standard probabilis-
tic propagation algorithms, and then a conjugate gra-
dient descent can be constructed by selecting an initial
value of � and, at each step, normalizing the values
of � to ensure a proper distribution.

5.2 Simulation Algorithms

Here we briey describe Monte-Carlo algorithms in
Cano, Cano and Moral [3, 4], and Genetic Algorithms
in Cano and Moral [5] to calculate the 'a posteriori'
information.

All the di�erent Monte-Carlo algorithms are based
in selecting randomly one value for each transparent
node, Ti, then making a probabilistic propagation, ob-
taining an 'a posteriori' vector for the interest variable
of the problem. If we repeat this random selection and
probabilistic propagation we obtain an approximation
of the convex set of 'a posteriori' vectors. Cano, Cano,
and Moral [3] consider several of them, carrying out
an experimental evaluation.

Simulated annealing is an optimization technique to
solve combinatorial optimization problems [31].

Our problem is to select a con�guration of transpar-
ent nodes given rise to a minimum value of proba-
bility for a case of a given variable. The calculation
of the maximum is completely analogous. If given
Ti = ci; i = 1; : : : ; n, and C = (c1; : : : ; cn) this deter-
mines a probability PC , and we want to calculate the
upper (lower) interval for Xj = u, then we want to
maximize (minimize) PC(Xj = uje).

Cano, Cano and Moral [4] use the cooling procedure
introduced by Kirkpatrick, Gelatt and Vecchi [21].
With this procedure, on each step the temperature
is decreased according to the formula: ti+1 = �:ti,
where � is a given constant.

To solve this problem, a triangulation of the original
graph with the added transparent nodes is consid-
ered. Then a sequence of transparent nodes is cho-
sen: Tr1 ; : : : ; Trm , in such a way that two consecutive
nodes of the pair given by the �rst and the last are
never in two non-connected cliques: that is, they are
in the same clique or in two connected ones. The se-
quence should also contain all the transparent nodes
(some of them repeated). Let K(i) = i + 1 if i 6= m
and K(m) = 1.

In these conditions, we de�ne the simulated annealing
algorithm, according to the following terms: a con�g-
uration is given by a selection of nodes for the trans-
parent variables, Tj = cij ; j = 1; : : : ; n, and a position
of the transparent nodes sequence l. A neighboring
con�guration is given by an assignation in which the
value of TrK(l)

can be modi�ed and the current place



is K(l). The resulting algorithm is based on a local
computation of the optimum function from a neigh-
boring node to another.

On a tree of cliques we have a double system of
messages, according to the Shafer and Shenoy archi-
tecture [36, 35] allowing to calculate the optimum
function in a local way: one system is to compute
PC(Xj = u; e) and the other to compute PC(e).

In Cano, Cano, and Moral [4] some experimentation
results with this algorithm are reported.

5.3 Genetic Algorithms

Cano and Moral [5] describe the use of a genetic al-
gorithm to obtain points from the non-normalized 'a
posteriori' convex set for variable Xj using an evolu-
tion program [27].

In the evolution program an individual or chromo-
some is a con�guration of cases of transparent vari-
ables, Tj = cij ; j = 1; : : : ; n. Each individual deter-
mines a probability Pci1 ;:::;cin .

The objective to maximize is
Pci1 ;:::;cin

(e;Xj=uj)

Pci1 ;:::;cin
(e) . This

can be calculated by making one probabilistic prop-
agation to variable Xj under probability distribution
Pci1 ;:::;cin and evidence e.

Two genetic operators are used: crossover and
mutation. Crossover takes two chromosomes
(ci1;:::;cin ) and (di1;:::;din ) , it chooses a random
crossover point pos and then do the crossover gen-
erating chromosomes (c1; : : : cpos; dpos+1 : : : dn) and
(d1; : : : dpos; cpos+1 : : : cn).

In the mutation stage for each chromosome and for
each position in the chromosome we generate a ran-
dom number r. If r is less than the probability of
mutation then this position is mutated, selecting a
di�erent case for the corresponding transparent node.

A more detailed exposition of the algorithms and ex-
perimentation results can be found in [5].

5.4 The Case of Interval Probabilities

An important particular case that has received some
attention in the literature is when we know an interval
probability for each variable Xi given a con�guration
of its parents [2, 17, 37, 15]. The situation here is dif-
ferent of interval restrictions propagation (see Section
4.1) because here strong independence relationships
represented by a directed acyclic graph are assumed.

For each variable Xi and each con�guration of its par-
ents Xpa(i) = v we have a pair of elementary proba-
bility intervals (�(:jv); �(:jv)). Above procedures can

not be directly applied to this case. The problem is
the following: assume that for each v 2 Upa(i) we
can �nd nv extreme probabilities for variable Xi. Let
us call the associated convex set HXpa(i)=v. Then,
the set of possible conditional probability distribu-
tions for Xi is the convex set H

ijpa(i) given by all the
conditional probability distributions p about Xi given
Xpa(i) such that for each v 2 Upa(i), we have that

p(:jv) 2 HXpa(i)=v. In other words, the possible global
conditional probability distributions on Xi are all the
conditional tables such that the row corresponding to
vj is a probability in the convex set HXpa(i)=vj . This
makes a number of global conditional extreme prob-
abilities equal to

Q
v2Upa(i)

nv . But the number of el-

ements of Upa(i) is jUpa(i)j =
Q

k2pa(i) jUkj. This pro-
duces a combinatorial explosion in the extreme points
of H ijpa(i) making infeasible the de�nition of a trans-
parent variable Ti, and therefore the application of
above procedures.

None of the approaches in the literature has consid-
ered this problem in all its generality. Tessem [37] has
considered the cases of directed acyclic graphs with no
loops (undirected cycles). On the other hand, Fertig
and Brease [16, 2, 17] only consider the lower bounds
�(:jv). Fagiuoli and Za�alon [15] have developed ex-
act algorithms for graphs without loops with binary
variables which are linear in the size of the network.
However, we think that further work is necessary to
apply approximate algorithms to this problem in all
its generality.

6 Conclusions

In this paper, we have given a complete overview
about propagation algorithms for imprecise probabil-
ities. The main contribution is the classi�cation of
the algorithms according to the underlying indepen-
dence assumptions. This may help to clarify a �eld
in which, at a �rst glance, it looks as if very di�erent
approaches have been designed for the same problem.
What it is shown in this paper is that we have a very
rich system of di�erent problems (much more than in
the single probabilistic case) and for each one of them,
di�erent techniques are used.

The situation from our point of view is the following:
there are e�ective exact solutions for some particular
cases of problems and approximate algorithms which
have been developed for the general case and which
can give good solutions in some complex problems.
However we feel that we are far from having gen-
eral tools able of providing good solutions for most
of practical situations. In this sense, it would be con-
venient the de�nition of a set of benchmark problems
that could be shared by the scienti�c community to



test new procedures and algorithms, and that could
be considered as a common objective for forthcoming
years.
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