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Abstract tions [4, 7, 14], and the &denfors and Sahlin epistemic

reliability model [9]. | know of no detailed analysis where

imprecision is explicitly allowed at both levels, but see [13,
Section 5.10.5] for a brief discussion.

| introduce and study a fairly general imprecise second-
order uncertainty model, in terms of lower desirability. A
modeller’s lower desirability for a gamble is defined as her
lower probability for the event that a given subject will In this paper, | introduce and study a particular type of
find the gamble (at least marginally) desirable. For lowerimprecise behavioural second-order model, in terms of so-
desirability assessments, rationality criteria are introducectalled lower desirability functions. This model is closely
that go back to the criteria of avoiding sure loss and co-related to, but in a sense more general than the buying
herence in the theory of (first-order) imprecise probabil- functions introduced in [7]. | show that as far as certain
ities. | also introduce a notion of natural extension thatbehavioural implications of this model are concerned, it
allows the least committal coherent extension of lower de-does not matter whether we assume that the underlying
sirability assessments to larger domains, as well as to adeal first-order model is precise or imprecise. | call this
first-order model, which can be used in statistical reason+esultPrecision—Imprecision Equivalenck generalises a
ing and decision making. The main result of the papernumber of results known in the literature: the clésenal

is what | call Precision—Imprecision Equivalencas far  analogy between Walley’s behavioural theory of imprecise
as certain behavioural implications of this model are con-probabilities [13] and Bayesian sensitivity analysis [2], the
cerned, it does not matter whether the subject’s underlyingesults concerning second-order possibility distributions in
first-order model is assumed to be precise or imprecise. [14] and the representation theorems in [7].

The paper is organised as follows. Section 2 gives an
overview of the basic notions in Walley’s theory of im-
precise probabilities, which are needed for the develop-
i ment of the second-order uncertainty model. This model,
1 Introduction in terms of lower desirability functions, is introduced in
Section 3. The model can be made more explicit mathe-
Hierarchical models are rather commonin uncertaintythe-matica”y by providing more details about the underlying
ory. They arise when there is a ‘correct’ or ‘ideal’ (first- geal first-order model. In Section 4, | assume that the
order) uncertainty model about a phenomenon of interestfjrst-order model is imprecise. Based on this assumption,
but the modeller is uncertain about what it is. The mod-| introduce a number of corresponding rationality criteria
eller's uncertainty is then callexsbcond-order uncertainty  \which can be imposed on the second-order model, together
A list of examples showing that second-order uncertaintywith a notion of natural extension, which can be used to
occurs in many situations, can be found in [7]. explore the behavioural implications of given lower desir-

By far the most common hierarchical model is the ability assessments. A similar treatment is given in Sec-

Bayesian one, where both the first and the second-ordeion 5, based on the assumption that the underlying ideal
model are (precise) probability measures, or linear previfirst-order model is precise. The main results of the pa-
sions [1, 10, 11, 15]. Other models allow imprecision in Per are gathered in Section 6, where | show that the be-
the second-order model, but still assume that the first-ordepavioural implications of lower desirability functions do

model is precise; examples are the robust Bayesian mod?0t depend on whether the underlying first-order model

els [2], models involving second-order possibility distribu- 1S @ssumed to be precise or not. | also prove a number
of properties of natural extension that clarify the analogy
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cise probabilities. Section 7 contains interesting examplesdy the following requirement. Assume that the subject

relating the present model to Walley’s theory of first-order gives a lower previsiof? (X) for all gamblesX in a subset

imprecise probabilities [13], Bayesian sensitivity analysis K of £(€2). In order to identify its possibility space and do-

[2], and to the theory of fuzzy probability and buying func- main, | shall also denote this lower prevision(§y; X, P).

tions exploredin [4, 6, 7]. Section 8 concludes the paper. Then for any natural numbers> 0 andm > 0, and for
any gamblesY,, X1, ..., X, in K it must hold that:

2 Preliminary Notions n
sup {ZG(Xw(w) _mG(X)w)| 20, @
. . . . weN h—1
In this section, | discuss a number of aspects of the precise
and imprecise uncertainty models that will serve as a ba'vvhereG(X) denotes the gambl& — P(X) on . Why

sis for th_e development_of the more comple-x seqond-ordqs this a significant rationality criterion? The argument is
m°d.e'3 in the later sect'|ons. Th|s necessarily bn-ef EXPOSIhased on two rationality criteria for accepting gambles: (i)
tionis bg;ed on Wallgys behavioural account oflmpreC|seif a subject accepts gamblé he should also accepty,
prpbabllltles [13], .WhICh.Sh0u|d be consulted for more de'where)\ is a non-negative real number; and (i) if a subject
tails and further discussion. accepts the gamble¥y, ..., X, he should also accept
Call apossibility spacehe set( of possible statesy of ~ their sumy_;" | X;.. The first criterion states that the ac-
the world — mutually exclusive and exhaustive — that ceptability of a gamble is independent of the units in which
are of interest. Agambleon Q is a bounded, real-valued the linear utility is expressed; and the second one states
function on the domaif, which can be interpreted as an that if a subject accepts a number of gambles separately,
uncertain reward; if the true state of the world turns out he should also accept them jointly. A detailed justification

to bew then the (possibly negative) reward 35(w) —  of these basic rationality criteria can be found in [13]. To
expressed in units of some linear utility. The rewaéd  justify (1), we firstlook at the case = 0. If the condition
is uncertain because it is uncertain which elemerfeaé  fails, there aren > 1, X3, ..., X, in K ande > 0 such

the true state. | shall use the notati(f) for the set of  thatthe sum of the acceptabgambleg X, — P(Xy) + €]

all gambles or2. Note that£(f) is a real linear space s strictly negative:y;_ [X; — P(X};) + €] < —e. So
under the pointwise addition of gambles and the pointwisethere is a sum of acceptable gambles, which by (ii) is an
multiplication of gambles with real numbers. acceptable gamble, that is certain to produce an overall
loss! This can only be avoided by imposing the above
condition form = 0. If the condition holds forn = 0,

(Q, K, P) is said toavoid sure loss

A subject’s uncertainty about a domdican be measured
through his attitudes to gambles defined on2. One
way to do that is by measuring hiswer prevision— or
supremum acceptable buying priceR£X) and hisupper ~ Next, we turn to the case» > 0. If the condition fails,
prevision— or infimum acceptable selling price 2(X)  there aren > 0, X, Xi, ..., X, in K ande > 0 such

for gamblesX. The transaction in which a gamhkeis  that}",_,[X; — P(Xy) + €] < m[X, — (P(X,) + ¢)].
bought for a pricer has rewardY — z, a new gamble. Since the left-hand side is acceptable by (ii), the right-hand
A subject'ssupremum acceptable buying prig¥ X) for side will be acceptable too, as it represents a gamble with
X is the largest real numbersuch that he is committed a reward that is at least as high. This means, also using
to accept the gambl& — z for all z < ¢. Similarly, his (i), that the subject should be effectively disposed to buy
infimum acceptable selling pridé(X) for X is the small- X, for a priceP(X,) + ¢, which is strictly higher than his

est real numbed such that he is committed to accept the supremum acceptable buying pri¢.X,): in specifying
gamblez — X for all z > d. Since buying a gambl& for ~ P(X,) he did not take into account the implications of his
pricez is the same thing as sellingX for price—z, itisa  other lower prevision assessments. This produces a kind
rationality requirementtha®(—X) = —P(X),sowe can  Of logical inconsistency, which is not as bad as incurring
in principle determine upper previsions from lower previ- a sure loss, but should still be avoided. If the condition
sions, and vice versa. | shall consistently use lower ratheholds for allm > 0, the lower previsiori(2, I, P) is called
than upper previsions in developing the present theory. coherent Coherence clearly implies avoiding sure loss.

Eventsare subsets d?, and can be identified with theirin- We have so far been concerned with lower previsions de-
dicator functions, which are gambles. For an evént (2, fined on subset§ of £((2). Natural extension allows us to
buying and selling prices (lower and upper previsions) for ‘extend’ a lower previsior? on K that avoids sure loss to
its indicator function/ 4 can be regarded as betting rates a coherent lower prevision on all gambles by taking only
on and againsti (lower and upper probabilities). two things into account: (a) the information contained in

- S . P, and (b) the requirement of coherence. Consider any
Lower previsions represent a subject’s dispositions to buy

gambles, and as such they should satisfy a number of con- 1That these gambles are acceptable, follows from the defini-
sistency, or rationality, criteria, which can be summarisedtion of lower prevision.



gambleX on . Assume thap is our subject’s supremum implications that are at least as strong. MoreoveR, i
acceptable buying price fak. Coherence requires that a lower prevision that avoids sure loss but is not coher-
this new assessment should be compatible with the loweent, natural extension corrects and extends it to a coherent
prevision assessments made previously, in the sense thigwer prevision on all gambles, again in a manner which
for anyn > 0, any non-negative redl, ..., A, and any  has minimal behavioural implications.

Xppos X in K Marginally acceptable buying and selling prices for a gam-

n ble may differ because the subject is indecisive or because
p2 inf [X = M [Xi(w) = P(Xp)] |- he has little information about the gamble. The differ-
k=1 ence between the marginal buying and selling prices typ-
ically decreases as the amount of relevant information in-
creases. In the special case where every gadiblas a

The left-hand side represents an acceptable gamble, sinc{e"ﬂ.'r price’, meaning that.the supremum accep.tablelbuylng
price agrees with the infimum acceptable selling price, we

it dominates a non-negative linear combination of accept . . - o2 n
able gambles, which should be acceptable by rationality(?btaln the Fheory of linear previsions O.f de Finett [.8]' A
linear previsionP on a set of gamblek’ is a map taking

criteria (i) and (ii) above. This means that our subject’s
lower prevision assessments imply that he should be dish © the set of real numbeR such thatforalin > 0 and

posed to buyX for a price strictly higher thap, and this n 2 0, and for anyX, ..., X andyy, ..., ¥ in K,
is in conflict with his assessment pfas asupremunac- n
ceptable buying price foX. If we take into account all sup {Z G(Xk)(w) — ZG(Yk)(w)] > 0.
the assessments implicit in the lower previsiBron /, wEE Lk=1 k=1
we find that coherence imposes the following lower boundA linear prevision(Q, K, P) is therefore coherent, both
onp: p > E(X), where when interpreted as a lower and as an upper prevision on

. K. A linear prevision onZ(f2) can alternatively be char-

_ : _ acterised as a linear functionBlon £((Q) that is positive
BEX) = X o [X(w) ;)‘kG(Xk)(w)} (2) (X > 0 = P(X) > 0) and has unit normf(1) = 1).
A linear prevision oriC can always be extended to a linear

Here and later in the paper | denote &y, ,, x, the  prevision onl(f2). A linear prevision on a field of sets is
supremum over integet > 0, real A\, > 0 and gam-  a finitely additive probability on that field. | shall denote
blesX; € K, fork =1,...,n. The functionalE defined  the set of all linear previsions ofi((2) by P.
by (2) is called th@atural extensiomf the lower prevision
P. ltis defined for any gambl& on . Natural extension

derives its importance from the following result, proven b S =) -
b ¢ P y and we define its set of dominating linear previsions by

Walley [13, Theorem 3.1.2]. M(P) ={P e P: (VX € K)(P(X) > P(X))}, thenP
Theorem 1. Let P be a lower prevision on a set of gam- 3y0ids sure loss if and only i#1(P) # () andP is coher-
blesk C £() that avoids sure loss, and 162, £(Q), E) ent if and only if P(X) = inf{P(X): P € M(P)} for
be its natural extension. The following statements hold. )| x ¢ k. If P avoids sure loss, the natural extension
of PisgivenbyE(X) = inf{P(X): P € M(P)} for all
< E(X)forall X € £(9). X € L£(Q). The setM(P) is convex and compact in the
weak* topology onP. There is a one-to-one relationship
between coherent lower previsioRn £(2) and convex

1.
2.
3. E dominates? onK: E(X) > P(X)forall X € K. weak*-compact sets of linear previsiong, expressed by
4.
5.

If this were not the case, there would be some- 0
such thatX — (p +€) > >0 Me[Xi — P(Xy) + €.

m

There is a close relationship between lower previsions and
sets of linear previsions. (£, K, P) is a lower prevision

inf[X]

E is a coherent lower prevision ofi(2).

P(X) = inf{P(X): P € M}
M ={P eP: (VX € L(Q))(P(X) > P(X))}.

FE coincides withP on K if and only if P is coherent.

E is the (pointwise) smallest coherent lower previ-

sion onL(Q2) that dominateg? on K.
Another completely equivalent formulation of the model

6. If P is coherent therk is the (pointwise) smallest of lower and upper previsions can be given in terms of sets
coherent lower prevision of(Q2) that coincides with  of almost desirable gambles. A gambleis almost desir-
Ponk. able (or at least marginallyacceptable) to a subject if he

is disposed to accept the gamblie+ € for all e > 0, or
This shows that natural extension is least committal: anyequivalently, if his lower prevision foX is non-negative:
coherent extension of the coherent lower previgibim- P(X) > 0. Instead of asking the subject for his lower
plies a disposition to buy gambles for a price that is  prevision, we may ask him to specify a sBtof gam-
at least as high a&(X), and therefore has behavioural bles that he judges to be almost desiraki®.is said to



avoid sure lossf forall n > 0 and Xy, ..., X,, in D, Q. The second-order uncertainty about the subject’s first-
sup,eq[> p_y Xk(w)] > 0. Itis called coherentif it order uncertainty model is supposed to be that of a sec-
is a convex cone in the linear spacé) that is closed ond person, called theodeller To further distinguish
under the supremum norm and contains all non-negativdetween the two, | assume that the subject is male and
(X > 0), and no uniformly negativesp[X] < 0) gam-  the modeller female. Below | propose an imprecise proba-
bles. There is a one-to-one correspondence between cdoilistic model for the second-order uncertainty of the mod-
herent lower prevision® on £(2) and coherent sets of eller about the subject’s first-order uncertainty alfout

almost desirable gamblé, given by By varying the interpretation of subject and modeller, this

P(X) =sup{p: X —p €D} 3) formulation can be made to cover most of the second-order
D={X€L(): P(X)>0} uncertainty models in the literature, e.gartial elicita-

. . tion, where the second-order uncertainty stems from the
Thenatural extensiomwf a set of almost desirable gambles S - o o
modeller’s failure to completely elicit the subject’s beliefs;

D is the smallest coherent set of almost desirable gambles .~ . . ; :
that include<D, or equivalently, the intersection of all co- partial introspection where the modeller is modelling her

herent sets of almost desirable gambles that inclade yncertamty about her owr? behaviour (”?Ode”er aqd Sub-
ject are the same person); and #leatory interpretation

Denote the collection of all coherent sets of almost de-where the modeller is uncertain about the true probabili-
sirable gambles o2 by I, and orderD by set inclu- ties governing a random process (the ‘subject’). A more
sion. Then(D, C) has a smallest elemefit, = {X € detailed list of interpretations, and further discussion, can
L(2): X > 0}, called thevacuous set of almost de- be found in [7].

sirable gambles It corresponds to the (coherentcu-

ous lower previsiorP,, defined byP, (X) — inf[X] Consider the ever® (X)) that the subject judges the gam-

ble X to be almost desirable. There is second-order un-

}nf“JEQ X(w.) for X € £(_Q). Both models represent min- _certainty when the modeller is uncertain whether or not
imal behavioural commitments on the part of the subject: : : Lo
D(X) will occur. We model this uncertainty in terms of

he is only disposed to engage in transactions that are sure

; . . X a lower desirability functioro. The real numbeb(X),
to yield a non-negative gain. They are suitable models for L . .
o . called thelower desirabilityof X, is the modeller’s lower
the subject’s complete ignorance about

probability for the evenD(X), i.e., her supremum accept-

On the other hand(D, C) does not have a greatest ele- able rate for betting on the event that the subject judges the

ment, but it does have a set of mutually incomparable max-uncertain reward to be almost desirable. If the modeller

imal elementDp: P € P}, where gives assessmem¢X) for all gambles in a subséf of

L(9Q), she in fact determines a functiorirom the sefC to

Dp={X € L(: P(X) = 0} th(e anit interval0, 1], called alower desirability function

is the closed half-space of almost desirable gambles assan order to specify its possibility spa¢eand domairiC, |

ciated with the linear previsiof?. For a coherent set of also denote this function 48, K, ).

almost desirable gamblé& the set of linear previsions ) i )
To give a very simple example, complete ignorance about

M(D) ={P eP: (VX € D)(P(X) 20)} (4 the subject's behavioural dispositions regarding gambles
is non-empty, weak*-compact and convex. It identifies all X in a subsetC of £((2) — apart from the assumptions
the closed half-spaces which inclufie andD is the in-  thatthe subjectis rational in that he will at least marginally
tersection of these half-spaces: accept a non-negative gain — can be modelled byéwe
uous lower desirability function,,, defined as:

D= () Dp. (5)
PEM(D) .
. . . 1 ifX>0
If D is not coherent but avoids sure loss, then (5) still holds 2,(X)=1Ip,(X)= 0 if X %0
provided we replac® on the left hand side by its natural : Z0.

extension. Equations (4) and (5) establish a one-to-one

correspondence between coherent sets of almost desirabde models minimal behavioural dispositions for the mod-
gambles and weak*-compact convex sets of linear previ-€ller: she is disposed to bet at non-trivial rates only on
sions. Note that if the coherent moddtsandD corre-  the event that the subject will at least marginally accept a

spond in the sense of (3), thevl (P) = M (D). non-negative gain. Other examples of lower desirability
functions are discussed in Section 7.

3 Lower Desirability Functions More complicated types of lower desirability function
could be introduced. For instanceZifis a set of gambles,
To distinguish between first and second-order uncertaintywe could define (D) as the modeller's lower probability
we consider gubjectwho is uncertain about a certain phe- for the event that all gambles 2 are almost desirable to
nomenon of interest, for which he has a possibility spacethe subject. Alternatively, we could formulate everything



in terms of strict rather than almost-desirability. In the Definition 2. Letd: £ — [0,1] be a lower desirability
present paper | shall not deal with these more general ofunction defined on the set of gamblEsC £(2). Then
alternative models. But | do want to mention that many of (2, K, 0) is calledi—reasonabldf the lower probability
the results proven below can be carried over easily to thgD, D, (K), P,) avoids sure loss, or more explicitly, if for
more complicated or alternative cases. alln > 1andXy, ..., X, in K, thereis @D € D such

So far, | have not given a very detailed description of thethat

eventsD(X). In the following sections, | describe two
possible underlying models that can be used to account in
more detail for the event®(X), and that are based on

different rationality assumptions about the subject on theMoreover,(Q, K, ) is calledi—representablé the lower
part of the modeller. probability(D, D; (K), P;) is coherent, or more explicitly,

ifforall m > 0,n > 0andX,, Xy, ..., X, in K, there
isaD e D such that
[Ip(Xk) — 2(Xy)] > m[Ip(X,) —2(X,)].  (7)
k=1

n

> [Ip(Xk) = 2(Xg)] > 0. (6)

k=1

4 Imprecise First-Order Model

In specifying the numbenry X '), the modeller will make a
number of assumptions about the subject, or rather about
his behavioural dispositions. The minimal assumption | Conditions (6) and (7) follow from applying to the lower
try to model in this paper is that the subject is a rational probability(ID, D; (K), P;) the conditions of avoiding sure
person according to the criteria of coherence described inoss and coherence implicit in (1).

Section 2. ) - .
Of course, an-representable lower desirability function

Assumption 1. The modeller assumes that the subject isjs alwaysi—reasonable. The vacuous lower desirability is
rational, in the sense that his behavioural dispositions can;_representable on any domdii and it is dominated by,

be modelled by a coherent set of almost desirable gamblesand therefore more conservative or less committal than, all
or equivalently, by a coherent lower prevision. i—representable lower desirability functions/on

Recall thatD is the collection of all coherent sets of al- Ifthe lower desirability functiorf(, I, 2) is i-reasonable,
most desirable gambles éh The modeller assumes that its i—representatio®; avoids sure loss, and we can con-
the subject has some coherent set of almost desirable gangider the natural extensidi; of P; to all gambles on the
bles D7, which is an element o; only, the modeller's ~ possibility spacé), and in particular to the events;(.X),
(second-order) uncertainty about the subject’s behaviourafor all X € L£(f2). This allows us to define a new lower
dispositions does not allow her to identify; unequiv-  desirability functiore; on all gambles\ on (2, as follows:
ocally. We may therefore interpret her lower desirability

functiond as a lower probability on the possibility space &;(X) = E;(Di(X))

D. The eventD(X) that the subject finds the gamhlé . ~

almost desirable is now of course the event tiat Dr, = Sup inf 1D (X) =Y M [Ip(Xk) —2(Xp)] |-

and it can be identified with the following subsetlf o k=1 ®)
D;(X)={DeD: X € D}. This formula is obtained after applying (2) to calcu-

. o ] late the natural extensiof; for the lower probability
Under Assumption 1, a lower desirability functipion the (D, D;(K),P;). | call the lower desirability function

)=

set of gambleX leads to the specification of a lower prob- (2, £(Q), ¢,) thei—natural extensionf (2, K, ).
ability P, on the set of event®;(K) = {D;(X): X € - B

K} of the possibility spac®, as follows: To give a very simple example, tlienatural extension of
the vacuous lower desirability functi@r on a set of gam-
P,(D;(X))=02X), XeK. bles/C is the vacuous lower desirability function d@{(2).

Let us now consider the situation where the unknown first-
order model is an ‘ideal’ in that, if the modeller knew what
the subject’s modeDr € D was, she would adopt it as

called thei—representatiof o. We may now require that €7 OWn mﬁdel fordml?kmg geC|§_|ons — ths hap;]pens for
this lower probability should satisfy the consistency re- INStance when modeller and subject coincide. This means

quirements of avoiding sure loss and coherence, discussdjat the modellerhas a gollec;)tlonmﬁndltlonallower pre-
in Section 2. This leads to the following definitions. visionsP([D), D € I, given by

2p gambleX is strictly desirable to a subject if he is disposed D(X|D) = sup{p € R: X —p €D}, X €L(Q).
to acceptX — e for somee > 0, or if X > 0.

The lower probability(D, D; (K), P;) therefore models
the modeller’s beliefs about the subject’s behavioural dis-
positions regarding the possibility spafe It will be



At the same time, the modeller has information alidgt  This assumption leads to a second-order model that is
in the form of her lower desirability function, or equiv-  fairly similar to the one discussed before; only now we
alently, itsi—representatio”;, and its natural extension shall work with linear previsions® € P — or half-

E,. By Walley's Marginal Extension Theorem [13, Theo- spacesDp of desirable gambles — rather than coherent
rem 6.7.2], the ‘marginal lower previsiof?;, and the con-  setsD € D of desirable gambles. Since the discussion
ditional lower prevision€?(-|D), D € D have a natural uses essentially the same ideas as in the previous section, |
extension to a coherent unconditional lower prevision onshall dispense with motivation and justification, and limit
the set of gamble£(9). | denote this byE} and call it ~ myself to introducing and stating some definitions.
thefirst-orderi—natural extensioof the lower desirability

; o The modeller assumes that the subject has some coherent
functiond. It is given by

set of almost desirable gamblBs,,., or equivalently some
| ~ linear previsionPr which is an element dP, and we may
E;(X) = E;(X) interpret her lower desirability functiomas a lower prob-
) ~ " ability on the possibility spac®. The eventD(X) that
- i?%q 11315) {X(D) =D [In(Xk) = 2(X3)] the subject finds the gamhl¢ almost desirable is now the
o k=1 event thatX € Dp, — or thatPr(X) > 0 —, and it can

for all X € £(2), where the map (or gambléﬁf: Do R be identified with the following subset &t

is defined by D,(X)={P€eP: X € Dp} ={PeP: P(X) >0}

X(D)=P(X|D)= inf P(X). (9)
pPeM(D) Under Assumption 2, a lower desirability functioon the

set of gamble& leads to the specification of a lower prob-

ability P, on the set of event®,(K) = {D,(X): X €

K} of the possibility spac®, as follows:

This formula is again found after applying (2) to calcu-
late the natural extensiof; for the lower probability
(D, D; (K),P;). E}(X) is the least committal marginal
buying price forX that is still compatible with the mod- P (D,(X)) =2(X), X eK.

eller’'s lower desirability assessmenttaking into account P 7

the requirements of coherence: by combining finite num-The lower probability(P, D,(K), P,) models the mod-
bers of bets that are implicit in the lower desirability func- eller’s beliefs about the subject’s behavioural dispositions
tion @ — and are therefore at least marginally accept-regarding the possibility spad¢e It will be called thep—
able to the modeller —, we can construct lower boundsrepresentatiorof 2. Requiring that this lower probabil-
for the modeller’s supremum acceptable buying price fority should satisfy the consistency requirements of avoiding
X, rather like in Section 2 where | justified formula (2). sure loss and coherence leads to the following definitions.
E;(X) is the supremum of these lower bounds for all pos- pefiition 3. Let 2: & — [0,1] be a lower desirability

sible finite combinations of such bets, and therefore is thq:unCtion defined on the set of gamblesC £(12). Then

supremum acceptable buying priqe thgt_the modeller carm),c,g) is called p—reasonablf the lower probability
be induced to pay foX by C.Omb'”'”g f|n|tg ””m?’efs of (P, D,(K), P,) avoids sure loss, or more explicitly, if for
acceptable bets. If no other information theis available, alln > 1 angXl X. in K. there is aP € P such

the modeller should use theduced first-order lower pre-

vision £} for making decisions, or as an imprecise prior in

statistical reasoning. For more details, see [7, 13, 14]. 2": Tp, (X2) — 2(X2)] > 0 (10)
Dp k) — Y k)] Z Y.

For the vacuous lower desirability functier on a set of k=1

gamblest, the first-ordeii—natural extension is the vacu-

ous lower prevision o (92). Moreover,(Q, K, 0) is calledp—representablé the lower

probability(P, D,(K), P,) is coherent, or more explicitly,
) ) ifforall m > 0,n > 0andX,, Xy, ..., X, in K, there
5 Precise First-Order Model is aP € P such that

n

It is possible for the modeller to make stronger assump- Z [Ip, (X1) — 2(Xi)] > m[Ip, (X,) — 2(X,)].
tions about the subject’s first-order model than the ratio- ;=

nality hypothesis of coherence | discussed in the previous (11)
section.

Assumption 2. The modeller assumes that the subject is alf the lower desirability functiori(2, X, 2) is p—reasonable,
Bayesian agent, in the sense that his behavioural disposiits p-representatiof?,, avoids sure loss, and we can define
tions can be modelled by a maximal coherent set of almosits natural extensiorkz,, to all gambles on the possibility
desirable gambles, or equivalently, by a linear prevision. spaceP, and in particular to the eveni,(X), forall X €



L(2). This allows us to define a new lower desirability
functiong, on all gamblesY on (2, as follows:

= inf

su
b PcP

oAk, Xk |:IDP (X)_Xn:)‘k [IDP (Xk) _Q(Xk)] X

k=1

I shall call the lower desirability functioff2, £(€2), ¢,,) the
p—natural extensioof (12, I, ).

The vacuous lower desirability functiam, on a set of
gamblesC is alwaysp—representable. lts-natural exten-
sion is the vacuous lower desirability function dif(),
and coincides with thé-natural extension.

As in the previous section, we can define a first-order nat

modelDr is an elementoD;(X) = {D € D: X € D}.
Now consider another gambié on 2. Then the modeller
knows for sure that the subject will (at least marginally)
acceptY only if Y € D forall D in Dy(X), i.e,Y €
D(X) = Di(X).

On the other hand, if the modeller makes Assumption 2,
she can only infer from the information provided by the
subject that his true modé&} belongs to the sdb, (X) =

{P € P: P(X) > 0}. She will know that the subject
will (at least marginally) accept another gambfeonly

if P(Y) > 0forall P € Dy(X), or in other words if

Y € N{Dp: P € D,(X)}. From the discussion in Sec-
tion 2 and using the notations introduced there, we infer
thatD(X) is the natural extension of the set of almost de-
sirable gamble§ X'} and thatD,(X) = M({X}). Also,

ural extension, now based on the assumption that the sugEauation (5) tells us thgfi{De: P € D,(X)} = D(X).

ject’s modelis precise. Let us consider the situation where

if the modeller knew what the subject’s mode} € P
was, she would adopt it as her own model.

that she has a collection of conditional lower previsions

P(-|P), P € P, given by

P(X|P) = sup{u € K: X —p € Dp}
— P(X) = X*(P),

forall X € £(Q). Here | have used the common notation
X*: P — R for the linearevaluation functionahssoci-
ated with the gambl&’: X*(P) = P(X) forall P € P.

At the same time, the modeller has information abBut

in the form of her lower desirability functiod, or equiv-
alently, itsp-representatio®,,, and its natural extension
E,. By Walley’s Marginal Extension Theorem [13, Theo-
rem 6.7.2], the ‘marginal lower previsiof’,, and the con-

ditional lower previsionsP(:|P), P € P have a natural

In other words, what the modeller can infer about the sub-

Jject’s dispositions to accept gambles from the information

This meand'€ has given, is the same, whether she uses a precise or an

imprecise underlying model! It turns out that this con-
clusion is more generally valid. This is the gist of the
Precision—Imprecision Equivalence (PIE) results in The-
orems 4 and 5.

Theorem 4 (PIE, Part1). Let(Q2, K, ) be a lower desir-
ability function. Ther{Q, I, 2) is i—reasonable if and only
if it is p—reasonable; and{?, K, ) is i—representable if
and only if it isp—representable.

Proof. Considerm > 0, n > 0, andX,, ..., X,, in K.

To prove the theorem, it is sufficient to show that the exis-
tence of @D € D such that (7) holds is equivalent to the
existence of aP € P such that (11) holds. For a start,
if (11) holds for someP € P, then obviously (7) holds
for Dp € M. Conversely, assume that (7) holds for some

extension to a coherent unconditional lower prevision onp < . If ;i = 0 then it follows that (11) holds for all

the set of gamble£(Q2). | denote this byE}D and call it
thefirst-orderp—natural extensionf the lower desirability
function. Itis given, for anyX € £(2), by

E,(X) = E,(X7)
= inf, [X*(P)_,; Ak [Ipp (X)) = 2(Xy)] |-

For the vacuous lower desirability functier on a set of
gamblest, the first-ordep—natural extension is the vacu-
ous lower prevision ol (£2), and therefore coincides with
the first-ordeti—natural extension.

6 Precision—Imprecision Equivalence

Consider the situation where the subject tells the modellefVhere: &;(

that the gambleX is almost desirable to him, and nothing

else. If the modeller makes Assumption 1, the only thing
she can infer from the subject’s information is that his true

P € M(D) # 0, since for such? we havelp < Ip,.
This already completes the proof for the first statement. If
m > 0 there are two possibilities. Eitheéf, € D, and
then (11) holds for allP € M(D) # 0. Or X, ¢ D,
and sinceD = (pc pq(p) D, thereis & € M(D) such
thatX, ¢ Dg. Then (11) holds fof). This completes the
proof for the second statement. O

We may therefore drop the referenéesdp to the under-
lying models when speaking about whether a lower desir-
ability function is reasonable or representable. There is an
even stronger equivalence result for natural extension.

Theorem 5 (PIE, Partll). Let (Q2,K,2) be a lower de-
sirability function. Then ifo is reasonable then its—
natural extension and its—natural extension agree every-
X) =¢,(X) forall X € £(2). Moreover, if

0 is representable then its first-ordérnatural extension
and its first-orderp—natural extension agree everywhere:
E}(X)=E,(X)forall X € £().



Proof. LetY be a gamble on the sBt and use it to define
a gambleY'" onD as follows: for allD € D, YT(D) =
inf pe pi(p) Y (P). Then we prove thal;(Y') = E,(Y),
or equivalently,

S nf { (D) - ;Ak [Ip(Xk) _Q(Xk)]:|
= S inf) { (P) — I;Ak [Ipp (Xk) — Q(Xk)]}

Considern > 0, non-negative realy, ..., A,, and Xy,

., X In K. It suffices to show that the corresponding
infima in the above expression are equal. SifPe : P €
P} C D, andY " (Dp) = Y (P), it follows at once that

inf [
DeD

_ Xn: A [Ip(Xg) — Q(Xk)]]

k=1

< inf
PcP

{Y(P) = > Ak lpp (Xi) = 2(X)] }
k=1

Conversely, we see that

%%%{YT ;/\k [Ip(X&) _D(Xk)]:|
:éléf]]')Pel./I\l/lf(D [Y ZM [Ip(Xk) _D(Xk)]:|
> inf [Y(P) 9> Ak [Ipp (Xi) — 0(X5)] }

sincelp < Ip, forany P € M(D), and moreover
P = Upep M(D). This proves thafZ;(Y") = E,(Y).

The proof of both statements now follows from this equal-

ity, by observing that for an” € £(Q2), Ip,(x) and X*

4. ¢ coincides witho on K if and only if 2 is repre-
sentable.

. ¢ is the (pointwise) smallest representable lower de-
sirability function on£(2) that dominateg on K.

. If 0 is representable theais the (pointwise) small-
est representable lower desirability function 6(£)
that coincides withh on K.

Proof. | shall use imprecise first-order models to prove the
theorem. The proof involving precise first-order models is
of course completely analogous. The first statement fol-
lows from Equation (8): the infimum for = 0 is pre-
cisely I'p, (X), sinceD, is included in any other element
of . The rest of the proof relies rather heavily on The-
orem 1. The second statement is obvious, sigchas
i—representatiotl; by construction, and; is coherent
sinceP; avoids sure loss, by assumption. Sitit,és dom-
inated by its natural extensidi, on D;(K), we have for

all X € K thate;(X) = E;(Di(X)) > P;(Di(X))
9,;(X), which proves the third statement. We now prove
the fourth statement is i—representable if and only if its
i—representatiotiD, D; (K), P;) is coherent, or in other
words, if and only ifP, agrees on its domaiP; (K) with

its natural extensm@z, and this is of course equivalent to
the equality ofe; ando on K. To prove the last two state-
ments, consider air-representable lower desirability func-
tiond’ on £(), and denote its (cohererit)representation
by (D, D; (£(2)), P;). First, assume that dominate
onK. ThenP! dominatesP; on D;(K), and therefore ev-
erywhere dominates the natural extensigrof P,. Con-
sequently; is dominated b’ on £(2), which proves the
fifth statement. Finally, assume thais i-representable,
and thato andd’ agree onkC, so the coherent lower pre-
visions P, and P agree onD;(K). It follows from the
properties of natural extension th&f dominatesE; ev-
erywhere, which implies thai’ dominatese; on £(12).

are gambles off, and moreover, using the expressmns (5) Moreover, sinceP; is coherent, it agrees with its natural

and (9),Ip, (x) = I},p(X) andX = X+ O

extensionE; on its domainD;(K), and consequently,
andp agree oriC. This proves the last statement. [

In discussing natural extension, we may therefore drop the

referenceg andp to the underlying models as well. The 7
following result outlines a number of general properties

of the natural extension of a lower desirability function.
Notice the close analogy with Theorem 1.

Theorem 6. Let (2, K, 0) be a lower desirability function
that is reasonable, and I€t), £(Q2), ¢) be its natural ex-
tension. The following statements hold.

1. Ip, (X) < ¢(X) forall X € £(Q).

2. ¢ is a representable lower desirability function on
L(Q).

3. edominate® onC: ¢(X) > o(X) forall X € K.

Examples

The following example clarifies the connection between
lower desirability functions on the one hand, and impre-
cise probability models and Bayesian sensitivity analysis
models on the other hand.

Example 7.Consider a sé of gambles 012, and assume
that the modeller is absolutely sure that the subject will
judge all gamblesX € K to be almost desirable. She
can model this by a lower desirability functigfe, I, ),
defined as follows:

X ek.

(=4

(X) =1,



Thei-representation df is then given byP,(D;(X)) = Example 8.Consider a gambleX on Q and the corre-
1, for al X € K. Consider the setD;[K] = sponding class of gambl&Sy = {X —z: = € R}, where
Nxex Di(X) = {D € D: £ C D} of all coherentex- R is some subset of the sit of real numbers. We also
tensions ofkC. Note thatD;[K] is different from the set consider the following desirability function:

D;(K) ={D;(X): X € K}. There are two possibilities. AX —2) = gx(x), zER,

wheregx is some map from the sét to the real unit in-
terval [0, 1]. In order not to unduly complicate matters, |
shall assume thak = R and that

Assume that the sdD;[K] is non-empty. Its intersection
D(K) = ({D € D: K C D} is then the smallest (least
committal) coherent extension &f, i.e., its natural exten-

sion. It is not difficult to show that (iP; is coherent and

hence thap is representable; (ii) the natural extensin (90) gx is left-continuous.
of P, is the vacuous lower prevision relative i [K]: for
any gambleY” onD, E;(Y') = infpep,x) Y (D). Using
this expression, we find for the natural extensiofd that
¢(X) = Ipk)(X), whereX is any gamble off2. For the  Note thatyx () is the modeller's lower probability for the

Fairly similar, but slightly more complicated, results can
be derived in the more general case as well.

first-order natural extensiafi* we find, using (9) event that the subject will buy the gambYefor any price
FUX) = inf 0f P(X) — f P(X x — € € > 0, i.e., that to the subject is an (at least)
E(X)= DED: K] PEM(D) (X) = PEM(D(K)) (X), marginally acceptable buying price faf. Since the mod-

eller can expect a rational subject’s willingness to buy a
gamble to become smaller as its price increases, we as-
since Upep,i) M(P) = M(D(K)). We see thal'  sume that:
is the lower prevision associated with the set of desirable ) ] .
gamblesD(K): the lower desirability function leads to ~ (91) gx is non-increasing.

an induced first-order model that is equivalent to a set ofMoreover, ifz < inf[X], then the subject cannot lose from
desirable gamble®(K), an imprecise model. A com- puying X for the pricez: the buying transaction results in
pletely similar analysis shows thatleads to an induced 4 non-negative gain. Since the modeller can be certain that
first-order model that is eqUIvaIent to a convex weak*- a rational Subject will (at least margina”y) accept a non-

compact set of linear previsions{(D(K)) = M(K), a  negative gain, we make the following assumption:
model typically used in Bayesian sensitivity analysis. .
(92) if z < inf[X]thengx (z) = 1.

Assume on the other hand that the #&{K] is empty: . ) ) .

there is no coherent set of almost desirable gambles thdtinally. if « > sup[X] then buyingX' for price z results
includeskC, or in other words, the set of almost desirable IN @ Sure loss. Any rational subject will avoid this, so
gamblesk incurs sure loss [13, Theorem 3.8.5]. In this Our modeller can be sure that he will not engage in such
caseP; incurs sure loss as well, $0is not reasonable. a transaction. This results in the following assumption,

_ . _ which states that it is completely plausible to the modeller
As a special case, assume that the subject reveals his lowgiat the subject will not buyx for z:

prevision P on a set of gambleK’s. Thus, the mod- .
eller knows for sure that the subject considers the set93) if z > sup[X] thengx (z) = 0.

K =Uxex {X —2: 2 < Pg(X)} of gambles as almost  The p-representation ofo is the lower probability
desirable, and she models this by the following lower de-(p, D,(Kx),P,) that is defined byP (D, (X — z)) =
sirability functiond onK: for X' € Ks andz < Pg(X), ¢y (z). Note thatD,(Kx) is a chain of sets. We can use

3(X —x) = 1. Thend is reasonable if and only iP5 the results in [5] to arrive at the following conclusions.
avoids sure loss. Assume that this is indeed the case, and

consider the natural extensidh, of P fromKsto £(2). T (90)=(g3) hold, P, is coherent— itis a finitely additive
We find for the natural extensiarof the reasonablethat ~ Probability onD, (K) —anda is representable. The natu-
¢(X) = Lif E¢(X) > 0 and zero elsewhere; and for the ral extensmrﬁp qfﬂp to all eventsis a_neceSS|ty measure,
first-order natural extension that = E.. 0 that is, the conjugate lower probability of a possibility
measure [3, 5] with possibility distributiom: P — [0, 1]
Note that in the previous example, the modelssumes  given byr(P) = 1—g5 (P(X)), whereg{: R — [0,1]is
only the values zero and one. But what makes lower dethe right-continuous non-decreasing mapping defined by
sirability functions especially interesting, is that they may g% (z) = gx(z+) = sup{gx(z + €): € > 0}. Note that
assume values between zero and one, and allow us to ex-(P) is the modeller's upper probability th&tis the sub-
press more nuance in assessments: in fact, they allow foject’s true modelP;. For the natural extensianof 2 we
a ‘much more continuous’ transition between the two ex-find that, for any gambl& on Q:
tremes of absolute certainty (lower probability one) and .
complete ignorance (lower probability zero). In the next ¢ = Ep(Dp(Y)) = inf{gy (P(X)): P(Y) <0}.
example, | give an indication of how this might be applied.



For the first-order natural extensid#t of @ we find, since  helped me improve it.
a necessity measuredsmonotone and the natural exten-

sion of a2—monotone lower probability can be found by References
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