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Abstract

I introduce and study a fairly general imprecise second-
order uncertainty model, in terms of lower desirability. A
modeller’s lower desirability for a gamble is defined as her
lower probability for the event that a given subject will
find the gamble (at least marginally) desirable. For lower
desirability assessments, rationality criteria are introduced
that go back to the criteria of avoiding sure loss and co-
herence in the theory of (first-order) imprecise probabil-
ities. I also introduce a notion of natural extension that
allows the least committal coherent extension of lower de-
sirability assessments to larger domains, as well as to a
first-order model, which can be used in statistical reason-
ing and decision making. The main result of the paper
is what I callPrecision–Imprecision Equivalence: as far
as certain behavioural implications of this model are con-
cerned, it does not matter whether the subject’s underlying
first-order model is assumed to be precise or imprecise.

Keywords. Hierarchical uncertainty model, coherence,
natural extension, imprecision.

1 Introduction

Hierarchical models are rather common in uncertainty the-
ory. They arise when there is a ‘correct’ or ‘ideal’ (first-
order) uncertainty model about a phenomenon of interest,
but the modeller is uncertain about what it is. The mod-
eller’s uncertainty is then calledsecond-order uncertainty.
A list of examples showing that second-order uncertainty
occurs in many situations, can be found in [7].

By far the most common hierarchical model is the
Bayesian one, where both the first and the second-order
model are (precise) probability measures, or linear previ-
sions [1, 10, 11, 15]. Other models allow imprecision in
the second-order model, but still assume that the first-order
model is precise; examples are the robust Bayesian mod-
els [2], models involving second-order possibility distribu-
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tions [4, 7, 14], and the G¨ardenfors and Sahlin epistemic
reliability model [9]. I know of no detailed analysis where
imprecision is explicitly allowed at both levels, but see [13,
Section 5.10.5] for a brief discussion.

In this paper, I introduce and study a particular type of
imprecise behavioural second-order model, in terms of so-
called lower desirability functions. This model is closely
related to, but in a sense more general than the buying
functions introduced in [7]. I show that as far as certain
behavioural implications of this model are concerned, it
does not matter whether we assume that the underlying
ideal first-order model is precise or imprecise. I call this
resultPrecision–Imprecision Equivalence. It generalises a
number of results known in the literature: the closeformal
analogy between Walley’s behavioural theory of imprecise
probabilities [13] and Bayesian sensitivity analysis [2], the
results concerning second-order possibility distributions in
[14] and the representation theorems in [7].

The paper is organised as follows. Section 2 gives an
overview of the basic notions in Walley’s theory of im-
precise probabilities, which are needed for the develop-
ment of the second-order uncertainty model. This model,
in terms of lower desirability functions, is introduced in
Section 3. The model can be made more explicit mathe-
matically by providing more details about the underlying
ideal first-order model. In Section 4, I assume that the
first-order model is imprecise. Based on this assumption,
I introduce a number of corresponding rationality criteria
which can be imposed on the second-order model, together
with a notion of natural extension, which can be used to
explore the behavioural implications of given lower desir-
ability assessments. A similar treatment is given in Sec-
tion 5, based on the assumption that the underlying ideal
first-order model is precise. The main results of the pa-
per are gathered in Section 6, where I show that the be-
havioural implications of lower desirability functions do
not depend on whether the underlying first-order model
is assumed to be precise or not. I also prove a number
of properties of natural extension that clarify the analogy
with natural extension in the theory of first-order impre-



cise probabilities. Section 7 contains interesting examples
relating the present model to Walley’s theory of first-order
imprecise probabilities [13], Bayesian sensitivity analysis
[2], and to the theory of fuzzy probability and buying func-
tions explored in [4, 6, 7]. Section 8 concludes the paper.

2 Preliminary Notions

In this section, I discuss a number of aspects of the precise
and imprecise uncertainty models that will serve as a ba-
sis for the development of the more complex second-order
models in the later sections. This necessarily brief exposi-
tion is based on Walley’s behavioural account of imprecise
probabilities [13], which should be consulted for more de-
tails and further discussion.

Call a possibility spacethe set
 of possible states! of
the world — mutually exclusive and exhaustive — that
are of interest. Agambleon
 is a bounded, real-valued
function on the domain
, which can be interpreted as an
uncertain reward; if the true state of the world turns out
to be! then the (possibly negative) reward isX(!) —
expressed in units of some linear utility. The rewardX
is uncertain because it is uncertain which element of
 is
the true state. I shall use the notationL(
) for the set of
all gambles on
. Note thatL(
) is a real linear space
under the pointwise addition of gambles and the pointwise
multiplication of gambles with real numbers.

A subject’s uncertainty about a domain
 can be measured
through his attitudes to gamblesX defined on
. One
way to do that is by measuring hislower prevision— or
supremum acceptable buying price —P (X) and hisupper
prevision— or infimum acceptable selling price —P (X)
for gamblesX . The transaction in which a gambleX is
bought for a pricex has rewardX � x, a new gamble.
A subject’ssupremum acceptable buying priceP (X) for
X is the largest real numberc such that he is committed
to accept the gambleX � x for all x < c. Similarly, his
infimum acceptable selling priceP (X) forX is the small-
est real numberd such that he is committed to accept the
gamblex�X for all x > d. Since buying a gambleX for
pricex is the same thing as selling�X for price�x, it is a
rationality requirement thatP (�X) = �P (X), so we can
in principle determine upper previsions from lower previ-
sions, and vice versa. I shall consistently use lower rather
than upper previsions in developing the present theory.

Eventsare subsets of
, and can be identified with their in-
dicator functions, which are gambles. For an eventA � 
,
buying and selling prices (lower and upper previsions) for
its indicator functionIA can be regarded as betting rates
on and againstA (lower and upper probabilities).

Lower previsions represent a subject’s dispositions to buy
gambles, and as such they should satisfy a number of con-
sistency, or rationality, criteria, which can be summarised

by the following requirement. Assume that the subject
gives a lower previsionP (X) for all gamblesX in a subset
K ofL(
). In order to identify its possibility space and do-
main, I shall also denote this lower prevision by(
;K; P ).
Then for any natural numbersn � 0 andm � 0, and for
any gamblesXo,X1, : : : , Xn in K it must hold that:

sup
!2


� nX
k=1

G(Xk)(!)�mG(Xo)(!)

�
� 0: (1)

whereG(X) denotes the gambleX � P (X) on
. Why
is this a significant rationality criterion? The argument is
based on two rationality criteria for accepting gambles: (i)
if a subject accepts gambleX he should also accept�X ,
where� is a non-negative real number; and (ii) if a subject
accepts the gamblesX1, : : : , Xn he should also accept
their sum

Pn

k=1Xk. The first criterion states that the ac-
ceptability of a gamble is independent of the units in which
the linear utility is expressed; and the second one states
that if a subject accepts a number of gambles separately,
he should also accept them jointly. A detailed justification
of these basic rationality criteria can be found in [13]. To
justify (1), we first look at the casem = 0. If the condition
fails, there aren � 1, X1, : : : , Xn in K and� > 0 such
that the sum of the acceptable1 gambles[Xk�P (Xk)+ �]
is strictly negative:

Pn

k=1[Xk � P (Xk) + �] < ��. So
there is a sum of acceptable gambles, which by (ii) is an
acceptable gamble, that is certain to produce an overall
loss! This can only be avoided by imposing the above
condition form = 0. If the condition holds form = 0,
(
;K; P ) is said toavoid sure loss.

Next, we turn to the casem > 0. If the condition fails,
there aren � 0, Xo, X1, : : : , Xn in K and� > 0 such
that

Pn

k=1[Xk � P (Xk) + �] � m[Xo � (P (Xo) + �)].
Since the left-hand side is acceptable by (ii), the right-hand
side will be acceptable too, as it represents a gamble with
a reward that is at least as high. This means, also using
(i), that the subject should be effectively disposed to buy
Xo for a priceP (Xo) + �, which is strictly higher than his
supremum acceptable buying priceP (Xo): in specifying
P (Xo) he did not take into account the implications of his
other lower prevision assessments. This produces a kind
of logical inconsistency, which is not as bad as incurring
a sure loss, but should still be avoided. If the condition
holds for allm � 0, the lower prevision(
;K; P ) is called
coherent. Coherence clearly implies avoiding sure loss.

We have so far been concerned with lower previsions de-
fined on subsetsK of L(
). Natural extension allows us to
‘extend’ a lower previsionP onK that avoids sure loss to
a coherent lower prevision on all gambles by taking only
two things into account: (a) the information contained in
P , and (b) the requirement of coherence. Consider any

1That these gambles are acceptable, follows from the defini-
tion of lower prevision.



gambleX on
. Assume thatp is our subject’s supremum
acceptable buying price forX . Coherence requires that
this new assessment should be compatible with the lower
prevision assessments made previously, in the sense that
for anyn � 0, any non-negative real�1, : : : , �n and any
X1, : : : , Xn in K:

p � inf
!2


�
X �

nX
k=1

�k [Xk(!)� P (Xk)]

�
:

If this were not the case, there would be some� > 0
such thatX � (p + �) �

Pn
k=1 �k[Xk � P (Xk) + �].

The left-hand side represents an acceptable gamble, since
it dominates a non-negative linear combination of accept-
able gambles, which should be acceptable by rationality
criteria (i) and (ii) above. This means that our subject’s
lower prevision assessments imply that he should be dis-
posed to buyX for a price strictly higher thanp, and this
is in conflict with his assessment ofp as asupremumac-
ceptable buying price forX . If we take into account all
the assessments implicit in the lower previsionP on K,
we find that coherence imposes the following lower bound
onp: p � E(X), where

E(X) = sup
n;�k;Xk

inf
!2


�
X(!)�

nX
k=1

�kG(Xk)(!)

�
: (2)

Here and later in the paper I denote bysupn;�k;Xk
the

supremum over integern � 0, real �k � 0 and gam-
blesXk 2 K, for k = 1; : : : ; n. The functionalE defined
by (2) is called thenatural extensionof the lower prevision
P . It is defined for any gambleX on
. Natural extension
derives its importance from the following result, proven by
Walley [13, Theorem 3.1.2].

Theorem 1. Let P be a lower prevision on a set of gam-
blesK � L(
) that avoids sure loss, and let(
;L(
); E)
be its natural extension. The following statements hold.

1. inf[X ] � E(X) for all X 2 L(
).

2. E is a coherent lower prevision onL(
).

3. E dominatesP onK: E(X) � P (X) for all X 2 K.

4. E coincides withP onK if and only ifP is coherent.

5. E is the (pointwise) smallest coherent lower previ-
sion onL(
) that dominatesP onK.

6. If P is coherent thenE is the (pointwise) smallest
coherent lower prevision onL(
) that coincides with
P onK.

This shows that natural extension is least committal: any
coherent extension of the coherent lower previsionP im-
plies a disposition to buy gamblesX for a price that is
at least as high asE(X), and therefore has behavioural

implications that are at least as strong. Moreover, ifP is
a lower prevision that avoids sure loss but is not coher-
ent, natural extension corrects and extends it to a coherent
lower prevision on all gambles, again in a manner which
has minimal behavioural implications.

Marginally acceptable buying and selling prices for a gam-
ble may differ because the subject is indecisive or because
he has little information about the gamble. The differ-
ence between the marginal buying and selling prices typ-
ically decreases as the amount of relevant information in-
creases. In the special case where every gambleX has a
‘fair price’, meaning that the supremum acceptable buying
price agrees with the infimum acceptable selling price, we
obtain the theory of linear previsions of de Finetti [8]. A
linear previsionP on a set of gamblesK is a map taking
K to the set of real numbersR, such that for allm � 0 and
n � 0, and for anyX1, : : : ,Xn andY1, : : : , Ym in K,

sup
!2


� nX
k=1

G(Xk)(!)�
mX
k=1

G(Yk)(!)

�
� 0:

A linear prevision(
;K; P ) is therefore coherent, both
when interpreted as a lower and as an upper prevision on
K. A linear prevision onL(
) can alternatively be char-
acterised as a linear functionalP onL(
) that is positive
(X � 0 ) P (X) � 0) and has unit norm (P (1) = 1).
A linear prevision onK can always be extended to a linear
prevision onL(
). A linear prevision on a field of sets is
a finitely additive probability on that field. I shall denote
the set of all linear previsions onL(
) byP.

There is a close relationship between lower previsions and
sets of linear previsions. If(
;K; P ) is a lower prevision
and we define its set of dominating linear previsions by
M(P ) = fP 2 P : (8X 2 K)(P (X) � P (X))g, thenP
avoids sure loss if and only ifM(P ) 6= ; andP is coher-
ent if and only ifP (X) = inffP (X) : P 2 M(P )g for
all X 2 K. If P avoids sure loss, the natural extensionE

of P is given byE(X) = inffP (X) : P 2 M(P )g for all
X 2 L(
). The setM(P ) is convex and compact in the
weak* topology onP. There is a one-to-one relationship
between coherent lower previsionsP onL(
) and convex
weak*-compact sets of linear previsionsM, expressed by

P (X) = inffP (X) : P 2 Mg

M = fP 2 P : (8X 2 L(
))(P (X) � P (X))g:

Another completely equivalent formulation of the model
of lower and upper previsions can be given in terms of sets
of almost desirable gambles. A gambleX is almost desir-
able (or at least marginallyacceptable) to a subject if he
is disposed to accept the gambleX + � for all � > 0, or
equivalently, if his lower prevision forX is non-negative:
P (X) � 0. Instead of asking the subject for his lower
prevision, we may ask him to specify a setD of gam-
bles that he judges to be almost desirable.D is said to



avoid sure lossif for all n � 0 andX1, : : : , Xn in D,
sup!2
[

Pn

k=1Xk(!)] � 0. It is called coherentif it
is a convex cone in the linear spaceL(
) that is closed
under the supremum norm and contains all non-negative
(X � 0), and no uniformly negative (sup[X ] < 0) gam-
bles. There is a one-to-one correspondence between co-
herent lower previsionsP on L(
) and coherent sets of
almost desirable gamblesD, given by

P (X) = supf� : X � � 2 Dg

D = fX 2 L(
): P (X) � 0g
(3)

Thenatural extensionof a set of almost desirable gambles
D is the smallest coherent set of almost desirable gambles
that includesD, or equivalently, the intersection of all co-
herent sets of almost desirable gambles that includeD.

Denote the collection of all coherent sets of almost de-
sirable gambles on
 by D , and orderD by set inclu-
sion. Then(D ;�) has a smallest elementDv = fX 2
L(
): X � 0g, called thevacuous set of almost de-
sirable gambles. It corresponds to the (coherent)vacu-
ous lower previsionP v , defined byP v(X) = inf[X ] =
inf!2
X(!) for X 2 L(
). Both models represent min-
imal behavioural commitments on the part of the subject:
he is only disposed to engage in transactions that are sure
to yield a non-negative gain. They are suitable models for
the subject’s complete ignorance about
.

On the other hand,(D ;�) does not have a greatest ele-
ment, but it does have a set of mutually incomparable max-
imal elementsfDP : P 2 Pg, where

DP = fX 2 L(
): P (X) � 0g

is the closed half-space of almost desirable gambles asso-
ciated with the linear previsionP . For a coherent set of
almost desirable gamblesD, the set of linear previsions

M(D) = fP 2 P : (8X 2 D)(P (X) � 0)g (4)

is non-empty, weak*-compact and convex. It identifies all
the closed half-spaces which includeD, andD is the in-
tersection of these half-spaces:

D =
\

P2M(D)

DP : (5)

If D is not coherent but avoids sure loss, then (5) still holds
provided we replaceD on the left hand side by its natural
extension. Equations (4) and (5) establish a one-to-one
correspondence between coherent sets of almost desirable
gambles and weak*-compact convex sets of linear previ-
sions. Note that if the coherent modelsP andD corre-
spond in the sense of (3), thenM(P ) =M(D).

3 Lower Desirability Functions

To distinguish between first and second-order uncertainty,
we consider asubjectwho is uncertain about a certain phe-
nomenon of interest, for which he has a possibility space


. The second-order uncertainty about the subject’s first-
order uncertainty model is supposed to be that of a sec-
ond person, called themodeller. To further distinguish
between the two, I assume that the subject is male and
the modeller female. Below I propose an imprecise proba-
bilistic model for the second-order uncertainty of the mod-
eller about the subject’s first-order uncertainty about
.

By varying the interpretation of subject and modeller, this
formulation can be made to cover most of the second-order
uncertainty models in the literature, e.g.,partial elicita-
tion, where the second-order uncertainty stems from the
modeller’s failure to completely elicit the subject’s beliefs;
partial introspection, where the modeller is modelling her
uncertainty about her own behaviour (modeller and sub-
ject are the same person); and thealeatory interpretation,
where the modeller is uncertain about the true probabili-
ties governing a random process (the ‘subject’). A more
detailed list of interpretations, and further discussion, can
be found in [7].

Consider the eventD(X) that the subject judges the gam-
bleX to be almost desirable. There is second-order un-
certainty when the modeller is uncertain whether or not
D(X) will occur. We model this uncertainty in terms of
a lower desirability functiond. The real numberd(X),
called thelower desirabilityof X , is the modeller’s lower
probability for the eventD(X), i.e., her supremum accept-
able rate for betting on the event that the subject judges the
uncertain rewardX to be almost desirable. If the modeller
gives assessmentsd(X) for all gambles in a subsetK of
L(
), she in fact determines a functiond from the setK to
the unit interval[0; 1], called alower desirability function.
In order to specify its possibility space
 and domainK, I
also denote this function as(
;K; d).

To give a very simple example, complete ignorance about
the subject’s behavioural dispositions regarding gambles
X in a subsetK of L(
) — apart from the assumptions
that the subject is rational in that he will at least marginally
accept a non-negative gain — can be modelled by thevac-
uous lower desirability functiondv, defined as:

dv(X) = IDv
(X) =

(
1 if X � 0

0 if X 6� 0:

dv models minimal behavioural dispositions for the mod-
eller: she is disposed to bet at non-trivial rates only on
the event that the subject will at least marginally accept a
non-negative gain. Other examples of lower desirability
functions are discussed in Section 7.

More complicated types of lower desirability function
could be introduced. For instance, ifD is a set of gambles,
we could defined(D) as the modeller’s lower probability
for the event that all gambles inD are almost desirable to
the subject. Alternatively, we could formulate everything



in terms of strict2 rather than almost-desirability. In the
present paper I shall not deal with these more general or
alternative models. But I do want to mention that many of
the results proven below can be carried over easily to the
more complicated or alternative cases.

So far, I have not given a very detailed description of the
eventsD(X). In the following sections, I describe two
possible underlying models that can be used to account in
more detail for the eventsD(X), and that are based on
different rationality assumptions about the subject on the
part of the modeller.

4 Imprecise First-Order Model

In specifying the numbersd(X), the modeller will make a
number of assumptions about the subject, or rather about
his behavioural dispositions. The minimal assumption I
try to model in this paper is that the subject is a rational
person according to the criteria of coherence described in
Section 2.

Assumption 1. The modeller assumes that the subject is
rational, in the sense that his behavioural dispositions can
be modelled by a coherent set of almost desirable gambles,
or equivalently, by a coherent lower prevision.

Recall thatD is the collection of all coherent sets of al-
most desirable gambles on
. The modeller assumes that
the subject has some coherent set of almost desirable gam-
blesDT , which is an element ofD ; only, the modeller’s
(second-order) uncertainty about the subject’s behavioural
dispositions does not allow her to identifyDT unequiv-
ocally. We may therefore interpret her lower desirability
functiond as a lower probability on the possibility space
D . The eventD(X) that the subject finds the gambleX
almost desirable is now of course the event thatX 2 DT ,
and it can be identified with the following subset ofD :

Di(X) = fD 2 D : X 2 Dg:

Under Assumption 1, a lower desirability functiond on the
set of gamblesK leads to the specification of a lower prob-
ability P i on the set of eventsDi(K) = fDi(X) : X 2
Kg of the possibility spaceD , as follows:

P i(Di(X)) = d(X); X 2 K:

The lower probability(D ; Di (K); P i) therefore models
the modeller’s beliefs about the subject’s behavioural dis-
positions regarding the possibility space
. It will be
called thei–representationof d. We may now require that
this lower probability should satisfy the consistency re-
quirements of avoiding sure loss and coherence, discussed
in Section 2. This leads to the following definitions.

2A gambleX is strictly desirable to a subject if he is disposed
to acceptX � � for some� > 0, or if X > 0.

Definition 2. Let d : K ! [0; 1] be a lower desirability
function defined on the set of gamblesK � L(
). Then
(
;K; d) is called i–reasonableif the lower probability
(D ; Di (K); P i) avoids sure loss, or more explicitly, if for
all n � 1 andX1, : : : , Xn in K, there is aD 2 D such
that

nX
k=1

[ID(Xk)� d(Xk)] � 0: (6)

Moreover,(
;K; d) is calledi–representableif the lower
probability(D ; Di (K); P i) is coherent, or more explicitly,
if for all m � 0, n � 0 andXo, X1, : : : , Xn in K, there
is aD 2 D such that

nX
k=1

[ID(Xk)� d(Xk)] � m [ID(Xo)� d(Xo)] : (7)

Conditions (6) and (7) follow from applying to the lower
probability(D ; Di (K); P i) the conditions of avoiding sure
loss and coherence implicit in (1).

Of course, ani–representable lower desirability function
is alwaysi–reasonable. The vacuous lower desirability is
i–representable on any domainK, and it is dominated by,
and therefore more conservative or less committal than, all
i–representable lower desirability functions onK.

If the lower desirability function(
;K; d) is i–reasonable,
its i–representationP i avoids sure loss, and we can con-
sider the natural extensionEi of P i to all gambles on the
possibility spaceD , and in particular to the eventsDi(X),
for all X 2 L(
). This allows us to define a new lower
desirability functionei on all gamblesX on
, as follows:

ei(X) = Ei(Di(X))

= sup
n;�k;Xk

inf
D2D

�
ID(X)�

nX
k=1

�k [ID(Xk)� d(Xk)]

�
:

(8)

This formula is obtained after applying (2) to calcu-
late the natural extensionEi for the lower probability
(D ; Di (K); P i). I call the lower desirability function
(
;L(
); ei) thei–natural extensionof (
;K; d).

To give a very simple example, thei–natural extension of
the vacuous lower desirability functiondv on a set of gam-
blesK is the vacuous lower desirability function onL(
).

Let us now consider the situation where the unknown first-
order model is an ‘ideal’ in that, if the modeller knew what
the subject’s modelDT 2 D was, she would adopt it as
her own model for making decisions — this happens for
instance when modeller and subject coincide. This means
that the modeller has a collection ofconditionallower pre-
visionsP (�jD), D 2 D , given by

P (X jD) = supf� 2 R : X � � 2 Dg; X 2 L(
):



At the same time, the modeller has information aboutDT
in the form of her lower desirability functiond, or equiv-
alently, itsi–representationP i, and its natural extension
Ei. By Walley’s Marginal Extension Theorem [13, Theo-
rem 6.7.2], the ‘marginal lower prevision’P i and the con-
ditional lower previsionsP (�jD), D 2 D have a natural
extension to a coherent unconditional lower prevision on
the set of gamblesL(
). I denote this byE1

i and call it
thefirst-orderi–natural extensionof the lower desirability
functiond. It is given by

E1
i (X) = Ei(

eX)

= sup
n;�k;Xk

inf
D2D

� eX(D)�
nX
k=1

�k [ID(Xk)� d(Xk)]

�

for all X 2 L(
), where the map (or gamble)eX : D ! R

is defined by

eX(D) = P (X jD) = inf
P2M(D)

P (X): (9)

This formula is again found after applying (2) to calcu-
late the natural extensionEi for the lower probability
(D ; Di (K); P i). E1

i (X) is the least committal marginal
buying price forX that is still compatible with the mod-
eller’s lower desirability assessmentsd taking into account
the requirements of coherence: by combining finite num-
bers of bets that are implicit in the lower desirability func-
tion d — and are therefore at least marginally accept-
able to the modeller —, we can construct lower bounds
for the modeller’s supremum acceptable buying price for
X , rather like in Section 2 where I justified formula (2).
E1
i (X) is the supremum of these lower bounds for all pos-

sible finite combinations of such bets, and therefore is the
supremum acceptable buying price that the modeller can
be induced to pay forX by combining finite numbers of
acceptable bets. If no other information thand is available,
the modeller should use theinduced first-order lower pre-
visionE1

i for making decisions, or as an imprecise prior in
statistical reasoning. For more details, see [7, 13, 14].

For the vacuous lower desirability functiondv on a set of
gamblesK, the first-orderi–natural extension is the vacu-
ous lower prevision onL(
).

5 Precise First-Order Model

It is possible for the modeller to make stronger assump-
tions about the subject’s first-order model than the ratio-
nality hypothesis of coherence I discussed in the previous
section.

Assumption 2. The modeller assumes that the subject is a
Bayesian agent, in the sense that his behavioural disposi-
tions can be modelled by a maximal coherent set of almost
desirable gambles, or equivalently, by a linear prevision.

This assumption leads to a second-order model that is
fairly similar to the one discussed before; only now we
shall work with linear previsionsP 2 P — or half-
spacesDP of desirable gambles — rather than coherent
setsD 2 D of desirable gambles. Since the discussion
uses essentially the same ideas as in the previous section, I
shall dispense with motivation and justification, and limit
myself to introducing and stating some definitions.

The modeller assumes that the subject has some coherent
set of almost desirable gamblesDPT , or equivalently some
linear previsionPT which is an element ofP, and we may
interpret her lower desirability functiond as a lower prob-
ability on the possibility spaceP. The eventD(X) that
the subject finds the gambleX almost desirable is now the
event thatX 2 DPT — or thatPT (X) � 0 —, and it can
be identified with the following subset ofP:

Dp(X) = fP 2 P : X 2 DP g = fP 2 P : P (X) � 0g:

Under Assumption 2, a lower desirability functiond on the
set of gamblesK leads to the specification of a lower prob-
ability P p on the set of eventsDp(K) = fDp(X) : X 2
Kg of the possibility spaceP, as follows:

P p(Dp(X)) = d(X); X 2 K:

The lower probability(P; Dp(K); P p) models the mod-
eller’s beliefs about the subject’s behavioural dispositions
regarding the possibility space
. It will be called thep–
representationof d. Requiring that this lower probabil-
ity should satisfy the consistency requirements of avoiding
sure loss and coherence leads to the following definitions.

Definition 3. Let d : K ! [0; 1] be a lower desirability
function defined on the set of gamblesK � L(
). Then
(
;K; d) is calledp–reasonableif the lower probability
(P; Dp(K); P p) avoids sure loss, or more explicitly, if for
all n � 1 andX1, : : : , Xn in K, there is aP 2 P such
that

nX
k=1

[IDP
(Xk)� d(Xk)] � 0: (10)

Moreover,(
;K; d) is calledp–representableif the lower
probability(P; Dp(K); P p) is coherent, or more explicitly,
if for all m � 0, n � 0 andXo, X1, : : : , Xn in K, there
is aP 2 P such that

nX
k=1

[IDP
(Xk)� d(Xk)] � m [IDP

(Xo)� d(Xo)] :

(11)

If the lower desirability function(
;K; d) isp–reasonable,
itsp–representationP p avoids sure loss, and we can define
its natural extensionEp to all gambles on the possibility
spaceP, and in particular to the eventsDp(X), for allX 2



L(
). This allows us to define a new lower desirability
functionep on all gamblesX on
, as follows:

ep(X) = Ep(Dp(X))

= sup
n;�k;Xk

inf
P2P

�
IDP

(X)�
nX
k=1

�k [IDP
(Xk)� d(Xk)]

�
:

I shall call the lower desirability function(
;L(
); ep) the
p–natural extensionof (
;K; d).

The vacuous lower desirability functiondv on a set of
gamblesK is alwaysp–representable. Itsp–natural exten-
sion is the vacuous lower desirability function onL(
),
and coincides with thei–natural extension.

As in the previous section, we can define a first-order nat-
ural extension, now based on the assumption that the sub-
ject’s model is precise. Let us consider the situation where,
if the modeller knew what the subject’s modelPT 2 P

was, she would adopt it as her own model. This means
that she has a collection of conditional lower previsions
P (�jP ), P 2 P, given by

P (X jP ) = supf� 2 R : X � � 2 DP g

= P (X) = X�(P );

for all X 2 L(
). Here I have used the common notation
X� : P ! R for the linearevaluation functionalassoci-
ated with the gambleX : X�(P ) = P (X) for all P 2 P.
At the same time, the modeller has information aboutPT
in the form of her lower desirability functiond, or equiv-
alently, itsp–representationP p, and its natural extension
Ep. By Walley’s Marginal Extension Theorem [13, Theo-
rem 6.7.2], the ‘marginal lower prevision’P p and the con-
ditional lower previsionsP (�jP ), P 2 P have a natural
extension to a coherent unconditional lower prevision on
the set of gamblesL(
). I denote this byE1

p and call it
thefirst-orderp–natural extensionof the lower desirability
functiond. It is given, for anyX 2 L(
), by

E1
p(X) = Ep(X

�)

= sup
n;�k;Xk

inf
P2P

�
X�(P )�

nX
k=1

�k [IDP
(Xk)� d(Xk)]

�
:

For the vacuous lower desirability functiondv on a set of
gamblesK, the first-orderp–natural extension is the vacu-
ous lower prevision onL(
), and therefore coincides with
the first-orderi–natural extension.

6 Precision–Imprecision Equivalence

Consider the situation where the subject tells the modeller
that the gambleX is almost desirable to him, and nothing
else. If the modeller makes Assumption 1, the only thing
she can infer from the subject’s information is that his true

modelDT is an element ofDi(X) = fD 2 D : X 2 Dg.
Now consider another gambleY on
. Then the modeller
knows for sure that the subject will (at least marginally)
acceptY only if Y 2 D for all D in Di(X), i.e., Y 2
D(X) =

T
Di(X).

On the other hand, if the modeller makes Assumption 2,
she can only infer from the information provided by the
subject that his true modelPT belongs to the setDp(X) =
fP 2 P : P (X) � 0g. She will know that the subject
will (at least marginally) accept another gambleY only
if P (Y ) � 0 for all P 2 Dp(X), or in other words if
Y 2

T
fDP : P 2 Dp(X)g. From the discussion in Sec-

tion 2 and using the notations introduced there, we infer
thatD(X) is the natural extension of the set of almost de-
sirable gamblesfXg and thatDp(X) = M(fXg). Also,
Equation (5) tells us that

T
fDP : P 2 Dp(X)g = D(X).

In other words, what the modeller can infer about the sub-
ject’s dispositions to accept gambles from the information
he has given, is the same, whether she uses a precise or an
imprecise underlying model! It turns out that this con-
clusion is more generally valid. This is the gist of the
Precision–Imprecision Equivalence (PIE) results in The-
orems 4 and 5.

Theorem 4 (PIE, Part I). Let (
;K; d) be a lower desir-
ability function. Then(
;K; d) is i–reasonable if and only
if it is p–reasonable; and(
;K; d) is i–representable if
and only if it isp–representable.

Proof. Considerm � 0, n � 0, andXo, : : : , Xn in K.
To prove the theorem, it is sufficient to show that the exis-
tence of aD 2 D such that (7) holds is equivalent to the
existence of aP 2 P such that (11) holds. For a start,
if (11) holds for someP 2 P, then obviously (7) holds
for DP 2 D . Conversely, assume that (7) holds for some
D 2 D . If m = 0 then it follows that (11) holds for all
P 2 M(D) 6= ;, since for suchP we haveID � IDP

.
This already completes the proof for the first statement. If
m > 0 there are two possibilities. EitherXo 2 D, and
then (11) holds for allP 2 M(D) 6= ;. Or Xo 62 D,
and sinceD =

T
P2M(D)DP , there is aQ 2 M(D) such

thatXo 62 DQ. Then (11) holds forQ. This completes the
proof for the second statement.

We may therefore drop the referencesi andp to the under-
lying models when speaking about whether a lower desir-
ability function is reasonable or representable. There is an
even stronger equivalence result for natural extension.

Theorem 5 (PIE, Part II). Let (
;K; d) be a lower de-
sirability function. Then ifd is reasonable then itsi–
natural extension and itsp–natural extension agree every-
where: ei(X) = ep(X) for all X 2 L(
). Moreover, if
d is representable then its first-orderi–natural extension
and its first-orderp–natural extension agree everywhere:
E1
i (X) = E1

p(X) for all X 2 L(
).



Proof. LetY be a gamble on the setP, and use it to define
a gambleY " on D as follows: for allD 2 D , Y "(D) =
infP2M(D) Y (P ). Then we prove thatEi(Y

") = Ep(Y ),
or equivalently,

sup
n;�k;Xk

inf
D2D

�
Y "(D) �

nX
k=1

�k [ID(Xk)� d(Xk)]

�

= sup
n;�k;Xk

inf
P2P

�
Y (P )�

nX
k=1

�k [IDP
(Xk)� d(Xk)]

�
Considern � 0, non-negative real�1, : : : , �n, andX1,
: : : , Xn in K. It suffices to show that the corresponding
infima in the above expression are equal. SincefDP : P 2
Pg � D , andY "(DP ) = Y (P ), it follows at once that

inf
D2D

�
Y "(D)�

nX
k=1

�k [ID(Xk)� d(Xk)]

�

� inf
P2P

�
Y (P )�

nX
k=1

�k [IDP
(Xk)� d(Xk)]

�
Conversely, we see that

inf
D2D

�
Y "(D)�

nX
k=1

�k [ID(Xk)� d(Xk)]

�

= inf
D2D

inf
P2M(D)

�
Y (P )�

nX
k=1

�k [ID(Xk)� d(Xk)]

�

� inf
P2P

�
Y (P )�

nX
k=1

�k [IDP
(Xk)� d(Xk)]

�
;

since ID � IDP
for any P 2 M(D), and moreover

P =
S
D2D M(D). This proves thatEi(Y

") = Ep(Y ).
The proof of both statements now follows from this equal-
ity, by observing that for anyX 2 L(
), IDp(X) andX�

are gambles onP, and moreover, using the expressions (5)
and (9),IDi(X) = I

"

Dp(X) and eX = X�".

In discussing natural extension, we may therefore drop the
referencesi andp to the underlying models as well. The
following result outlines a number of general properties
of the natural extension of a lower desirability function.
Notice the close analogy with Theorem 1.

Theorem 6. Let(
;K; d) be a lower desirability function
that is reasonable, and let(
;L(
); e) be its natural ex-
tension. The following statements hold.

1. IDv
(X) � e(X) for all X 2 L(
).

2. e is a representable lower desirability function on
L(
).

3. e dominatesd onK: e(X) � d(X) for all X 2 K.

4. e coincides withd on K if and only if d is repre-
sentable.

5. e is the (pointwise) smallest representable lower de-
sirability function onL(
) that dominatesd onK.

6. If d is representable thene is the (pointwise) small-
est representable lower desirability function onL(
)
that coincides withd onK.

Proof. I shall use imprecise first-order models to prove the
theorem. The proof involving precise first-order models is
of course completely analogous. The first statement fol-
lows from Equation (8): the infimum forn = 0 is pre-
ciselyIDv

(X), sinceDv is included in any other element
of D . The rest of the proof relies rather heavily on The-
orem 1. The second statement is obvious, sinceei has
i–representationEi by construction, andEi is coherent
sinceP i avoids sure loss, by assumption. SinceP i is dom-
inated by its natural extensionEi onDi(K), we have for
all X 2 K that ei(X) = Ei(Di(X)) � P i(Di(X)) =
di(X), which proves the third statement. We now prove
the fourth statement.d is i–representable if and only if its
i–representation(D ; Di (K); P i) is coherent, or in other
words, if and only ifP i agrees on its domainDi(K) with
its natural extensionEi, and this is of course equivalent to
the equality ofei andd onK. To prove the last two state-
ments, consider ani–representable lower desirability func-
tion d

0 onL(
), and denote its (coherent)i–representation
by (D ; Di (L(
)); P 0i). First, assume thatd0 dominatesd
onK. ThenP 0i dominatesP i onDi(K), and therefore ev-
erywhere dominates the natural extensionEi of P i. Con-
sequentlyei is dominated byd0 onL(
), which proves the
fifth statement. Finally, assume thatd is i-representable,
and thatd andd

0 agree onK, so the coherent lower pre-
visionsP i andP 0i agree onDi(K). It follows from the
properties of natural extension thatP 0i dominatesEi ev-
erywhere, which implies thatd0 dominatesei on L(
).
Moreover, sinceP i is coherent, it agrees with its natural
extensionEi on its domainDi(K), and consequentlyei
andd agree onK. This proves the last statement.

7 Examples

The following example clarifies the connection between
lower desirability functions on the one hand, and impre-
cise probability models and Bayesian sensitivity analysis
models on the other hand.

Example 7.Consider a setK of gambles on
, and assume
that the modeller is absolutely sure that the subject will
judge all gamblesX 2 K to be almost desirable. She
can model this by a lower desirability function(
;K; d),
defined as follows:

d(X) = 1; X 2 K:



The i–representation ofd is then given byP i(Di(X)) =
1, for all X 2 K. Consider the setDi[K] =T
X2KDi(X) = fD 2 D : K � Dg of all coherent ex-

tensions ofK. Note thatDi[K] is different from the set
Di(K) = fDi(X) : X 2 Kg. There are two possibilities.

Assume that the setDi[K] is non-empty. Its intersection
D(K) =

T
fD 2 D : K � Dg is then the smallest (least

committal) coherent extension ofK, i.e., its natural exten-
sion. It is not difficult to show that (i)P i is coherent and
hence thatd is representable; (ii) the natural extensionEi

of P i is the vacuous lower prevision relative toDi[K]: for
any gambleY on D , Ei(Y ) = infD2Di[K] Y (D). Using
this expression, we find for the natural extensione of d that
e(X) = ID(K)(X), whereX is any gamble on
. For the
first-order natural extensionE1 we find, using (9)

E1(X) = inf
D2Di[K]

inf
P2M(D)

P (X) = inf
P2M(D(K))

P (X);

since
S
D2Di[K]

M(D) = M(D(K)). We see thatE1

is the lower prevision associated with the set of desirable
gamblesD(K): the lower desirability functiond leads to
an induced first-order model that is equivalent to a set of
desirable gamblesD(K), an imprecise model. A com-
pletely similar analysis shows thatd leads to an induced
first-order model that is equivalent to a convex weak*-
compact set of linear previsionsM(D(K)) = M(K), a
model typically used in Bayesian sensitivity analysis.

Assume on the other hand that the setDi[K] is empty:
there is no coherent set of almost desirable gambles that
includesK, or in other words, the set of almost desirable
gamblesK incurs sure loss [13, Theorem 3.8.5]. In this
caseP i incurs sure loss as well, sod is not reasonable.

As a special case, assume that the subject reveals his lower
previsionPS on a set of gamblesKS . Thus, the mod-
eller knows for sure that the subject considers the set
K =

S
X2KS

fX�x : x � PS(X)g of gambles as almost
desirable, and she models this by the following lower de-
sirability functiond onK: for X 2 KS andx � PS(X),
d(X � x) = 1. Thend is reasonable if and only ifPS

avoids sure loss. Assume that this is indeed the case, and
consider the natural extensionES ofPS fromKS toL(
).
We find for the natural extensione of the reasonabled that
e(X) = 1 if ES(X) � 0 and zero elsewhere; and for the
first-order natural extension thatE1 = ES .

Note that in the previous example, the modele assumes
only the values zero and one. But what makes lower de-
sirability functions especially interesting, is that they may
assume values between zero and one, and allow us to ex-
press more nuance in assessments: in fact, they allow for
a ‘much more continuous’ transition between the two ex-
tremes of absolute certainty (lower probability one) and
complete ignorance (lower probability zero). In the next
example, I give an indication of how this might be applied.

Example 8.Consider a gambleX on 
 and the corre-
sponding class of gamblesKX = fX�x : x 2 Rg, where
R is some subset of the setR of real numbers. We also
consider the following desirability function:

d(X � x) = gX(x); x 2 R;

wheregX is some map from the setR to the real unit in-
terval [0; 1]. In order not to unduly complicate matters, I
shall assume thatR = R and that

(g0) gX is left-continuous.

Fairly similar, but slightly more complicated, results can
be derived in the more general case as well.

Note thatgX(x) is the modeller’s lower probability for the
event that the subject will buy the gambleX for any price
x � �, � > 0, i.e., that to the subjectx is an (at least)
marginally acceptable buying price forX . Since the mod-
eller can expect a rational subject’s willingness to buy a
gamble to become smaller as its price increases, we as-
sume that:

(g1) gX is non-increasing.

Moreover, ifx � inf[X ], then the subject cannot lose from
buyingX for the pricex: the buying transaction results in
a non-negative gain. Since the modeller can be certain that
a rational subject will (at least marginally) accept a non-
negative gain, we make the following assumption:

(g2) if x � inf[X ] thengX(x) = 1.

Finally, if x > sup[X ] then buyingX for pricex results
in a sure loss. Any rational subject will avoid this, so
our modeller can be sure that he will not engage in such
a transaction. This results in the following assumption,
which states that it is completely plausible to the modeller
that the subject will not buyX for x:

(g3) if x > sup[X ] thengX(x) = 0.

The p–representation ofd is the lower probability
(P; Dp(KX); P p) that is defined byP p(Dp(X � x)) =
gX(x). Note thatDp(KX) is a chain of sets. We can use
the results in [5] to arrive at the following conclusions.

If (g0)–(g3) hold,P p is coherent — it is a finitely additive
probability onDp(K) — andd is representable. The natu-
ral extensionEp of P p to all events is a necessity measure,
that is, the conjugate lower probability of a possibility
measure [3, 5] with possibility distribution� : P ! [0; 1]
given by�(P ) = 1�g+X(P (X)), whereg+X : R ! [0; 1] is
the right-continuous non-decreasing mapping defined by
g+X(x) = gX(x+) = supfgX(x + �) : � > 0g. Note that
�(P ) is the modeller’s upper probability thatP is the sub-
ject’s true modelPT . For the natural extensione of d we
find that, for any gambleY on
:

e(Y ) = Ep(Dp(Y )) = inffg+X(P (X)) : P (Y ) < 0g:



For the first-order natural extensionE1 of d we find, since
a necessity measure is2–monotone and the natural exten-
sion of a2–monotone lower probability can be found by
Choquet integration [12, 13]:

E1(Y ) = Ep(Y
�) = inf[Y ] +

Z sup[Y ]

inf[Y ]

e(Y � y)dy

= inf[Y ] +

Z sup[Y ]

inf[Y ]

inffg+X(P (X)) : P (Y ) < ygdy

There is another way of writing this first-order natural ex-
tension. LetM� = fP 2 P : �(P ) � �g be the set of
modelsP such that the modeller has an upper probabil-
ity at least� thatP is the subject’s true modelPT . The
convex weak*-compact set of linear previsionsM� cor-
responds to a lower previsionP�, defined byP�(Y ) =
inffP (Y ) : P 2 M�g. The first-order natural extension
is a uniform average of theP�: E1(Y ) =

R 1
0
P�(Y )d�

(see [14] for a proof).

The present discussion focuses on one gambleX . We may
follow the same approach for a number of gamblesX in a
collectionKS . This leads to a lower desirability functiond
defined on the setK =

S
X2KS

KX by d(X�x) = gX(x)
for all X 2 KS . The formulae above then yield use-
ful approximations for the natural extension, provided we
replaceg+X(P (X)) everywhere bysupX2KS

g+X(P (X)).
This is the approach followed by Peter Walley and myself
in [6, 7]. The functions1� g+X are very closely related to
the so-calledbuying functionsintroduced there.

8 Conclusion

The discussion has focussed on lower desirability: a mod-
eller’s lower probability for the event that a gamble will
beat least marginallydesirable to a subject. The italicised
words in the previous sentence indicate two limitations of
the present model. There is no reason why we could not
also study a notion ofupperdesirability, defined in terms
a modeller’s upper probability for such an event. A second
imperfection of the present model is that it is formulated in
terms ofalmost-desirability. Recall that a gambleX is al-
most desirable to a subject if he acceptsX+� for all � > 0.
So almost-desirability involves the acceptance of an infi-
nite number of gambles, which indicates problems for the
operationalisability of the model: it may not be possible to
‘call the second-order bets’, i.e., to verify whether or not
the eventD(X) that the subject findsX almost desirable
has occurred or not. More effort must go into finding ways
to make the present model operational.
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