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Abstract

We survey possibilistic systems theory and place it
in the context of Imprecise Probabilities and Gen-
eral Information Theory (git). In particular, we ar-
gue that possibilistic systems hold a distinct position
within a broadly conceived, synthetic git. Our focus
is on systems and applications which are semantically
grounded by empirical measurement methods (statis-
tical counting), rather than epistemic or subjective
knowledge elicitation or assessment methods. Regard-
ing fuzzy measures as special previsions, and evidence
measures (belief and plausibility measures) as special
fuzzy measures, thereby we can measure imprecise
probabilities directly and empirically from set-valued
frequencies (random set measurement). More speci�-
cally, measurements of random intervals yield empir-
ical fuzzy intervals. In the random set (Dempster-
Shafer) context, probability and possibility measures
stand as special plausibility measures in that their
\distributionality" (decomposability) maps directly
to an \aggregable" structure of the focal classes of
their random sets. Further, possibility measures share
with imprecise probabilities the ability to better han-
dle \open world" problems where the universe of dis-
course is not speci�ed in advance. In addition to
empirically grounded measurement methods, possibil-
ity theory also provides another crucial component of
a full systems theory, namely prediction methods in
the form of �nite (Markov) processes which are also
strictly analogous to the probabilistic forms.
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1 Possibility Theory and Imprecise

Probabilities in General

Information Theory

A central conern for interdisciplinary scientists is the
search for properties which can be measured across
systems of di�erent types: if we assert that two sys-
tems actually have the same structure or organiza-
tion, how can that hypothesis become well-posed and
testable? Such questions are usually framed in a
relational language of such concepts as order, orga-
nization, structure, variety, constraint, freedom, de-
terminism, and complexity. A formal theory of re-
lational concepts has rested classically on informa-
tion theories, and in particular on concepts of infor-
mation, such as Shannon's statistical entropy, which
are de�ned as a reduction in or lack of uncertainty.
In turn, these uncertainty-based information theories
were rooted deeply within the formalism of traditional
probability theory, with a corresponding emphasis on
entropy measures, Monte Carlo methods, Bayes nets,
Markov models, etc.

This view is currently expanding in two signi�cant
ways. First, there has been progress towards address-
ing a primary criticism of information theory, namely
that it is purely syntactic and does not involve any-
thing about the meaning of the signal. There is thus
a growing semiotic theory of information, where is-
sues of the semantics, interpretation of signals, and
the groundings of signals in measurements are �nally
being seriously considered [27].

Second, since the introduction of fuzzy sets [26] and
evidence theory [4, 29] in the mid-1960's there has
been a proliferation of mathematical methods for the
representation of uncertainty which generalize beyond
classical probability theory [25]. In addition to a fully
developed fuzzy systems theory [26], there are also
fuzzy measures [33], rough sets [28], random sets [8,
22] (Dempster-Shafer bodies of evidence [9, 29]), and
possibilistic systems [2]. There is a pressing need to



synthesize these �elds within a collective as General
Information Theory (git) [24], searching out larger
formal frameworks within which to place these various
components with respect to each other. And indeed
there is a growing movement in that direction [6, 21,
25].

In particular, Imprecise Probabilities have been ad-
vanced as providing a grand generalization of all of
these methods [3, 30]. As a general framework, impre-
cise probabilities have both advantages and disadvan-
tages for particular interpretations and applications.
On the one hand, they can subsume multiple other
representations. On the other hand, in their gen-
eral form they are complex mathematical structures,
whose primary interpretations and measurements are
grounded in epistemic evaluations. More specialized
mathematical frameworks, for example within fuzzy
measures or probability or possibility theory, are more
constrained structures, with the tradeo� of potentially
greater applicability against less generality.

Our work speci�cally is motivated by the introduc-
tion of possibility theory as the �rst alternative, non-
probabilistic form of information theory [23], and
thus as a branch of git [2]. Within git, possibil-
ity theory is unique in that it provides structures
and methods which parallel traditional information
theory, with strict possibilistic correlates to distri-
butions, entropy measures, Markov processes, and
Monte-Carlo methods, etc. [11, 12, 14]. Simultane-
ously, through random-set based measurements, em-
pirical methods are available for measurement of pos-
sibilistic structures, including histograms and sample
statistics.

Furthermore, there is evidence to support the claim
that these possibilistic forms are unique in provid-
ing such a close parallel to the standard probabilistic
forms. The understanding of the deep connections
between possibility measures, coherent upper previ-
sions, and random sets [1], and the fact that like im-
precise probabilities, possibilistic systems are better
able to handle \open-world" problems with unspeci-
�ed or changing universes of discourse [32], combine
to suggest the way forward to integrating possibilis-
tic systems theory within the broad context of a git

involving imprecise probabilities.

In the rest of this paper we briey survey aspects of
possibilistic systems theory and place them in the con-
text of imprecise probability and git. In particular,
we recognize possibility measures as extreme plausi-
bility measures, which in turn are fuzzy measures, and
�nally which in turn can be cast as previsions on sets.
In this way possibilistic systems are available in an
imprecise probability context.

We consider in particular three aspects of possibilistic
systems theory:

� We can measure imprecise probabilities directly
and empirically from set-valued frequencies (ran-
dom set measurement), and derive empirical
fuzzy numbers and intervals from random inter-
val measurements.

� Given a semantic grounding in random set
(Dempster-Shafer) measurement, we then under-
stand that those which yield probability and pos-
sibility measures are special in that they are t-
conorm distributional (decomposable) and also
have certain simple topologies.

� Finally, in addition to empirically grounded mea-
surement methods, possibility theory also pro-
vides another crucial component of a full systems
theory, namely prediction methods in the form of
�nite (Markov) processes which are also strictly
analogous to their probabilistic form.

2 Random Set Approach to

Possibility Theory

Assume a universe of discourse 
 = f!g. We gen-
erally consider 
 = f!ig; 1 � i � n to be �nite, al-
though sometimes we will recognize that 
 = IR, and
consider half-open interval subsets, elements of the
class denoted D := f[a; b) � IR : a; b 2 IR; a < bg.
Given a class C = fAg � 2
, de�ne the core as
C(C) :=

T
A2C A.

De�ne a triangular conorm t: [0; 1]2 7! [0; 1]
(resp. triangular norm u: [0; 1]2 7! [0; 1]) as an asso-
ciative, commutative, monotonic operator with iden-
tity 0 (resp. 1). R := ht;ui is a conorm semiring

if u distributes over t.

The function �: 2
 7! [0; 1] is a (�nite) fuzzy measure
[33] if �(;) = 0 and 8A;B � 
; A � B ! �(A) �
�(B). � is called distributional if there exists a
conorm t such that 8A � 
;

F
!i2A

q�(!i) = �(A),
where q� : 
 7! [0; 1], with q�(!i) := �(f!ig) the
distribution of �. Furthermore, � is normal when
�(
) = 1, so that

F
!i2


q�(!i) = 1. For a �xed �nite
fuzzy measure �, denote ~q = hqii := hq�(f!ig)i for
1 � i � n.

Consider a a probability measure Pr with probabil-
ity distribution p := qPr; ~p = hpii := ~q which is an
additively normal fuzzy measure with

Pn
i=1 pi = 1.

Then Pr is a +b-distributional fuzzy measure where
x +b y := (x + b) ^ 1, x; y 2 [0; 1] and ^ is the min-
imum operator. The standard forms of probability



result 8A;B � 
:

Pr(A [ B) = Pr(A) + Pr(B)� Pr(A \ B);

Pr(A) =
X
!i2A

pi;

nX
i=1

pi = 1:

The central tenet of possibility theory is the intro-
duction of a fuzzy measure � with possibility distri-
bution � := q�; ~� = h�ii := ~q which is distributional
for t = _, the maximum operator. The equations of
probability now take the form 8A;B � 


�(A [ B) = �(A) _�(B);

�(A) =
_
!i2A

�i;

n_
i=1

�i = 1: (1)

Possibility measures and distributions share a great
advantage with imprecise probabilities, at least as ad-
vanced by Walley in the imprecise Dirichlet approach
[32], in that they can adequately represent \open-
world" problems where the universe of discourse is
either unspeci�ed or changes. In particular, given a
possibility distribution on 
, if 
 is updated, then no
global recalculation of � is required. This is because
the maximal possibilistic normalization is a \local"
property of the core C(�) := f! : �(!) = 1g � 
,
and not a global property of the whole distribution,
as with additive probability distributions.

Possibility measures are usually intepreted in the con-
text of fuzzy sets, and in particular the possibility
distribution � is interpreted as a fuzzy set. Their
measurements are then grounded in traditional fuzzy
systems methods of subjective evaluations [31]. An
alternative approach is to ground the measurement of
possibility measures and distributions in the context
of empirically-derived random sets.

Given a probability space hX;�;Pri, then a function
S:X 7! 2
 � f;g, where � is set subtraction, is a
random subset of 
 if S is Pr-measurable, so that
8; 6= A � 
; S�1(A) 2 �. In the �nite case, they can
be seen more simply as random variables taking val-
ues on subsets of 
. Further, they are mathematically
isomorphic to bodies of evidence in Dempster-Shafer
evidence theory [4, 29]. In this context, we can in-
troduce a function m: 2
 7! [0; 1] as an evidence

function (basic assignment) when m(;) = 0 andP
A�
m(A) = 1. Then S := fhAj ;mji : mj > 0g

is a �nite random set where Aj � 
;mj := m(Aj),
and 1 � j � N := jSj � 2n � 1. Denote the focal set
of S as the class F(S) := fAj : mj > 0g � 2
. A
random set S is consistent if C(F(S)) 6= ;.

The plausibility and belief measures on 8A � 
 are

Pl(A) :=
X
Aj 6?A

mj ; Bel(A) :=
X
Aj�A

mj ;

where A ? B denotes A \ B = ;. The plau-
sibility assignment (otherwise known as the trace

or one-point coverage) of S is ~�(S) = h�ii, where
�i := Pl(f!ig) =

P
Aj3!i

mj . Clearly � is a fuzzy
set.

de Cooman and Aeyels have provided full details on
the imprecise probability interpretation of possibility
measures and random sets [1]. Note that [1, 30, 33]:

� Pl and Bel are generally non-additive fuzzy mea-
sures without distributions, and are dual, in that
8A � 
;Bel(A) = 1� Pl(A ).

� � is an extreme plausibility, whose dual belief is
the necessity measure �(A) := 1��(A).

� Pr is both a plausibility and its self-dual belief
measure.

� If Pl and Bel are normal, then they are coherent
upper and lower probabilities on the events A �

.

� � is normal i� it is a coherent upper prevision on
the events.

Given a random set S, if Pl has a distribution operator
t, then ~q(S) := ~�(S) is called the distribution of S.
In particular, when

8Aj 2 F(S); jAj j = 1; (2)

then S is called speci�c, Pr(A) := Pl(A) = Bel(A)
becomes a probability measure, and ~p (S) := ~q(S) =
~�(S) is a probability distribution. Similarly, S is
called consonant (F(S) is a nest) when (without
loss of generality for ordering, and letting A0 := ;)
Aj�1 � Aj . Now �(A) := Pl(A) is a possibility
measure and �(A) := Bel(A) is a necessity measure.1

~� := ~q(S) = ~�(S) is then a possibility distribution.

Each random set S maps to a unique fuzzy set ~�(S), or
to its distribution ~q(S) if t exists. But when we begin
with a particular fuzzy set �: 
 7! [0; 1], or in vector
form ~�, there is generally a non-empty, non-unique
equivalence class of random sets 	(~�) for which 8S 2
	(~�); ~�(S) = ~� [7]. When ~� begins as an additive
probability distribution ~p , then j	(~p )j = 1, so that
~p uniquely determines a speci�c (in the sense of (2))
random set.

1Since results for necessity are dual to those of possi-
bility, only possibility will be discussed in the sequel.



But when ~� begins as a maximal possibility distri-
bution ~�, then in general j	(~�)j > 1. All of the
S 2 	(~�) are consistent, and thus it is this consis-
tency which is both necessary and su�cient for S to
have a maximally normalized possibility distribution
~� = ~�(S) by (1). In particular, S is consistent i�Wn
i=1 �i = 1. Then while S might not be consonant

and Pl not a possibility measure, there is a unique
approximating possibility measure �� and consonant
random set S�(~�(S)) 2 	(~�). Thus in general when
working with possibility theory in the context of �nite
random sets, a consistent random set S is a su�cient
condition to generate a possibility distribution ~�(S).

As we consider possibilistic measurement proper be-
low, it will be desirable to let 
 = IR. A random inter-
val, denoted A, is a random set on 
 = IR for which
F(A) � D. Thus a random interval is a random left-
closed interval subset of IR. The trace of A is then
�A: IR 7! [0; 1], where 8x 2 IR; �A(x) := Pl(fxg) =P

Aj3x
mj . A fuzzy subset of the real line eF e� IR

is a fuzzy interval if eF is maximally normalized
and convex, so that 8x; y 2 IR;8z 2 [x; y]; �eF (z) �
�eF (x) ^ �eF (y). A fuzzy number is a fuzzy intervaleF where 9x 2 IR;C( eF ) = fxg.

3 Measurement of Possibilistic

Histograms

Random set counting provides a superb empirical
method to ground the measurent of evidence (belief
and plausibility) measures. They are a direct gener-
alization of traditional frequentist methods to mea-
sure probability distributions (for an empirical ap-
proach using imprecise probabilities, see [32]). More
speci�cally, measurement of consistent random inter-
vals yield empirical fuzzy intervals. Full formal details
of the following are available elsewhere [17, 19].

3.1 Random Set Measurement

The central concept is the introduction of a gen-

eral measuring device, a system M :=
D
C; ~B;C

E
,

where:

� C := fAj0g � 2
; Aj0 6= ;; 1 � j0 � N 0 is the class
of observable sets;

� ~B := hBsi is the general measurement

record, a vector of each observed subset for 1 �
s � M , so that 8Bs 2 ~B; 9!Aj0 2 C; Bs = Aj0 ;
and

� C: C 7! W is the set counting function, where
8Aj0 2 C; Cj0 := C(Aj0 ) is the number of occur-

rences of Aj0 in ~B.

The nature of the measuring device will depend on the
elements and topological structure of C. Generally, C
is an arbitrary collection of possibly non-disjoint sub-
sets. In a classical measuring device like a thermome-
ter, C = fBsg would be a collection of disjoint, equal
length, half-open intervals Bs = [ds; ds+1).

Given a general measuring device M, let FE :=
fAjg � C; 1 � j � N , be an empirical focal set

derived by eliminating the duplicates from ~B, where:

1 � j � N; FE � C; N � N 0;

N �M; 8Aj 2 F
E ; 9Bs 2 ~B;Aj = Bs:

FE is essentially the restriction of C to those subsets
which are actually observed in the record ~B.

Finally, we can construct the set-frequency distri-

bution function mE :FE 7! [0; 1] where

mE(Aj) :=
CjP

Aj2FE Cj
=

Cj

M
; mE

j := mE(Aj):

It follows that mE is an evidence function, and thus
it is possible to derive an empirical random set SE

whose focal set is FE .

The topological properties of C (partially) ow to SE .
In particular, if C is point-valued, in that C = ff!j0gg
for some collection of !j0 2 
, then of course the trace
~� is just a probability distribution. More generally, if
M is a classical device like the thermomemter, then
the Aj are disjoint, and this degenerates to traditional
relative frequencies, considering the Aj as points in
some simpli�ed meta-space. But it also might be that
SE is consonant or consistent, yielding ~� a possibility
distribution.

3.2 Possibilistic Histograms from Random

Intervals

An important random interval case is when 
 = IR
and C � D. Then the empirical random set SE be-
comes an empirical random interval AE with plausi-
bilistic trace �A. If AE is consistent then �E := �AE

is called a possibilistic histogram, which is an
empirically-derived possibility distribution. If AE is
not consistent, then various possibilistic approxima-
tions are available, in particular interval versions of
focused consistent transformations [20, 18].

The approach is illustrated in Fig. 1. In the example,
C = D, and M = 4 intervals are observed in ~B. FE

and m are shown, with N = 3. Note that FE is
consistent, and thus the derived �E is shown on the
right.

If FE is consistent, it follows that not only is �E

a possibility distribution, it is also a fuzzy interval.
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Figure 1: (Left) Observed focal elements of a random interval. (Right) Possibilistic histogram �E .

These are classical structures in fuzzy theory and used
in a variety of applications. But in this \raw" form
the �E are piecewise constant, with at least N + 1
and at most 2N discontinuities. Various methods are
available to derive continuous fuzzy interval and fuzzy
number forms, yielding traditional forms which still
preserve most of the characteristics of the \raw" his-
tograms [17].

A simple example is shown in Fig. 2. On the left, be-
low are two observed intervals which yield a consonant
empirical random interval. Above is the correspond-
ing \raw" possibilistic histogram. On the right the
histogram is repeated, and also shown are three can-
didate continuous approximations, including a trian-
gular fuzzy number and a trapezoidal fuzzy interval.
The inner continuous approximation is also a possi-
bility, amongst others.

4 Distributional and Aggregable

Random Sets

While we ground possibilistic measurement in a ran-
dom set (interval) context, in general random inter-
vals are not consistent, and yield plausibility measures
which are not distributional. We strive to produce dis-
tributional possibility measures since they have the
great advantage of being able to be constructed on
the basis of on the order of n point values, rather
than N � 2n set values. In the random set context,
probability and possibility measures stand out as spe-
cial, in that this distributionality is paired with the
simple topological structure of the random set. Full
formal details of the following are available elsewhere

[15].

A random set S is called g-aggregable is there is a
one to one function g:F(S) 7! 
 called a structural
aggregation function. One might think to require
g(Aj) 2 Aj , but the results are equivalent to a per-
mutation of 
.

If S is g-aggregable, then denote the numerical ag-

gregation function h:S 7! [0; 1] with h(mj) =
Pl(g(Aj)). g maps each focal element Aj to a uni-
verse element g(Aj), and h maps that to its plausibil-
ity assignment value h(mj). In general, a random set
S may have multiple g corresponding to the various
permutations of the Aj and !i.

A random set S is g-aggregable i� jSj = N � j
j = n.
If this becomes equality, then S is called g-complete.
If a g-complete random set S is also t-distributional,
then the distribution ~Pl is called complete. In a g-
complete random set, the focal elements and universe
elements are mutually determining, with each focal el-
ementAj existing as a particular g

�1(!j). The indices
i and j are then identical and can be used interchange-
ably. Also then g is onto, with inverse g�1(!j) = Aj ,
and h�1 may also exist, so that mj = h�1(Plj).

Random sets yielding probability and possibility mea-
sures as their plausibility measures are special in that
they are both distributional and aggregable. It re-
mains to be proved that they are unique in this re-
spect, but the evidence is highly suggestive. In par-
ticular [15]:

� Probability is characterized by disjointness of the
random set and the additivity of plausibility.



Figure 2: (Left) Below: Two observed intervals. Above: Piecewise constant possibilistic histogram. (Right)
Three example piecewise linear continuous approximations.

When g is de�ned such that 8Ai; 9!!j ; g(Ai) =
!j , then S is speci�c. Then Pl = Pr, which is
also +b-distributional. If S is also complete, then

g(Aj) = !j ; g�1(!j) = Aj ;

h(mj) = h�1(pj) = pj = mj ;

and 8!i 2 
; pi > 0.

� Possibility is characterized by nestedness of the
random set and the maximality of plausibility.
When g is de�ned such that 8Aj ; g(Aj) 2 Aj �
Aj�1, then S is called consonant. Then Pl =
�, which is also _-distributional. If S is also
complete, then

g(Aj) = Aj � aj+1 = !j

g�1(!j) = f!1; !2; : : : ; !jg = Aj ;

h(mj) =

NX
k=j

mk = �j ;

h�1(�j) = �j � �j+1 = mj ;

1 = �1 > �2 > � � � > �n > 0:

� In search of other information theories, we �rst
consider Sugeno-distributional fuzzy measures [5,
15] de�ned by

��(A [ B) := ��(A) + ��(B) + ���(A)��(B);

A 6? B; � 2 (�1;1):

�� is t�-distributional, where t� is the Sugeno
conorm de�ned by xt�y := (x+y+�xy)^1; x; y 2
[0; 1]. If � = 0 then �� = Pr. If � 6= 0, then let-
ting K := blog2(n+ 1)c, then S is g�-aggregable
for some structural aggregation function g� i�

N 2 I := f1; 3; 7; : : : ; 2K�1 � 1; 2K � 1g:

In general, no numerical aggregators exist. Fur-
ther, non-probabilistic Sugeno measures pro-
duce complete random sets only if 9k 2
f1; 2; : : :g; N = n = 2k � 1. Thus this broad
class of distributional fuzzy measures does not
generally yield aggregable random sets.

� Now consider an important class of aggregable
random sets, and ask whether distributional
fuzzy measures are forthcoming. In particular,
consider ring-structured random sets with aggre-
gation functions g(Aj) := Aj \ Aj�1 = f!jg
where A0 = AN by convention. If S is com-
plete, then h(mj) = mj + mj�1. But S is not
distributional for any distribution operator t.

Thus in general probability and possibility stand as
special cases which provide both distributional evi-
dence measures and aggregable random sets. These
results are summarized in Tables 4 and 4, and dia-
grammed in Fig. 3.

5 Possibilistic Processes

So far, we have motivated possibilistic systems theory
within an overall git, also including imprecise proba-
bilities, by �rst semantically grounding them in ran-
dom interval measurement, and them justifying them
as special distributional and aggregable forms. We
now point the way to the other crucial aspect of a
full systems and modeling theory necessary to com-
plement measurement procedures, namely prediction
methods. In particular, we introduce possibilistic pro-
cesses as correlates to �rst-order Markov processes
(see [13, 16], and [11]).

We can de�ne a system which acts as a general-
ized �rst-order Markov process as a system Z :=

S; �0; V;R;�

�
where S is a set of states; V is the

valuation set, a lattice with 0; 1 2 V (here we assume



Figure 3: Relations among classes of processes.

General Probabilistic Possibilistic

Topology 2
 � f;g Speci�c Consonant
Distribution qj = Plj pj = Pr(f!jg) �j = �(f!jg)
t-conorm t +b _
Focal Element Aj = g�1(!j) f!jg f!1; !2; : : : ; !jg
Structural Aggregation g(Aj) = !j Aj Aj � Aj�1

Numerical Aggregation h(mj) = Plj mj

Pn
k=j mj

Inverse h�1(Plj) = mj pj �j � �j+1
Completion jF(S)j = j
j pj > 0 �j > �j+1

Table 1: Summary of the existing information theories.

Sugeno Ring

Topology Sub-hypercube Ring
t-conorm t� None
Focal Element Any ; 6= A � 
 f!j ; !j+1g
Structural Aggregation Only for N � 2blog2(n+1)c � 1 Aj \ Aj+1

Numerical Aggregation None mj +mj�1

Inverse Never For n even
Completion n = 2k � 1 Plj > 0

Table 2: Summary of the special random set cases.



that V is a chain with V � [0; 1]); R = ht;ui is a
conorm semiring; �:S2 7! V is the transition func-
tion; and �� :S 7! V are a family of state functions for
� 2 f0; 1; : : :g, with �0 a given initial state function;
and 8s 2 S; � > 0,

�� (s) :=
G
s02S

���1(s0) u�(s; s0): (3)

When S is �nite with S = fsig; 1 � i � n :=
jSj, then it is common to consider �� as the vec-

tor ~�� = h��i i, with ��i := �� (si); � as a matrix
� = [�ij ] for 1 � i; j � n, with �ij := �(si; sj); and
~�� = ~���1 � � where � is matrix composition over
the semiring R, as shown in (3). Furthermore, �t is
normal if

F
s2S �

t(s) = 1; � is transition normal if
8s0 2 S;

F
s2S �(s; s

0) = 1; and Z is normal if � is
transition normal and 8t � 0; �t is normal. By theo-
rem, if �0 is normal and � is transition normal, then
Z is normal.

A number of cases follow depending on the special-
izations made for R; V , and normalization, which are
summarized in Tab. 3:

Stochastic Processes: Result when R = h+b;�i is
an additive semiring, so that the �ij are the con-
ditional probabilities of transiting from state sj
to state si and � is normal matrix composition
�. Here normalization by + is required, so that
8�;
P

i p
�
i = 1. This implies the weaker conorm

+b normalization (
P

i p
�
i ) ^ 1 = 1.

General Fuzzy Processes: Result when R =
h_;ui for any norm u. � e� S2 is now a fuzzy
matrix representing a fuzzy relation of the fuzzy
linkage between the prior state s0 and the subse-
quent state s; and � is fuzzy matrix composition
[26]. Note that there is no normalization, and all
values are unconstrained over [0; 1].

Nondeterministic Processes: If now V is re-
stricted to f0; 1g � [0; 1], then a classical non-
determinstic process results [10], so that at time
� there exists a set of possible states and any
state can transit to multiple states.

Deterministic: Given either a stochastic process
with V = f0; 1g, or a nondeterministic process
with the certainty requirement 8�; 9!si; �t(si) =
1, then a classical deterministic process results
[10], which is always in one de�nite state, and
transits to another de�nite state.

Possibilistic: Finally, given a fuzzy process which
is normal by _, then a possibilistic process re-
sults [12]. Now �� (si) := �� (si) 2 [0; 1] is the

possibility of being in state si at time � ; �
is called a possibilistic matrix � := �, with
�� (sijsj) := �ij = �ij being the conditional
possibility of transiting from state sj to state si;
and � is fuzzy matrix composition.

6 Conclusion

We surveyed aspects of possibilistic systems theory in
the context of git and imprecise probabilities. As the
community moves to the articulation of a complete
git involving these components and others, it will be
important to consider them in mutual interaction, for
the various strengths and bene�ts that each particular
theory, or a general theory, can bring to particular
interpretations and applications.
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