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Abstract

In this paper we propose an operational interpretation
of general fuzzy measures. On the basis of this inter-
pretation, we de�ne the concept of coherence with
respect to a partial information, and propose a rule
of inference similar to the natural extension [3].
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1 Introduction

Two main problems arise when applying fuzzy mea-
sures in practical applications. One is the lack of a
clear understanding about the meaning of the mea-
sures; until now, no consensus has been reached about
what the numbers mean. The other problem is that
typically it is not possible to get a complete speci�ca-
tion of the value of the measure for all the subsets in
the domain, but for a reduced number of them.

Here we propose an operational interpretation of fuzzy
measures in order to give a clear meaning to the num-
bers. This interpretation leads to a straightforward
de�nition of coherence, and to a natural rule of infer-
ence that will allow us to make predictions about the
value of the measure in the sets where it is unknown.

We start o� proposing an operational interpretation
and some examples in section 2. In section 3 we de-
�ne the concept of partial information and coherence,
which will be the basis of an inference rule called ex-
tension, analyzed in section 4. An algorithm for com-
puting extension is given in section 5. We have imple-
mented this algorithm to carry out some trials that
are described in section 6. The paper ends with con-
clusions in section 7.

2 An Operational Interpretation

A fuzzy measure [5] is a mapping � : 2
 ! [0; 1]
verifying the following properties:

1. �(;) = 0 and �(
) = 1.

2. A � B � 
) �(A) � �(B).

In all of this paper we shall consider 
 to be a �nite
set of categories.

Fuzzy measures have been interpreted in di�erent
ways. We shall review some of these interpretations.

Wang and Klir [5] interpret a value �(A) of a fuzzy
measure, as the \importance" of A, assuming that the
total space has importance 1 and the empty set has
importance 0. The elements of 
 are regarded as qual-
ity factors, and the importance of a set A is obtained
from the quality factors it contains. It is assumed that
the e�ect of those factors is not necessarily additive.
They illustrate this interpretation with the following
example:

Example 1 Consider the problem of evaluating a
Chinese dish. The quality factors can be the taste
(T ), smell (S) and appearance (A). Hence, 
 =
fT; S;Ag. The following measure of importance can
be de�ned: �(fTg) = 0:7, �(fSg) = 0:1, �(fAg) = 0,
�(fT; Sg) = 0:9, �(fT;Ag) = 0:8, �(fS;Ag) = 0:3,
�(
) = 1 and �(;) = 0. This measure is not additive.

The drawback of this interpretation is that it is nec-
essary to establish a criterion to assign numbers to
the sets when a new problem is considered. In other
words, the meaning of the numbers depends on the
problem, and it does not seem straightforward to ex-
tract a general rule for interpreting the numbers from
here.

A very similar interpretation is considered by Gra-
bisch, Nguyen and Walker [1]. Again, the numbers



are interpreted as degrees of importance. They pro-
pose the following example:

Example 2 Consider three subjects in a high school:
Mathematics (M), Physics (P ) and Literature (L).
Hence, 
 = fM;P;Lg. The director is interested on
de�ning a measure of importance over the subjects ac-
cording to these considerations: scienti�c subjects are
more important, students who succeed in a scienti�c
subject usually are successful in the other one (i.e.,
being successful in both subjects should not be much
more important than being in one of them) and �nally,
there is a big merit on being successful in a scienti�c
subject and in Literature. The measure proposed for
this problem is �(fMg) = �(fPg) = 0:45, �(fLg) =
0:3, �(fM;Pg) = 0:5, �(fM;Lg) = �(fP;Lg) = 0:9,
�(
) = 1 and �(;) = 0.

Against this interpretation, the following can be ar-
gued: what does it mean that �(fLg) = 0:3?. In
other words, what does it mean that the importance
of Literature is 0.3?. We do not �nd a satisfactory an-
swer from this interpretation. One could think that it
means that the importance of Literature is a 30% of
the total importance, but again we could ask for the
meaning of \total importance". Besides, it is neces-
sary to de�ne ad hoc rules to assess the values of the
measure.

A di�erent approach is proposed by Murofushi and
Sugeno [2]. They consider an operational, but not
general, interpretation, under which Choquet's inte-
gral is meaningful. The situation is as follows:

Example 3 Let 
 be a set of workers in a workshop,
and suppose they produce the same products. Suppose
that a group of workers A 2 
 works in the most
eÆcient way. Let �(A) be the number of products
made by A in one hour. � can be considered as a
measure of productivity.

In the example above, � can be normalized dividing
by �(
), obtaining thus a fuzzy measure. Observe
that in this situation, � may be non-additive, since
maybe two workers together produce more (or maybe
less) than if they work separately.

This interpretation has an important feature that dis-
tinguishes it from the other ones: the meaning of the
numbers is perfectly clear; furthermore, it is easy to
assign values to the measure. However, the interpre-
tation does not seem general enough to be applied to
di�erent situations. More precisely, we do not see how
to apply it to the situations described in examples 1
and 2.

Much more controversial is the interpretation of a
fuzzy measure as a measure of uncertainty. Some at-

tempts have been made in this direction (see, for ex-
ample, [1]). We think that this interpretation is not
clear at all. This opinion is based on Walley's criteria
for evaluating measures of uncertainty [4]. The �rst
of these criteria is called interpretation, and it claims
that the measure should have a clear interpretation
that is suÆciently de�nite to be used to guide assess-
ment, to understand the conclusions of the system and
use them as a basis for action, and to support the rules
for combining and updating measures. We think that
none of the previous interpretations of fuzzy measures
verify this important criterion.

Next we propose a new interpretation of fuzzy mea-
sures, general enough to cover the examples examined
so far. More precisely, we shall see how our interpre-
tation can be applied to examples 1, 2 and 3.

Assume an experiment whose possible outcomes are
the elements in the power set of 
, 2
. Assume also
that number 1.0 represents the total amount of re-
sources available to the realization of the experiment,
and that it coincides with the amount of resources
consumed if the result of the experiment is the entire
set 
. In these conditions, for any A � 
, �(A) can
be regarded as the fraction of resources consumed if
the result of the experiment is A. Let us illustrate it
with an example.

Example 4 Imagine there is a vehicle covering the
connection between the harbor and the railway station
in a city. This vehicle has four compartments: one
for a car, one for a van, one for a motor-bike and an-
other one for a bike. Assume that the gas tank of this
vehicle has exactly the capacity necessary to carry the
vehicle, with the four compartments busy, from the
harbor to the railway station. Then we can regard
this capacity to be equal to 1 unit. In this example,

 = fc; v;m; bg, where c stands for car compartment
busy, v for van compartment busy, m for motor-bike
compartment busy and b for bike compartment busy.
Assume also that the vehicle does not start the trip
unless at least one of the compartments is busy. All
the possible transportation situations are then the el-
ements in 2
. In these conditions, for every A � 
,
�(A) can be interpreted as the proportion of gas con-
sumed if A happens.

According to this interpretation, the meaning of the
numbers is perfectly clear, which facilitates the as-
sessment of the values of the measure. In the ex-
ample above, there is an objective way of measuring
the resources consumed by the realization of the ex-
periment, but this interpretation is still valid if the
resources cannot be measured so objectively.



Note that a measure matching this interpretation is
not necessarily additive, but it must be at least mono-
tone. Here, the possible results of the experiment are
sets of items or categories. Each of these individual
items consumes a fraction of resources by itself. Then,
if the result of the experiment consists of two items,
we should not expect that they both together consume
less than just one of them.

Whenever a problem is approached, the following
items must be identi�ed:

1. What the experiment consists of.

2. The set of all possible outcomes of the experiment
(i.e., 2
).

3. The total resources available to the realization of
the experiment.

4. The amount of resources consumed by each A �

.

Consider the situation in example 1. In this case, the
experiment consists of observing the quality factors
in the Chinese dish. The measure should model the
preference of the observer with respect to the quality
factors in the observed dish. The set of all quality
factors is 
 = fT; S;Ag. Let us represent by 1 the
total amount of money that the observer would pay
for a Chinese dish showing the three quality factors
together. In these conditions, we can interpret �(A),
for each A � 
, as the fraction of the total amount
of money that the observer would pay if he observes
that the dish has the factors in A.

Regarding example 2, the experiment consists of ob-
serving the subjects where a student has quali�ed.
The possible outcomes of the experiment are the sub-
sets in 
 = fM;P;Lg. Let us denote by 1 the maxi-
mum amount of money that the director would invest
to employ a student that has quali�ed in the three
subjects. Then, the values of �(A), A � 
, given in
example 2, can be interpreted as the fraction of that
maximum amount of money that the director would
invest to employ a student who succeeded in the sub-
jects in A.

Now consider the situation in example 3. Here, the ex-
periment consists of selecting groups of workers, and

 is the set of all the workers in the workshop. Let
us denote by 1 the price of the items made by all the
workers in the workshop if they work during one hour
in the most eÆcient way, this price being proportional
to the number of items. Then, we can interpret �(A)
as the fraction of the maximum price corresponding
to the items produced by the workers in A.

Thus, we have shown how the examples given so far,
can be also approached according to our interpreta-
tion.

Note that in the �rst two situations, subjective eval-
uations of importance are modeled as buying prices
with respect to a maximum. This fact could suggest
that general fuzzy measures can be considered mea-
sures of uncertainty, since imprecise probabilities can
be interpreted in terms of buying prices. However,
these \buying prices" are not the same as Walley's
ones [4], which are concerned with bets and rewards
about the result of an experiment. In our case there
are not necessarily bets and rewards.

It does not mean that our proposal cannot be used to
interpret fuzzy measures that are actually measures of
uncertainty. For instance, let � be an additive fuzzy
measure. In this case, � is clearly a measure of uncer-
tainty (more precisely, a probability). Now, we shall
see how we can interpret it within our context:

Example 5 Consider a random experiment and its
corresponding sample space 
. Assume we have a
certain amount of money available to bet about the
events in 2
. Let us consider that amount of money
to be equal to 1. Then, this quantity can be regarded
as the total amount of resources available to the real-
ization of the experiment.

We may try to model our uncertainty about the result
of the experiment by means of a measure � such that
for each A � 
, �(A) represents the fraction of money
we are willing to bet to receive one unit if A occurs. It
can be interpreted, within our context, as the fraction
of resources consumed if A occurs.

However, in the general case we have not been able
to de�ne a framework for interpreting fuzzy measures
as measures of uncertainty. Though we do not have
results to support it, we think that this framework
could consist of situations where the elements in 

are ordered.

3 Partial Information and Coherence

As we pointed out before, in many situations it can be
diÆcult to get a complete speci�cation of the measure.
For instance, in the very simple situation in example
4, we would need to specify 14 values. This number
grows exponentially in the size of 
.

However, it can be feasible to obtain the measure for
some subsets of 
. In this case we say that we have
a partial information over 
. The formal de�nition is
as follows:

De�nition 1 (Partial information) Let 
 be a �nite



set of categories. A partial information over 
 is a
pair (X; �), where X is a proper subset of 2
 and �

is a mapping � : X ! [0; 1].

The following de�nition imposes a restriction to make
a partial information be coherent with the interpreta-
tion of a fuzzy measure. This notion of coherence is
a consequence of the discussion in section 2.

De�nition 2 (Coherent partial information) We say
that a partial information (X; �) over 
 is coherent if
and only if:

1. For every A;B 2 X such that A � B, it holds
that �(A) � �(B).

2. If 
 2 X , then �(
) = 1.

3. If ; 2 X , then �(;) = 0.

In the transportation vehicle example, the concept of
coherence means that the fraction of resources con-
sumed if two compartments are occupied may not be
lower than if just one of them is occupied.

Example 6 Consider again the transportation vehi-
cle case. The following is a coherent partial informa-
tion over 
 = fc; v;m; bg:

X = ffcg; fbg; fc; vg; fc; v; bgg ;

�(fcg) = 0:3; �(fbg) = 0:1 ;

�(fc; vg) = 0:6; �(fc; v; bg) = 0:7 :

4 Extension of a Partial Information

Once we have characterized the coherence of a par-
tial information, it would be desirable to de�ne a rule
to make inferences about the measure in the sets for
which no information is available, that inference be-
ing compatible with the partial information and with
the operational interpretation. The key point here is
the concept of compatibility, that we formally de�ne
in this way:

De�nition 3 (Compatible fuzzy measure) We say
that a fuzzy measure � over 
 is compatible with a co-
herent partial information (X; �), if for every A 2 X ,
�(A) = �(A).

It is clear that many fuzzy measures can be compati-
ble with a given coherent partial information.

The concept of compatibility allows to make infer-
ences about the measure of the sets that are not ele-
ments of X . This inference should produce, for each
set not in X , an interval where any measure compat-
ible with (X; �) must lie. To achieve this, we de�ne
the next two measures:

De�nition 4 (Lower compatible measure) Let
(X; �) be a coherent partial information. We de�ne
the lower compatible measure with respect to (X; �)
as

��(A) =

8>><
>>:

max
B2X
B�A

f�(B)g; if 9B 2 X s:t: B � A ;

0 otherwise:

(1)

for all A � 
.

De�nition 5 (Upper compatible measure) Let
(X; �) be a coherent partial information. We de�ne
the upper compatible measure with respect to (X; �)
as

��(A) =

8>><
>>:

min
B2X
A�B

f�(B)g; if 9B 2 X s:t: A � B ;

1 otherwise:

(2)

for all A � 
.

Observe that if A 2 X , then ��(A) = ��(A) = �(A).

With this, we can de�ne the concept of extension of
a coherent partial information, that will produce the
minimum interval for each set where the measure will
lie, with the only restriction of coherence. In other
words, extension is intended to be the maximum infer-
ence we can make from a coherent partial information
with the only restriction of coherence. This concept is
analogous to the natural extension of lower previsions
[3, 4].

De�nition 6 (Extension) Given a coherent partial
information (X; �), we de�ne its extension as the pair
of measures (��; �

�), where �� and �� are as de�ned
above.

Example 7 Consider the coherent partial informa-
tion in example 6. Applying extension for making in-
ference about, say fc; bg, would produce the interval
[0:3; 0:7]. It means that every measure � compatible
with (X; �) must verify 0:3 � �(fc; bg) � 0:7.

Proposition 1 Given a fuzzy measure � compatible
with a coherent partial information (X; �), then for
every A 2 2
, ��(A) � �(A) � ��(A).

Proof. We shall distinguish two cases:

� If A 2 X , by de�nition of compatible measure,
we have that ��(A) = �(A) = �(A).



� If A 62 X we have two possibilities:

a) If 9B 2 X such as B � A, by de�ni-
tion of fuzzy measure �(B) � �(A) 8B �
A. By de�nition of lower compatible measure,
��(A) = maxf�(B) j B � Ag, which is equal to
maxf�(B) j B � Ag since � is compatible with
(X; �). Thus, ��(A) � �(A).

b) If 8B � A, B 62 X , ��(A) = 0 � �(A).

The proof is analogous for upper compatible mea-
sures.

Some interesting cases of fuzzy measures compati-
ble with a coherent partial information are measures
based on averaging operators.

An averaging operator [6] is a function with the fol-
lowing properties:

� Idempotency: T (x; x) = x.

� Monotonicity: If x � x0 and y � y0 then
T (x; y) � T (x0; y0).

� Commutativity: T (x; y) = T (y; x).

Proposition 2 Let (X; �) be a compatible partial in-
formation over 
, and (��; �

�) its extension. Let �
be a mapping over 
, de�ned as

�(A) = T (��(A); �
�(A)) A � 
 ; (3)

with T an averaging operator. Then � is a fuzzy mea-
sure compatible with (X; �)

Proof. First we prove that � is a fuzzy measure.

By idempotency, �(;) = T (��(;), ��(;)) = T (0; 0) =
0 and
�(
) = T (��(
); �

�(
)) = T (1; 1) = 1.

If B � A, clearly ��(B) � ��(A) and �
�(B) � ��(A).

This, together with monotonicity of the averaging
operator, implies that �(B) = T (��(B); �

�(B)) �
T (��(A); �

�(A)) = �(A). Thus, � is a fuzzy measure.

Besides, since T is idempotent, for all A 2 X , �(A) =
T (��(A); �

�(A)) = T (�(A); �(A)) = �(A). Thus, � is
compatible with (X; �).

As a consequence, this kind of operators can be used
to obtain fuzzy measures compatible with a partial
information.

5 An Algorithm for Computing the

Extension

In this section we present an algorithm for computing
the extension for any given set A � 
. For a more

eÆcient arrangement of the computations, we shall
make use of the lattice representation of 2
. Figure
1 displays the lattice representation corresponding to
the transportation vehicle example.

First of all, we must �x some notation. For any
A � 
, we shall denote by �(A) the set of direct pre-
decessors of A in the lattice, and by �(A) the set of
direct successors of A in the lattice, considering that

 is the top and ; the bottom. For instance, it can be
checked in Fig.1 that �(fc; vg) = ffc; v;mg; fc; v; bgg
and �(fc; vg) = ffcg; fvgg.




fc; v;mg fc; v; bg fv;m; bg fc;m; bg

fc;mg fc; bg fv;mg fv; bg fm; bg

fcg fvg fmg fbg

;

fc; vg

Figure 1: Lattice representation of the power set of

 = fc; v;m; bg.

Now assume we want to compute, for instance, ��(A)
for A � 
. It could be done by asking to each set B
in �(A) for its value ��(B) and then take ��(A) =
minf��(B) j B 2 �(A)g. Analogously, to compute
��(A) it would be enough to know ��(B) for every
B 2 �(A) and then taking ��(A) = maxf��(B) j B 2
�(A)g. This facts allow the speci�cation of a single
algorithm to compute the extension of a set A � 

based on two recursive procedures. More precisely,
the algorithm can be written as follows, where A is a
subset of 
 and (X; �) a coherent partial information
over 
:

EXTENSION(A,
,X,�)

��(A) =LOWER(A,
,X,�);

��(A) =UPPER(A,
,X,�);

Give [��(A); �
�(A)] as the extension of A.

In the algorithm above, LOWER and UPPER are
the next two recursive procedures:



LOWER(A,
,X,�)

if A = ; then return 0;

else

if A 2 X then return �(A);

else

M := 0;

for each B in �(A) do

N :=LOWER(B,
,X,�);

if N > M then M := N ;

return M ;

which returns the value of the lower compatible mea-
sure of A, and

UPPER(A,
,X,�)

if A = 
 then return 0;

else

if A 2 X then return �(A);

else

M := 1;

for each B in �(A) do

N :=UPPER(B,
,X,�);

if N < M then M := N ;

return M ;

which returns the upper compatible measure of A.

Note that this algorithm is designed to be used only if
we are interested in the extension for just one set. For
instance, assume we want to compute the upper and
lower bounds provided by the extension for a set A,
and that its successors and predecessors are de�ned
in the partial information. Then, the extension for
A is obtained in just one recursion step. This algo-
rithm can be described without recursive procedures;
for instance, the lower compatible measure for a set A
would be obtained by exploring all the elements in X
that are subsets of A and taking the maximum value
of � for them. We have adopted the recursive option
for the sake of simplicity in the exposition.

If we are interested in the extension for all the subsets
of 
, a more eÆcient algorithm can be designed, con-
sisting of two traversals over the lattice structure: one
from the top downwards (to compute the upper com-
patible measure) and one from the bottom upwards
(to compute the lower compatible measure). How-
ever, this case is less interesting, since we are trying

to avoid exponential complexity.

6 Experimental Evaluation

In this section we present the results of an experi-
mental evaluation of the algorithm. The aim of this
experimentation is to show the amplitudes of the in-
tervals produced by the extension algorithm for some
coherent partial informations.

We have considered four experiments: the �rst one
with 7 elements in 
 and the other ones with 8, 9 and
10 respectively. In each experiment, we have gen-
erated 500 coherent partial informations with jX j =
0:1�j2
j (i.e. the cardinal of X being a 10 percent of
the cardinal of 2
), 500 with jX j = 0:2�j2
j, 500 with
jX j = 0:3 � j2
j and 500 with jX j = 0:4 � j2
j. For
each partial information, we have computed its exten-
sion and the average amplitude of the intervals pro-
duced. The goal of the experiment is to check whether
we can avoid exponential complexity by specifying the
measure just for a reduced number of sets.

The results of the experiments are displayed in �gures
2 and 3.

We can see in �gure 2 how the average amplitude
quickly decreases as the percentage of sets for which
some information is provided grows. Also, the average
amplitude decreases as the number of elements in 

increases (see �gure 3) for a �xed percentage of sets
in X , but not so quickly as in the previous case.

10% 20% 30% 40%
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Figure 2: Average amplitude vs. percentage of sub-
sets in X .

7 Conclusions

In this paper we have proposed an operational inter-
pretation of general fuzzy measures. The aim is to
give a clear meaning to the numbers, being this mean-
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Figure 3: Average amplitude vs. j
j.

ing likely to be understood by someone di�erent to the
one who assesses the values of the measure. We think
that this interpretation can avoid misunderstandings
that are quite frequent in the use of fuzzy measures.

On the basis of this interpretation, a concept of co-
herence can be de�ned. By coherence we understand
the minimum restriction that one must impose to ev-
ery partial information in such a way that it does not
violate the interpretation we formulate. This comes
up to match with the concept of monotonicity of a
fuzzy measure.

About the extension of a partial information, it is
the maximum inference we can do based only in the
restriction of coherence. In that sense, it is similar to
the concept of natural extension [3].

Many more concepts are to be studied in further
works. For instance, how the combination of some
measures can be performed under the restriction of
coherence. Also, a deeper study is necessary to check
the appropriateness of fuzzy measures as measures of
uncertainty.
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