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Abstract

Modal logic interpretations of plausibility and belief
measures are developed based on the observation that
the inverse of the value assignment function in a model
of modal logic induces the upper plausibility and lower
belief measures of the plausibility and belief measures
induced by the accessibility relation, regarded as a
multivalued mapping.
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1 Introduction

Modal logic is an extension of classical propositional
logic, endowed with modal operators of possibility and
necessity. The di�erent systems of modal logic have a
clear interpretation in terms of Kripke's semantics of
possible worlds. A system of modal logic then corre-
sponds to a class of models of modal logic that consist
of a set of possible worlds, a binary relation on this set
of worlds, called accessibility relation, and a value as-
signment function, which assigns truth values to each
atomic proposition in each possible world.

The concepts of plausibility and belief measures were
originally conceived in Dempster's work on upper and
lower probabilities [6], where he showed that any mul-
tivalued mapping carries a probability measure de-
�ned over subsets of one universe into a system of
upper and lower probabilities over subsets of another
universe. It is therefore not surprising that multival-
ued mappings have turned out to be the key concept
in the development of a modal logic interpretation of
Dempster{Shafer theory.
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All existing modal logic interpretations of Dempster{
Shafer theory have been developed in the framework
of models of modal logic with value assignment func-
tions that require one and only one atomic proposi-
tion to be true in each possible world. Observing that
the latter restricts the suitability of such interpreta-
tions for modelling real situations, we have established
a modal logic interpretation of evidence theory us-
ing models of modal logic that allow in each possi-
ble world an arbitrary number of atomic propositions
(possibly zero) to be true [17].

In this work, we propose an alternative modal logic in-
terpretation of plausibility and belief measures, based
on the observation that the accessibility relation in
a model of modal logic, regarded as a multivalued
mapping, induces a plausibility measure and a belief
measure on the set of possible worlds [3]. The inverse
of the value assignment function, regarded as a second
multivalued mapping, then induces the upper plausi-
bility and lower belief measures of the plausibility and
belief measures induced by the accessibility relation.
These upper plausibility and lower belief measures are
in fact the plausibility and belief measures on the set
of atomic propositions induced by the model itself. An
interesting relationship between the basic probability
assignment induced by a model of modal logic with a
�nite number of possible worlds and the basic prob-
ability assignment corresponding to the accessibility
relation can be obtained when imposing a restriction
on the value assignment function. This relationship
suggests how to construct a minimal model of modal
logic for given plausibility and belief measures.

2 Evidence theory

As it was already mentioned, the inception of
Dempster{Shafer theory goes back to the introduc-
tion of the concepts of upper and lower probabilities
(plausibility and belief measures) induced by a mul-
tivalued mapping [6]. Therefore, involving multival-



ued mappings in the development of a modal logic in-
terpretation of Dempster{Shafer theory seems to be
the most natural approach since both the accessibility
relation and the value assignment function, inherent
features of any model of modal logic, can equivalently
be considered as multivalued mappings.

2.1 Multivalued mappings

In this section, we brie
y recall some basic concepts
from the theory of multivalued mappings [1, 2]. A
multivalued mapping F from a universe X into a uni-
verse Y associates to each element x of X a subset
F (x) of Y . The domain of F , denoted dom(F ), is
de�ned as

dom(F ) = fx j x 2 X ^ F (x) 6= ;g:

F is called non-void if dom(F ) = X . The inverse of
F is the multivalued mapping F� from Y into X that
associates to each y of Y the subset

F�(y) = fx j x 2 X ^ y 2 F (x)g

of X , i.e. y 2 F (x) is equivalent to x 2 F�(y). The
direct image of a subset A of X under F is de�ned as:

F (A) =
[

x2A

F (x): (1)

Given a subset B of Y , various di�erent inverse im-
ages of B under F can be considered:

(i) the inverse image:

F�(B) = fx j x 2 X ^ F (x) \ B 6= ;g;

(ii) the superinverse image:

F+(B) = fx j x 2 dom(F ) ^ F (x) � Bg;

(iii) the pure inverse image:

F�1(B) = fx j x 2 X ^ F (x) = Bg:

One easily veri�es that F�(;) = F+(;) = ;, F�(Y ) =
F+(Y ) = dom(F ) and also F�1(;) = codom(F ). No-
tice that the inverse image of a subset A of X under
F� is the same as the direct image of A under F , i.e.
(F�)�(A) = F (A): For any two subsets A of X and
B of Y , it holds that:

F (A) \ B 6= ; , A \ F�(B) 6= ;;

and, furthermore, if F is non-void, then

F (A) � B , A � F+(B):

It is clear that the inclusion F+(B) � F�(B) always
holds. Moreover, the inverse and superinverse images
are connected by the following complementation prop-
erties:

coF�(B) = F+(coB) [ co dom(F )

coF+(B) = F�(coB) [ co dom(F ):
(2)

2.2 Plausibility and belief measures as
upper and lower probabilities

Considering a probability measure P on P(X), Demp-
ster showed that a multivalued mapping � from X

into Y such that P (dom(�)) > 0 induces upper and
lower probabilities on P(Y ) [6]. These upper and
lower probabilities can be interpreted as conditional
probabilities of inverse and superinverse images given
the domain of the multivalued mapping, as follows:

P �(A) = P (��(A) j dom(�))

P�(A) = P (�+(A) j dom(�)):

In his essay on a mathematical theory of evidence [14],
Shafer reinterpreted the upper and lower probabilities
as degrees of plausibility and belief emphasizing the
fact that they exhibit, respectively, subadditivity and
superadditivity properties, in contrast to the additiv-
ity of probability. Note that plausibility and belief
measures come in dual pairs. For any belief measure
Bel on P(X), the P(X) ! [0; 1] mapping Pl de�ned
by Pl(A) = 1�Bel(coA) is a plausibility measure on
P(X). For instance, P � and P� are dual.

Furthermore, in caseX is �nite, Shafer introduced the
concept of a basic probability assignment and its focal
elements [14]. Formally, a P(X) ! [0; 1] mapping
m is called a basic probability assignment on P(X) if
m(;) = 0 and

X

A2P(X)

m(A) = 1:

A subset F of X for which m(F ) > 0 is called a focal
element of m.

There exists a one-to-one correspondence between be-
lief measures, plausibility measures and basic proba-
bility assignments. Given a basic probability assign-
ment m, the corresponding belief measure Bel and its
dual plausibility measure Pl are given by:

Bel(A) =
X

C�A

m(C)

Pl(A) =
X

C\A6=;

m(C):
(3)



Conversely, given a belief measure Bel, the corre-
sponding basic probability assignment m is given by:

m(A) =
X

C�A

(�1)jAnCjBel(C):

Dempster observed in [6] that, in case � is a multi-
valued mapping from a universe X into a �nite uni-
verse Y , the upper and lower probabilities are com-
pletely determined by the quantities P (��1(C)), for
C 2 P(Y ). Therefore, the basic probability assign-
ment m corresponding to the upper and lower proba-
bilities (3) is given by [6]:

m(A) = P (��1(A) j dom(�)):

For m(A) to be strictly positive it must hold that
��1(A) 6= ; and, hence, there should exist x 2 X

such that A = �(x): Consequently, the focal elements
are to be found in the set

f�(x) j x 2 dom(�)g: (4)

2.3 Upper and lower plausibilities and
beliefs

In [7], Dubois and Prade obtained upper and lower
plausibilities and beliefs by considering a second, non-
void multivalued mapping � from Y into a universe Z,
and reiterating the process of generating upper and
lower probabilities. Since � is non-void, we have that
Pl(dom(�)) = Pl(Y ) = 1. Thus, upper and lower
plausibilities on P(Z) are de�ned by [7]:

Pl�(A) = Pl(��(A))

Pl�(A) = Pl(�+(A));

and upper and lower beliefs on P(Z) are de�ned by:

Bel�(A) = Bel(��(A))

Bel�(A) = Bel(�+(A)):

If Pl and Bel are dual measures, then the upper and
lower plausibilities and beliefs are connected by the
following duality relationships:

Pl�(A) = 1� Bel�(coA)

Pl�(A) = 1� Bel�(coA):
(5)

Due to the assumption that � is non-void, it has been
possible to show that lower beliefs again constitute a
belief measure and also that upper and lower plausi-
bilities and beliefs are connected by the above duality
relationships. The question is how to de�ne upper
and lower plausibilities and beliefs induced by a mul-
tivalued mapping that is not non-void in general, so

that the latter properties are preserved. The answer
lies in de�ning the upper and lower plausibilities as
conditional plausibilities of inverse and superinverse
images under �, given dom(�):

Pl�(A) = Pl(��(A) j dom(�))

Pl�(A) = Pl(�+(A) j dom(�));
(6)

and upper and lower beliefs as conditional beliefs
of inverse and superinverse images under �, given
dom(�):

Bel�(A) = Bel(��(A) j dom(�))

Bel�(A) = Bel(�+(A) j dom(�)):
(7)

3 Evidence measures in modal logic

3.1 Modal logic

Modal logic is an extension of clasical propositional
logic [5]. It has been developed to formalize argu-
ments involving the notions of possibility and neces-
sity. The language of modal logic consists of a set of
atomic propositions, logical connectives ^ ; _ ; :; !;

$; and modal operators of possibility 3 and neces-
sity 2. The propositions of the language are of the
following form:

� atomic propositions,

� if p and q are propositions, then are so :p; p ^ q;

p _ q; p! q; p$ q; 2p; 3p.

Any system of modal logic contains the axiom

3p$ :2:p:

The semantic analysis of a system of modal logic is
performed using the notion of a model of modal logic,
which is usually viewed as a structure of the form
M = hW;R; V i; where W denotes a set of possible
worlds, R is a binary relation onW , called accessibility
relation, and V is a multivalued mapping from the set
of atomic propositions intoW called value assignment
function.

The value assignment function V associates to each
atomic proposition p the set V (p) of those possible
worlds in which p is true. We will use kpkM to de-
note the truth set of a proposition p, i.e. the set of all
worlds in which p is true. Hence V (p) = kpkM for any
atomic proposition p. The value assignment function
is inductively extended to all non-modal propositions
(propositions that do not contain 3 and 2) in the
usual way. The truth conditions of modal proposi-
tions are de�ned using the accessibility relation R, as



follows:

w 2 k3pkM , (9v 2 W )(wRv ^ v 2 kpkM )

w 2 k2pkM , (8v 2 W )(wRv ) v 2 kpkM);

for any proposition p and any world w 2W . Observ-
ing that the accessibility relation R can be regarded
as a multivalued mapping from W into W , we have
shown that the foregoing expressions for the truth sets
of modal propositions can be rewritten in terms of in-
verse and superinverse images under R of truth sets
of non-modal propositions [16]:

k3pkM = R�
�
kpkM

�

k2pkM = R+
�
kpkM

�
[ co dom(R):

(8)

3.2 Existing interpretations of evidence
measures in modal logic

In this subsection, we recall the modal logic in-
terpretation of Dempster{Shafer theory developed
in [17] as a continuation of the interpretations es-
tablished by Harmanec, Klir, Resconi, St. Clair and
Wang [8, 9, 10, 11]. The latter work work is closely
related to that of Ruspini [12, 13], which is based on
a form of epistemic logic, but Harmanec et al. use a
more general system of modal logic and also address
the completeness of the interpretation. Ruspini's ap-
proach is a generalization of the method proposed by
Carnap [4] for the development of logical foundations
of probability theory, and has led to new formulas for
combining dependent evidence and for utilizing con-
ditional knowledge.

Let us consider a universeX and associate to it propo-
sitions of the form eA =\The true value of e is in A",
where e is a quantity with as set of possible values X
and A 2 P(X). Next, assume that all atomic propo-
sitions are of the form efxg, for x 2 X . Therefore, the
propositions eA are de�ned by the equations

e; =
^

x2X

:efxg

and

eA =
_

x2A

efxg;

for any A 2 P(X) n f;g:

Consider a model M = hW;R; V; P i; where W and
R are as above, V is a multivalued mapping from
X into W that associates to each x the set V (x)
of those possible worlds in which efxg is true, i.e.
V (x) = kefxgk

M , and P is a probability measure on

P(W ) such that P
�
k3eXk

M
�
> 0. Observe that

a proposition efxg is true in a world w if and only

if w 2 V (x) and, moreover, due to (1), for any
A 2 P(X):

V (A) = keAk
M : (9)

Following the approach of Harmanec, Klir, Resconi,
St. Clair and Wang [8, 9, 10, 11], the interpretations
in [15, 16] were developed under the following assump-
tion:

SVA (Singleton Valuation Assumption): One
and only one proposition efxg is true in each
world.

This asumption implies that eX and also eA $ :ecoA
are always true in M .

In [17], we worked with a very general class of mod-
els of modal logic, for which it was allowed that in
each possible world any number of atomic proposi-
tions (possibly zero) can be true. We obtained that
any model M = hW;R; V; P i with P

�
k3eXk

M
�
> 0

induces a plausibility measure PlM and a belief mea-
sure BelM , the dual measure of PlM , on P(X), de�ned
by:

PlM (A) = P
�
k3eAk

M j k3eXk
M
�

BelM (A) = P
�
k2:ecoAkM j k3eXkM

�
:

(10)

Also the process of conditioning has been treated
in [17]. We have shown that there exist several ways
of restricting the model M = hW;R; V; P i to a model
MB = hWB ; RB ; VB ; PBi, with B a subset of X such
that P (k3eBkM ) > 0, such that the plausibility mea-
sure PlMB

and belief measure BelMB
induced by the

model MB coincide with the conditional ones of the
plausibility and belief measures induced by the origi-
nal model M , i.e.

PlMB
(A) = PlM (A j B)

BelMB
(A) = BelM (A j B):

These restriction procedures consist in pruning the
accessibility relation, restricting the value assignment
function, reducing the set of possible worlds, or com-
binations thereof. The case of models satisfying SVA
has been studied in detail in [15].

3.3 Evidence measures induced by
accessibility relations and value
assignment functions

Consider a universe X with atomic propositions of
the form efxg, for all x 2 X and a model M =
hW;R; V; P i; where W , R, V and P are as above.
Since k3eXkM � dom(R), it holds that

P (dom(R)) � P
�
k3eXk

M
�
> 0: (11)



Therefore, the accessibility relation R, regarded as a
multivalued mapping from W into W , induces plau-
sibility and belief measures on P(W ), de�ned by [3]:

PlR(U) = P (R�(U) j dom(R))

BelR(U) = P (R+(U) j dom(R)):
(12)

In case of a �nite set of worldsW , the basic probabil-
ity assignment mR corresponding to PlR and BelR is
given by:

mR(U) = P (R�1(U) j dom(R)): (13)

Thus, on the one hand, any model M = hW;R; V; P i
with P (dom(R)) > 0 can be endowed with a plau-
sibility measure and a belief measure induced by its
accessibility relation R on the set of possible worlds
W . On the other hand, the inverse V � of the value as-
signment function V propagates these plausibility and
belief measures into a system of upper and lower plau-
sibilities and beliefs on the set of atomic propositions
X , given by (6) and (7). Since upper plausibilities and
lower beliefs again form a plausibility measure and a
belief measure, we are interested in the upper plausi-
bilities PlR

� and the lower beliefs BelR
� induced by

V � on P(X):

PlR
�(A) = PlR((V

�)�(A) j dom(V �))

BelR�(A) = BelR((V
�)+(A) j dom(V �)):

Recall that for any A 2 P(X) it holds that
(V �)�(A) = V (A) and hence, due to (9), dom(V �) =
keXkM ; and, consequently, applying (2) we also have
that

(V �)+(A) = co (V �)�(coA) \ dom(V �)

= k:ecoAkM \ keXkM :

Since PlR
�
keXkM

�
> 0 is guaranteed by (8) and

(11), we obtain that PlR
�(A) and BelR�(A) can be

expressed as follows:

PlR
�(A) = PlR

�
keAkM j keXkM

�

BelR�(A) = BelR
�
k:ecoAkM j keXkM

�
:

It is interesting to observe that PlR
� and BelR� coin-

cide with the interpretations of plausibility and belief
measures mentioned in [17]. Indeed, in view of (12)
and (8), we �nd that for any A 2 P(X) :

PlR
�(A) = P

�
k3eAk

M j k3eXk
M
�
:

Due to (5), PlR
� and BelR

� are dual and, hence, BelR
�

coincides with the belief measure BelM in (10).

Thus, the above considerations have led us to an al-
ternative and very elegant modal logic interpretation
of Dempster{Shafer theory in terms of measures in-
duced by the accessibility relation.

Theorem 3.1 A model M = hW;R; V; P i with
P
�
k3eXkM

�
> 0 induces a plausibility measure PlM

and a belief measure BelM on P(X), de�ned by:

PlM (A) = PlR
�(A) = PlR

�
keAkM j keXkM

�

BelM (A) = BelR�(A) = BelR
�
k:ecoAkM j keXkM

�
;

where PlR and BelR are the plausibility and belief
measures induced by R on P(W ).

Furthermore, let us assume that the following holds:

WSVA (Weak Singleton Valuation Assump-
tion): At least one proposition efxg is true in
each world.

In other words, V � is non-void and hence keXk =W .
Consequently, the interpretations for plausibility and
belief measures from Theorem 3.1 reduce to

PlM (A) = PlR
�
keAkM

�

BelM (A) = BelR
�
k:ecoAkM

�
:

IfW is �nite, then PlM and BelM can equivalently be
expressed in terms of the basic probability assignment
mR induced by R (see (13)):

PlM (A) =
X

U\keAkM 6=;

mR(U)

BelM (A) =
X

U�k:ecoAkM

mR(U):

Theorem 3.2 A �nite model M = hW;R; V; P i with
P
�
k3eXkM

�
> 0 that satis�es WSVA induces a basic

probability assignment mM on P(X), de�ned by:

mM (A) =
X

V �(U)=A

mR(U);

where mR is the basic probability assignment induced
by R on P(W ). Moreover, the plausibility and be-
lief measures PlM and BelM corresponding to mM are
given by:

PlM (A) =
X

V �(U)\A6=;

mR(U)

BelM (A) =
X

V �(U)�A

mR(U):

Remark 3.1 Notice that V �(U) = A, for U 2
P(W ), means that, in total, in the worlds belonging
to U all propositions efxg, for x 2 A, are true and
no other atomic propositions are true in them. More-
over, recall from (4) that all focal elements of mR are
contained in the set

fR(w) j w 2 dom(R)g: (14)



Hence, according to Theorem 3.2, we have that any
�nite model M = hW;R; V; P i that satis�es WSVA
induces a basic probability assignment mM such that
the basic probability mM (A) of each focal element A
of mM is equal to the sum of the basic probabilities
mR(R(w)) of those focal elements R(w) of mR in
which all and only atomic propositions associated to
A are true.

4 Minimal models for given

plausibility and belief measures

As discussed in the above remark, the basic probabil-
ity mM (A) of each focal element A, for A 2 P(X),
of the basic probability assignment mM induced by a
�nite modelM = hW;R; V; P i that satis�es WSVA, is
equal to the sum of the basic probabilities mR(R(w))
of those R(w) in which all atomic propositions asso-
ciated to A, and no others, are true. Hence, to each
focal element A of mM there corresponds at least one
such world w, and, obviously, the same world cannot
correspond to two di�erent focal elements. Therefore,
any �nite model of modal logic that satis�es WSVA
and induces a given probability assignment m con-
tains at least as many worlds as there are focal ele-
ments. It therefore makes sense to try to construct a
model of modal logic with a minimal number of worlds
for a given basic probability assignment.

Letm be the basic probability assignment correspond-
ing to a plausibility measure Pl and its dual belief
measure Bel de�ned on a �nite universe X and let
F1; F2; : : : ; Fk be the focal elements of m. Let us con-
struct a modelM = hW;R; V; P i in the following way:

(i) W := fw1; : : : ; wkg;

(ii) For i = 1; : : : ; k � 1 do
R(wi) := fwi+1g;
P (fwig) := m(Fi+1);
V �(wi) := Fi;

(iii) R(wk) := fw1g;
P (fwkg) := m(F1);
V �(wk) := Fk.

Thus, we have constructed a circular modelM with as
many worlds as there are focal elements, i.e. jW j = k,
and each world wi 2 W is accessed by its predecessor
wi�1 and reaches its successor wi+1, where the pre-
decessor of w1 is wk and the successor of wk is w1.
Obviously, M satis�es WSVA since

(8wi 2W )(V �(wi) = Fi):

Moreover, it holds that

P
�
k3eXkM

�
= P (W ) =

kX

i=1

P (fwig)

=

kX

i=1

m(Fi) = 1:

Therefore, according to Theorem 3.2, the model M
induces a basic probability assignment mM on P(X)
such that, for any i 2 f1; : : : ; kg:

mM (Fi) =
X

V �(U)=Fi

mR(U); (15)

wheremR is the basic probability assignment induced
by the accessibility relation R on P(W ). Recall that
all focal elements of mR are contained in the set
in (14). Moreover, M is divised in such a way that
this set reduces to ffw1g; : : : ; fwkgg; and for each fo-
cal element Fi, i 2 f1; : : : ; kg, there exists exactly
one world wi such that V �(wi) = Fi. Hence, expres-
sion (15) can be simpli�ed as follows

mM (Fi) = mR(fwig);

for any i 2 f1; : : : ; kg. Using (13), we �nd that

mR(fwig) = P (R�1(fwig) j dom(R))

= P (fwi�1g) = m(Fi);

for any i 2 f2; : : : ; kg. Similarly,

mR(fw1g) = P (fwkg) = m(F1):

Thus, it has been shown that M is such that
mM (Fi) = m(Fi), for any i 2 f1; : : : ; kg.

Example 4.1 Consider X = fa; b; c; d; e; fg and the
basic probability assignment m corresponding to a
plausibility measure Pl and its dual belief measure Bel
de�ned on X. The focal elements Fi of the basic prob-
ability assignment m are listed in Table 1. Using the
above described construction, we can build a model
M = hW;R; V; P i, as is done in Table 2.

Another minimal model of modal logic yielding the
same basic probability assignment is the model M 0 =
hW 0; R0; V 0; P 0i de�ned as follows:

(i) W 0 := fw1; : : : ; wkg;

(ii) For i = 1; : : : ; k do
R0(wi) := fwig;
P 0(fwig) := m(Fi);
V 0�(wi) := Fi.



The model M 0 is re
exive (in fact, no world can ac-
cess another one) and satis�es WSVA. Similarly as
above, one veri�es that mM 0 = m. This illustrates
that for any basic probability assignment m on a �-
nite universe we can always construct a trivial model
of modal logic satisfying WSVA.

Focal elements Fi of m m(Fi)

F1 = fa; b; c; dg 1/3

F2 = feg 1/6

F3 = fb; fg 1/6

F4 = fb; d; e; fg 1/3

Table 1. Focal elements of m.

W R(wi) P (fwig) V �(wi)

w1 fw2g 1/6 fa; b; c; dg

w2 fw3g 1/6 feg

w3 fw4g 1/3 fb; fg

w4 fw1g 1/3 fb; d; e; fg

Table 2. Constructed minimal model
M = hW;R; V; P i.
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