
where Q�(�X) is a probability distribution, depending
on � and X and such that:

EQ�(�X)(�X) =

Z
Ch

(�X)d�

Proof :

From (32), it follows that the optimal level of coverage
is the solution of the following optimization problem:

max
2[0;1]

EQ�(�X)u(w � (1� )X � �()) (33)

The second order condition is satis�ed for all  2 [0; 1]
because of the concavity of u(�):

The �rst order condition is:

EQ�(�X)[(X � (1 +m)E
eP
X)u0(w � (1� )X�

�(1 +m)E
eP
X)] = 0

(34)

Full coverage is optimal when

u0(w �E
eP
X)EQ� (�X)(X � (1 +m)E

eP
X) � 0 (35)

which leads to the condition:

EQ� (�X)X � (1 +m)E
eP
X (36)

It is easy to notice that those results are similar to
those, obtained with the Ja�ray model. Here again
appears the fact that full coverage may be optimal
even if the premium is unfair. The decision to buy
full coverage is again caused by a gap between the
estimation of the expected losses by the insurer and
the agent (for the agent this estimation is contained
in �). The limits of this model are due to the fact
that, contrarily to the Ja�ray one, it is impossible
here to separate explicitely objective information from
subjective beliefs.

6 Concluding Remarks

The introduction of non probabilized uncertainty in
an insurance model explains observed insurees' behav-
iors unexplainable with the Expected Utility model.
It takes into account the fact that agents behave not
according to the probability distribution known by the
insurer, but according to their own information and
their attitude towards ambiguity and towards risk.

On the other side, this study puts in evidence the
importance for the insurer to know, not only the ob-
jective risk that an insuree faces, but also the insuree's
information and attitude towards ambiguity.
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It is easy to see that if q1+q2 � (1+m)p1+(1+m)p2
and q2 � (1 + m)p2; then full coverage is optimal
due to the continuity of the welfare function, on the
other side, it can be checked that if q2 < (1 + m)p2,
the agent's welfare is higher with full coverage than
if he doesn't buy insurance. If q1 + q2 < (1 +m)p1 +
(1 + m)p2;then the welfare function is increasing in
the �rst interval, if it is also increasing in the second
interval (q2 < (1+m)p2), then the agent doesn't buy
insurance; if the welfare function is decreasing in the
second interval, that means if q2 � (1 + m)p2; then
the optimization problem has an interior solution.

The results we obtain are di�erent from those in the
risky context in the sense that a complete coverage
may be optimal with a positive loading rate and an
intermediate amount of deductibles can be optimal,
even if the loading rate is zero. The �rst di�erence can
be explained by the pessimism of the agents, who may
over-estimate the probability of loss and thus consider
that the contract has a higher price than the actuarial
value, calculated according to the objective probabil-
ity. The second di�erence is due to the fact that the
attitude towards ambiguity may be di�erent for dif-
ferent amounts of loss: an agent may be optimistic for
the low levels of loss and pessimistic for the higher.

5 Optimality of full coverage in a
general non-probabilized
uncertainty

As we noticed, the Ja�ray model can be used only
when the uncertainty faced by the decision maker
takes the form of a set of probability distributions
whose lower envelope is convex. This assumption,
well suited for a lot of situations, may anyway appear
sometimes restrictive. In such situations of general
non-probabilized uncertainty, it is possible to repre-
sent preferences using the Choquet Expected Utility
model, proposed by Schmeidler in [9]. Individual's
preferences in this model depend on the one hand
on a utility function (which reects the perception of
wealth) and, on the other hand, on a capacity (reect-
ing the perception of the occurrence of the events).
We will not here present in detail the axioms of the
model and the preference representation theorem, but
only a short application to an insurance demand prob-
lem.

Let us just recall that if the preference relation of an
agent satis�es the axioms of the Choquet expected
utility model (CEU), then the functional V (�) repre-
senting her preference relation for an act (a decision)
X writes:

V (X) =

Z
Ch

u(X)d� (28)

where �(�) is a capacity and u(�) is a utility function
with u(0) = 0 et u0(x) > 0.

So, the preferences of a CEU maximizer are charac-
terized by a pair (�; u) composed of a utility function
and a capacity.

The insurer estimates the probability distribution
over the set of potential losses.

An agent with initial wealth W faces a risk X : 
!
[0; L] : The premium corresponding to a linear con-
tract with a coverage proportion  is here

�() = (1 +m)E
eP
X (29)

where eP (�) is the probability measure on 
; estimated
by the insurer.

From (28), the value function V (;X) corresponding
to a coverage proportion  writes:

V (;X) =

Z
Ch

u(w � (1� )X ��())d� (30)

To determine the optimal level of coverage, we use the
fact that fWg2[0;1] with

W = w � (1� )X �� (X) (31)

is a class of comonotone acts and �X is comonotone
with them.

Using a result, given by Denneberg in [3] that gives a
simple form of the Choquet integral for comonotone
acts, (30) writes:

V (X) = EQ�(�X) [u(w � (1� )X �� (X))] (32)

where Q�(�X) is a probability distribution depending
on �X and on �, but not on .

This form of the functional representing preferences
for an insurance contract is used to prove the following
results.

Proposition 6 A Choquet expected utility maximizer
with u00 � 0 faces an insurable risk X : 
 ! [0; L].
The insurance premium is given by (29).

The necessary and su�cient condition for the opti-
mality of full coverage is

EQ� (�X)(X) � (1 +m)E
eP
(X)



The lower envelope of the set of probability distribu-
tions in this context and its M�obius transform are the
following:

f(Si) = '(Si) = q0i, i = 1; 2;

f(S) = '(S) = 1� q001 � q002

f(Si [ S) = 1� q00i , i = 1; 2; f(S1 [ S2) = q01 + q
0

2;

'(Si [ S) = q00i � q0i, i = 1; 2;

'(S1 [ S2) = '(S1 [ S2 [ S) = 0

For every A 2 A; ' (A) � 0 so f is a convex capacity
and the hypotheses of the model are satis�ed.

To be able to isolate the inuence of the ambiguity
aversion on the amount of deductibles chosen by the
agent, we will assume that the agents are risk neutral.

In a three-state problem, there appear two events
(S1 [ S and S2 [ S) for which two outcomes are pos-
sible and the value of ' corresponding to them re-
ects the degree of ambiguity. Depending on the out-
comes, the values of the two corresponding pessimism-
optimism indices may be di�erent: an individual may
be pessimistic if the di�erence in the outcomes is large
and optimist if the di�erence is small, so we will note
�1 = �(W � L1;W ) and �2 = �(W � L2;W ):

A deductible contract CD is characterized by a pre-
mium �(D) and an indemnity eI(D). The indemnity
takes the following values depending of the levels of
loss:

Ii(D) = max(0; Li � D); if event floss Lig occurs,
i = 1; 2

When the loss is zero, the indemnity is zero.

As in the second part, we assume here that the in-
surer knows the true loss probabilities, which will be
denoted by p1 and p2: The premium corresponding to
the expected insurer payout multiplied by the loading
rate will be :

�(D) = (1+m) [p1max(0; L1 �D) + p2max(0; L2 �D)]

The value function V (D) corresponding to a de-
ductible CD , according to (8) is the following:

V (D) =

=
2P
i=1

h
q

0

i + �i(q
00

i � q
0

i)
i
(W � Li + Ii(D) � �(D))+

+

�
1�

2P
i=1

h
q

0

i + �i(q
00

i � q
0

i)
i�

(W � �(D))

(26)

As in the linear contract section, we will denote by q1
and q2 the agent's beliefs on the probability level of
the two possible losses,

qi = q
0

i + �i(q
00

i � q
0

i); i = 1; 2

Theorem 5 The optimal amount of deductibles D�

for a risk-neutral agent with beliefs q1 and q2 on his
loss probabilities, which summarize his objective in-
formation and his attitude towards ambiguity, are the
following:

1. If q1 + q2 � (1 + m)p1 + (1 + m)p2, then D� =
0, that is, whenever the agent over-estimates the
sum of the probabilities of the two levels of loss,
full coverage is optimal:

2. If q1 + q2 < (1 + m)p1 + (1 + m)p2 and q2 �
(1 +m)p2; then D� = L1;

If q1 + q2 < (1 + m)p1 + (1 + m)p2 and q2 <

(1 +m)p2; then D� = L2;

An intermediate amount of deductible is optimal
if the agent over-estimates the probability of the
higher level of loss and no insurance is chosen if
he under-estimates the two levels of loss.

Proof. The optimal amount of deductibles is the
solution of the following optimization problem:

max
D2[0;L2]

2X
i=1

qi(W � Li + Ii(D) ��(D)) +

+(1 � q1 � q2)(W ��(D)) (27)

Due to the non-linearity of the premium and indem-
nity of the deductible contract, the welfare function
of the agent is continuous but non-di�erentiable. For
a risk-neutral agent, this function is piecewise linear;
we will study the sign of the derivative separately on
the domains where the function is di�erentiable.

1. D 2 [0; L1);
@V (D)

@D
= �q1 � q2 + (1 + m)p1 +

(1 +m)p2;

In the interval considered, full insurance is opti-
mal if q1+q2 � (1+m)p1+(1+m)p2 and partial
coverage otherwise.

2. D 2 (L1; L2];
@V (D)

@D
= �q2 + (1 +m)p2;

In this interval, the optimal insurance corre-
sponds to L1, when q2 � (1+m)p2 and the agent
doesn't buy insurance otherwise.



can be represented by n probability intervals. If Si is
the event floss Lig, then P (Si) 2 [q0i; q

00
i ] with q

0
i � q00i .

The interval for the event S corresponding to fno

lossg is then P (S) 2 [max(0; 1�
nP
i=1

q00i ); 1�
nP
i=1

q0i]: In

the following we will assume that 1�
nP
i=1

q00i � 0 which

assumption doesn't a�ect the richness of the results.

The validity of H2 is easy to check by using the M�obius
transform of the lower envelope of the set of probabil-
ity distributions compatible with the available infor-
mation.

We assume, as in the previous that the insurer's in-
formation is more precise and represented by a prob-
ability distribution P such that P (Si) = pi , i = 1::n

and P (S) = 1�
nP
i=1

pi. The linear insurance contract

C is here characterized by:

I(; Li) = Li and �() = (1 +m)
nX
i=1

piLi (22)

The value function V () corresponding to the con-
tract C , according to (8) is the following:

V () =
nX
i=1

[q0i + �(q00i � q0i)]u(W � Li + I() �(23)

��()) +

+

"
1�

nX
i=1

(q0i + �(q00i � q0i))

#
u(W ��())

We assume here again that the pessimism-optimism
index is independant on the exact values of the out-
comes.

The following result gives a necessary, but not su�-
cient condition for the optimality of full coverage in
this context.

Proposition 4 A risk-averse agent has an utility
function u(�) with u00 < 0. She faces a risk of loss
that can take n values: Li i = 1::n: She locates the
probability of a loss of amount Li between q0i and
q00i : Her constant pessimism-optimism index is �: Let
qi = (1 � �)q0i + �q00i . We denote by P (�) the loss
probability distribution according to the insurer, the
loading rate is m.

Then, if qi � (1+m)pi for i = 1::n, optimal coverage
is full insurance.

Proof. The welfare maximizing level of coverage is
solution of the following optimization problem:

max


V () with V () given in (23)

The second order condition is satis�ed for all  2 [0; 1]
due to the concavity of the utility function u(�):

The �rst order condition is:

nP
i=1

qi

�
Li �

@�
@

�
u0(W � Li + I(; Li)� �())�

�

�
1�

nP
i=1

qi

�
@�
@
u0(W ��()) = 0

(24)

with @�
@

= (1 +m)
nP
i=1

piLi

The condition for the optimality of full coverage ( =
1) is :

@V

@

����
=1

� 0

which writes

nX
i=1

(qi � (1 +m)pi)Li � 0 (25)

which gives directly the result of the proposition. �

Remark 2 It is easy to see, from (25), that it is pos-
sible for an individual to choose full coverage with
m > 0, even if the above condition is satis�ed only for
few i. That means that a signi�cant over-evaluation
of the probability of occurence for large losses can com-
pensate under-evaluation of low losses and still make
the individual choose full coverage.

4 Non-linear contracts (deductibles)

Deductibles are the most widely encountered type of
non-linear insurance contracts and we will now focus
on them. To introduce non-linearity, we have to con-
sider more than two states of nature. To obtain clear
results, we consider a three state insurance problem.
An agent with initial wealth W faces a risk of loss with
two possible levels: L1 and L2 where L1 < L2: The
information structure is the same as in the previous
section, we just take n = 2. To be able to give better
interpretations, we develop here, more in detail, the
construction of the preferences representation func-
tional.



marginal bene�t. The introduction of those con-
cepts allows relevant interpretations and closer com-
parison with the results obtained by Eeckhoudt and
Gollier in [5].

Let's denote by Q the loss probability distribution,
corresponding to the agent's beliefs: Q(1) = q and
Q(0) = 1� q: The agent's wealth, corresponding to a
level of coverage  is denoted byew = W � (1 � )exL � (1 + m)EP exL: After some
transformations, the �rst order condition (18) be-
comes:

q(1� q)[u0(W � L + I() � �()) � u0(W � �())]

qu0(W � L+ I() � �()) + (1� q)u0(W � �())
=

= mp+ (p� q)
(19)

equivalently, this equality is written:

covQ(u0( ew ); ex)
EQ u0( ew ) = mEP ex+ (EP ex� EQex) (20)

�The right side of the equality measures the impact
on the �nal wealth of an increase of the coverage; it
is in fact the opposite of the marginal cost of a unit
of additional coverage:

�
@ ew
@

= (1 +m)EP ex� EQex (21)

The di�erence with the risky context comes from the
term (EP ex � EQex): When the loading rate is zero,
the marginal cost of an additional unit of coverage
in presence of uncertainty is no longer always equal
to zero. It depends of the sign of the di�erence be-
tween the true probability of accident and the agent's
belief. If q > p, the increase in coverage increases
the agent's wealth. More generally, using Proposition
2, it is possible to assert that if the maximal accept-
able premium for a unit of coverage is higher than the
premium proposed by the insurer, then the wealth of
the agent increases with additional coverage. On the
other hand, if the agent is optimistic enough and his
maximal acceptable premium is lower than the pre-
mium, proposed by the insurer (loaded or not), then
an additional unit of coverage will have a positive cost.

�The left hand side of the equality (20) corresponds to
the marginal bene�t of an additional unit of coverage:
it is positive for  2 [0; 1); equals zero for  = 1 and is
negative for  2 (1;1): The sign of the marginal ben-
e�t is in fact the sign of the covariance between the
marginal utility and the loss, the expected marginal

utility being always positive. u0( ew) and ex vary in
the same direction for  2 [0; 1);an increase in the
loss leads to a decrease in the wealth which increases
the marginal utility (u00 < 0), so the covariance is pos-
itive. If over-insurance is allowed, the wealth of the
agent increases with the increase of the level of loss, so
the covariance becomes negative, in the case of com-
plete coverage, the marginal bene�t is constant, so
the covariance equals zero. In addition, it is possible
to prove that the marginal bene�t is decreasing for
every level of coverage.

The optimal amount of coverage is the value of  for
which the marginal cost equals the marginal bene-
�t. For a negative marginal cost, corresponding to
(1+m)p < q an amount of coverage corresponding to
over-insurance will be optimal; we assumed that over-
insurance is not allowed, so in this case the agent will
buy full coverage. The symmetric phenomenon can
also appear: if the agent is optimistic enough and
if the loading rate is too high, the optimal coverage
will be a negative insurance. This type of insurance
is never allowed, so the agent will not buy insur-
ance in this context, the corresponding condition is

q <
(1 +m)pu0(W )

(1 +m)p [u0(W )� u0(W � L)] + u0(W � L)
:

It is interesting to compare these results to those in
the case of risk ([9]), when both insurer and insuree
know the true accident probability. In the risky con-
text, when the loading rate is zero, risk averse agents
buy full coverage, if ambiguity is introduced, there are
risk averse agents who choose not to buy insurance or
prefer partial coverage (the optimists). On the other
side, when the loading rate is strictly positive, in the
risky context, risk-averse agents never buy full cover-
age; with the introduction of ambiguity, we saw that
if the loading rate is not too high, there are risk averse
agents who choose full coverage (the pessimists): this
gives an explanation of the empirical results, show-
ing that agents buy full coverage, even with loaded
premium.

Thus, when ambiguity is introduced, a vast range of
optimal con�gurations appears. It is possible to no-
tice that agent's choices depend essentially on their
synthetic belief, depending on both the objective in-
formation and the pessimism-optimism index.

3.3 A simple extension to a n-state

insurance problem

In this subsection, we try to generalize part of the
previous results to the more realistic case when an
agent faces a risk of loss with n possible levels, denoted
by Li; i = 1::n where Li � Li+1:

The information on the probabilities of these losses



contract is bigger than or equal to the non-insurance
decision i.e.:

V (C1) � V (C0) (17)

For the maximal acceptable premium, the above in-
equality becomes an equality (it is assumed that if an
individual is indi�erent between buying and not buy-
ing insurance, he chooses to buy). More explicitly,
the condition for the maximal premium is:

W�� = ((1��)q0+�q00)(W�L)+(1�(1��)q0��q00)W

�� is obtained by solving the previous equation with
respect to �.

For commodity, we introduce a new notation:

q = (1� �)q0 + �q00

It is possible to notice a similarity between the form of
the maximal acceptable premium found in the context
of imprecise probabilities and the maximal premium
in the risky context ( �� = pL ), which is the expected
value of the loss. In fact, the previously de�ned q can
be interpreted as a synthetic "belief" of the insuree
on his probability of accident because it depends on
one side on the objective information held by the in-
dividual and on the other side on his attitude towards
ambiguity. The maximal acceptable premium corre-
sponds there to the expected value of the loss but with
respect to the individual's so de�ned beliefs. We have
however to stress the fact that two individuals with
the same objective information (same interval) may
have di�erent beliefs, due to their di�erent attitudes
towards ambiguity; moreover those "beliefs" depend
on the decision considered.

3.2 Optimal coverage

The general characteristics of the optimal contracts
dependence on the individual's criterion and on the
insurer's propositions are summarized in the following
theorem.

Theorem 3 A risk-averse agent has an utility func-
tion u(�) with u00 < 0. She locates her accident prob-
ability between q0 and q00. Her constant pessimism-
optimism index is �: Let q = (1 � �)q0 + �q00. We
denote by P (�) the loss probability distribution accord-
ing to the insurer: P (ex = 1) = p; P (ex = 0) = 1 � p,
the loading rate is m. The optimal rate of coverage
(�) for this agent is determined as follows:

1. If q � (1 + m)p, then � = 1; in particular, if
the premium is loaded (m > 0), su�ciently pes-
simistic individuals will buy full coverage.

2. If (1 +m)p � q � q�, where

q� =
(1 +m)pu0(W )

(1 +m)p [u0(W )� u0(W � L)] + u0(W � L)

then � 2 (0; 1);

3. If q� > q, then � = 0; in particular, even if the
premium is fair (m = 0), a risk-averse agent can
refuse insurance.

Proof. The welfare maximizing level of coverage is
solution of the following optimization problem:

max


qu(W �L+ I()��())+(1� q)u(W ��())

The second order condition is satis�ed for all  2 [0; 1]
due to the concavity of the utility function u(�):

The �rst order condition is:

qL(1� (1 +m)p)u0(W � L + I() � �())�
�(1� q)L(1 +m)pu0(W � �()) = 0

(18)

The condition for the optimality of full coverage ( =
1) is :

@V

@

����
=1

� 0

This condition corresponds, in this particular problem
to:

q � (1 +m)p

The condition for the optimality of zero coverage ( =
0) is written:

@V

@

����
=0

� 0

and leads to the following condition for q:

q �
(1 +m)pu0(W )

(1 +m)p [u0(W )� u0(W � L)] + u0(W � L)
:= q�

If q� < q < (1 +m)p, a partial coverage will be opti-
mal:  2 (0; 1)

The proof of the foregoing theorem can also be
made by using the concepts of marginal cost and



compatible with the available information, of having
an accident, '(S) corresponds to the lower probability
of having no accident. It is impossible to assign objec-
tively the remaining probability mass, here q00� q0; to
the one or the other of the elementary events, which
is why it is assigned to the union; this remaining mass
gives a measure of the ambiguity associated with the
problem: here it corresponds to the width of the prob-
ability interval.

We assume that the individuals satisfy the axioms of
Ja�ray's model which makes possible the use of the
criterion given by V (�) in (8).

3.1 Preference representation and maximal

premium

An insurance contract C is characterized by the indi-
vidual's income in all states of nature: let the income
be W2 if the loss occurs, and W1 otherwise. In or-
der to avoid incitations for destruction, we prohibit
contracts in which the agent's income is higher when
he has an accident. Thus, we consider only contracts
with W1 � W2:

Let's denote by C the set of the feasible contracts.
The individual's utility for a given contract C, using
(8) becomes:

V (C) = ((1� �)q0 + �q00)u(W2) + (11)

+(1� (1� �)q0 � �q00)u(W1)

where � = �(W2;W1): We consider that the atti-
tude towards ambiguity, reected by the pessimism-
optimism index, is a psychological characteristic of
the individual which doesn't depend on the exact val-
ues of the two outcomes but only on their sign and on
their order.

If � = 1 the individual is a pure pessimist, the value
function has the following value:

V (C) = q00u(W2) + (1� q00)u(W1) (12)

The individual assigns the highest probability com-
patible with his information to the worst event (the
lowest income) and, respectively, the lowest probabil-
ity to the highest income, in fact, the value function
has in this case the form of the expected utility with
probability of accident equal to q00:

If � = 1
2 , the individual is ambiguity neutral; he as-

signs to the event flossg a probability in the center
of the interval which corresponds apparently to the
Bayesian case.

If � = 0 we obtain the symmetrical case to the �rst
one; here the individual is a pure optimist, he assigns

the lowest probability to the worst event and the high-
est probability to the best event.

We assume that the insurer is more informed that the
insuree. This hypothesis is based on the fact that he
can collect data and estimate more precisely than the
insuree, the probability of loss. Let's denote by P the
probability distribution of ex estimated by the insurer,
he will propose insurance contracts according to this
probability: P (ex = 1) = P (S) = p and P (ex = 0) =
P (S) = 1� p: We assume that the probability of loss
p belongs to the probability interval, corresponding to
the insuree's information. In this case, the more vast
range of possible choices appear.

We are here interested in the insurance demand, that
means in the individual's choices.

A linear insurance contract is de�ned by a premium
and the corresponding indemnity. The indemnity eI(�)
is de�ned as a function of the coverage proportion 

in the following way:

eI() = exL (13)

The corresponding premium�() equals the expected
value of the insurer's payout multiplied by a loading
rate corresponding to transaction costs and pro�ts:

�() = (1 +m)EP exL = (1 +m)pL (14)

where m is the loading rate and pL is the expected
payout which corresponds to the fair premium.

There is a one to one relation between the couple (pre-
mium, indemnity) and the couple of the two consump-
tions (W1;W2) :

W1 = W � �() (15)

W2 = W � L+ I() ��()

Thus an insurance contract can be characterized by
a premium and an indemnity, for a given proportion
of coverage  we note: C = C(I();�()): The indi-
vidual's utility for a given contract C can be written,
depending on the premium and the indemnity corre-
sponding to this contract, using (11) and (15). Let's
denote by C0 the non-insurance decision.

Proposition 2 The maximal premium for full insur-
ance that a risk-neutral individual (u(x) = x) is ready
to pay is:

�� = ((1� �)q0 + �q00)L (16)

Proof. An individual will buy full coverage if the
corresponding premium is such that the utility of this



f is characterized by its M�obius transform since

f(A) =
X
B�A

'(B): (6)

The convexity of a capacity can be checked using its
M�obius transform.

Proposition 1 (Chateauneuf , Ja�ray [2])

A capacity f : A ! [0; 1] is convex () 8A 2 A and
c1; c2 2 A; c1 6= c2

X
fc1;c2g�A�B

'(B) � 0

De�nition 4 The local Hurwicz pessimism-optimism
index for two outcomes m and M , where m < M is
the number �(m;M ) 2 [0; 1] such that the decision
maker is indi�erent between: (i) receiving at least m
and at most M with no further information and (ii)
receiving either m with probability � or M with prob-
ability (1� �).

Pessimism index is also known as ambiguity aversion
index.

It is now possible to give the form of the value function
corresponding to a decision in the context of imprecise
probabilities.

Let F be the set of convex capacities corresponding
to the decisions on (C ,B), where C is a �nite set of
consequences and B is the algebra of the events of C:

In the model of Ja�ray, the preference relation on F ,
which is a convex set and a mixture set in the sense of
Herstein and Milnor [6], is assumed to satisfy Jensen's
axiom system of linear utility theory (or an equivalent
system of axioms). Due to (6), any utility V (�) can
be expressed as:

V (f) =
X
B2B

'(B)v(B) (7)

Note that, if the set P of probability measures con-
tains only one element, then f is a probability dis-
tribution on the set of states: if B is an elementary
event, B = fcg, '(B) is the probability of B, if B
is not an elementary event '(B) = 0. Then V (�) be-
comes an expected utility, with v(fcg) = u(c); the
vNM utility.

In the general case an additional Dominance axiom
(introduced in [7]) makes v(B) only depend on mB

andMB which are respectively the worst and the best
outcome if event B occurs. By moreover introducing

the local Hurwicz pessimism-optimism index and us-
ing the consistency with Expected Utility previously
noted, one �nally obtains the following expression for
V (�):

V (f) =
X
B2B

'(B)[�(mB ;MB)u(mB) (8)

+(1� �(mB ;MB))u(MB)];

where mB and MB are respectively the worst and
the best outcome if event B occurs; �(mB ;MB) is
the local Hurwicz pessimism-optimism index repre-
senting individual's attitude towards ambiguity;u(�)
is the utility function representing individual's atti-
tude towards risk.

3 Linear contracts (coinsurance)

An individual with initial wealth W faces the risk of
a loss of amount L. This situation can be represented
by a random variable ex : if S is the event floss occursg
and S the event f there is no lossg, ex(!) = 1 for ! 2 S
and ex(!) = 0 for ! 2 S. The individual's information
allows him to assert that his probability of loss is be-
tween q0 and q00. The set of probability distributions
compatible with the available information is:

P =
�
P 2 L : P (S) 2 [q0; q00] ; P (S) 2 [1� q00; 1� q0]

	
(9)

We denote by f the lower envelope of P. To apply
the Ja�ray model, it is necessary to check the validity
of hypotheses H1 and H2.

H1: f characterizes P whenever constraints only re-
quire the probabilities of some events to belong to
given intervals (P = fP 2 L : ai � P (Ai) � bi; i 2
Ig) because in this case:

ai � f(Ai) � P (Ai) � F (Ai) � bi: (10)

H2: To check the convexity of f we will use its M�obius
transform which values are reported in the following
table:

event ; S S S [ S
f 0 q0 1� q00 1
' 0 q0 1� q00 q00 � q0

' is no-negative on all the events and thus, due to
Proposition 1, f is a convex capacity, and even a belief
function in the sense of Shafer [10].

In this two state problem, it is easy to interpret the
values of ', '(S) corresponds to the lower probability,



by the Choquet Expected Utility model.

2 Ja�ray's model

This model is a generalization of the Expected Util-
ity criterion. It makes possible the modelization of
choices where the probability distribution on the set
of states is imperfectly known and it is only possible
to assert that this distribution belongs to a set P of
probability distributions. Provided this set is suitably
structured, it is possible to use an approach similar to
that which is classical under risk (probability distri-
bution perfectly known).

2.1 Information representation

Let 
 = f!1; :::; !ng be a �nite set of states, A the
algebra of events over 
, and L the set of all distri-
butions over (
;A). The available information allows
to assert that the true probability distribution P be-
longs to a given set P � L. To every non empty set of
probability distributions P it is possible to associate
its lower envelope f : A! [0; 1] and its upper envelope
F : A ! [0; 1] ; de�ned as follows:

8A 2 A; f(A) = inf
P2P

P (A); F (A) = sup
P2P

P (A) (1)

The two envelopes satisfy, for all event A; the rela-
tion f(A) + F (Ac) = 1:Thus the values of one of the
envelopes on all the events of the algebra determine
completely the other; in this model it has been chosen
arbitrarily to use the lower envelope.

Remark 1 The lower envelope of a set of probability
distributions is not, generally, a probability distribu-
tion, and one cannot use additivity to compute f on
the compound events, using its values on the elemen-
tary events. Thus, f must be given directly or indi-
rectly (for instance by (6) below) on all the events of
the algebra.

De�nition 1

A mapping f : A! [0; 1] is a capacity when :

f(;) = 0; f(
) = 1; [A;B 2 A; A � B]) f(A) � f(B)
(2)

A capacity f : A ! [0; 1] is convex (or monotonic at
the second order or supermodular) if

for all A;B 2 A; f(A[B) � f(A)+f(B)�f (A\B):
(3)

The lower envelope f of a set of probability distribu-
tions is a capacity over A: For the preference represen-
tation in this model, the lower envelope f of the set of

distributions P is used instead of the set itself: This
is possible only when f characterizes P or, in other
words, when it is possible to reconstruct P knowing
f . More precisely:

De�nition 2 The set of probability distributions P is
characterized by its lower envelope f whenever:

P = fP 2 L : P (A) � f(A); for all A 2 Ag (4)

In the game theory terminology, P is characterized by
f when it coincides with its core.

2.2 Preference representation

A decision � is a mapping from the set of states 
 into
a set of outcomes C. Let D be the set of available deci-
sions. Under risk, the probability distribution on the
set of outcomes corresponding to a decision � is com-
puted using the distribution on the set of states. In
the same way, under uncertainty, the minimal proba-
bility of a set of outcomes, corresponding to a given
decision, may be computed using the minimal prob-
ability of the corresponding event: Thus, to each de-
cision corresponds a capacity on the outcomes, which
is the lower envelop of the corresponding set of dis-
tributions on the outcomes. The characterization of
the set of distributions by this envelope is guaranteed
only when f , the envelope of the original set of distri-
butions (on the states of nature) is convex (see [7] ).
This makes it necessary to introduce this assumption
in the model.

In summary, Ja�ray's model of decision making is ap-
plicable in uncertain situations where the available in-
formation on the probability distribution can be sum-
marized by a set of distributions P with lower enve-
lope f satisfying:

Hypothesis 1 f characterizes P.

Hypothesis 2 f is convex.

Hereafter, we use the same generic notation for a ca-
pacity on the events and a capacity on the outcomes,
corresponding to a given decision.

For the preference representation it will be necessary
to de�ne the M�obius transform of a capacity.

De�nition 3 The M�obius transform of a mapping f :
A ! R is a mapping ' : A! R de�ned by

'(A) =
X
B�A

(�1)jAnBjf(B) (5)
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Abstract

This article deals with demand for insurance under
non-probabilized uncertainty: the available informa-
tion allows only to locate the loss probability into a
given interval. In this context, we apply a model,
generalizing expected utility which involves, besides
the standard utility function, a pessimism-optimism
index representing the agent's attitude towards am-
biguity. In this context choices empirically observed,
but impossible to explain with the vNM model, are
enlightened: when the insurance premium is fair, risk
averse agents can choose not to buy insurance, while
with loaded premium, there are agents who buy full
coverage. Choices of this type appear with both linear
and non-linear contracts.

Keywords: demand for insurance, coinsurance, de-
ductibles, ambiguity

1 Introduction

Demand for insurance has been widely studied under
the assumption that both insurers and agents know
precisely the objective probability distribution on the
set of states. For the insurers, this assumption is
founded on the possibility to have access to statistical
data and estimate precisely the accident probability.
The agents are in a di�erent situation: they can only
have imprecise information based on self observation.
If those considerations are taken into account, the von
Neumann Morgenstern (vNM) expected utility model
used in risky situations has to be replaced by a model
of decision making under uncertainty (ambiguity). A
�rst study of demand for insurance under complete
uncertainty is made by Briys and Louberg�e in [1].
Individuals don't have any information on the acci-
dent probability and behave in accordance with the

�CREST-LEI, EUREQua, C3E. jeleva@ensae.fr. I am
grateful to M. Cohen, L. Eeckhoudt, J.Y. Ja�ray, E.
Langlais and the anonymous referee for judicious remarks
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Hurwicz criterion: their choices are based on a sub-
jective weighting of the results obtained in the best
and the worst state of nature. We assume in this pa-
per that the individuals have some information: they
know that their probability of having an accident is
between two bounds (the so-called imprecise probabil-
ity situation). The Ja�ray model, presented in [7] is
particularly well-adapted for this information struc-
ture. Individual's preferences depend in this model
on one side on their attitude towards ambiguity, rep-
resented by their Hurwicz pessimism-optimism index,
and on the other side on their attitude towards risk,
represented by their von Neumann-Morgenstern util-
ity function.

A vast range of optimal contracts appear in this con-
text, some of them di�erent from those obtained in
the standard context. The results give an explanation
to observed attitudes that are considered as non ra-
tional: even if the premium is fair, risk-averse agents
may not buy any insurance contract and risk-averse
agents may choose full coverage even if the premium
is loaded. A partial explanation of such choices has
already been provided by Doherty and Eeckhoudt in
[4] by assuming probability distortion and risk neu-
trality. We use an alternative framework and present
an alternative explanation that leads to a more vast
range of results.

The next section of the paper recalls the construction
of preferences under non-probabilized uncertainty in a
general decision problem. The third section deals with
linear contracts in a two-state insurance problem: the
maximal acceptable premiumand the optimal amount
of coverage are determined. The section ends with an
extension of part of those results to a n-state insurance
problem. The study of contracts with deductibles in
a two-levels of loss problem is the subject of the next
section. The paper ends with a simple result on the
optimality of full coverage when the information of
the decision maker doesn't take the particular form
of a probability interval, preferences are represented


