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Abstract

In this paper we give a general necessary condition
for a non-additive measure to be dominated by a k-
additive measure. The dominating measure is seen as
a linear transformation of the original measure. We
investigate some algebraic properties of these trans-
formations, and study the case of belief functions.
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1 Introduction

The problem of upper and lower approximation of a
non-additive measure (also called fuzzy measure, ca-
pacity, or game in cooperative game theory) by a
probability measure is an important one in the �eld of
decision making, game theory, and is closely related
to imprecise probabilities.

On the one hand, non-additive measures, which are
complex mathematical entities, can be replaced by
more tractable additive measures (probability), on the
other hand, families of probability measures (impre-
cise probabilities) can be handled considering their
lower or upper envelopes, which are non-additive mea-
sures in general. In this paper, we adopt rather the
�rst point of view.

However, the approximation capability of probability
measure is rather narrow, since many non-additive
measures have no upper or lower approximation. For
example, it is known that convex (or supermodular)
measures have such an approximation [10].

Recently, considering �nite spaces, the author has
proposed the concept of k-additive measure, which is
a compromise between complexity and richness. In-
deed, on �nite universe of n elements, a probability
measure needs n coe�cients to be de�ned, but of-
fers a limited modelling power, while a non-additive

measure, which is much more 
exible, needs 2n coef-
�cients. k-additive measures allow to situate oneself
between probability measures (k = 1) and general
non-additive measures (k = n).

Therefore, it should be interesting to investigate in
what respect k-additive measures can approximate
non-additive measures, since one can expect to have a
better approximation, at the price of a small increase
of complexity compared to probability measures.

The paper investigates this problem. It extends and
completes previous results published by the author on
this topic [7, 6].

A last comment is in order here. The work we are pre-
senting could be considered as the �rst steps towards a
natural generalization of the theory of imprecise prob-
abilities, giving new tools to approximate from above
or below, in a more precise way, any non-additive mea-
sure. However, this approach makes sense only if we
are able to build, by some experimental apparatus,
k-additive measures. Although in multicriteria deci-
sion making, the meaning of k-additive measures has
become clear through the concept of interaction [4], it
remains to �nd such an interpretation in the �eld of
uncertainty modelling and decision under uncertainty.

Throughout the paper, we will consider a �nite set of
elements X = f1; 2; : : : ; ng (index set). P(X) indi-
cates the power set of X , i.e. the set of all subsets in
X , while kP(X) indicates the set of subsets A � X

such that jAj � k. We will often omit braces for sin-
gletons and pairs.

2 k-additive measures

We introduce here some basic de�nitions on non-
additive measures and k-additive measures.

De�nition 1 A (discrete) non-additive measure or
fuzzy measure or capacity on X is a set function � :
P(X) ! [0; 1] satisfying �(;) = 0, �(X) = 1, and



the monotonicity condition [A � B implies �(A) �
�(B)].

If � is a non-additive measure, then its conjugate is
de�ned by

��(A) := 1� �(Ac); 8A � X:

For a given non-additive measure �, theM�obius trans-
form [8] of � is a set function m : P(X) 7! [0; 1] de-
�ned by :

m(A) :=
X
B�A

(�1)jAnBj�(B); 8A � X;

which can be inverted as well:

�(A) =
X
B�A

m(B); 8A � X:

It can be shown [5] that the M�obius transform �m of
�� can be expressed as

�m(A) = (�1)jAj+1
X
B�A

m(B); 8A � X;A 6= ;;
(1)

and �m(;) = 0. Also, from �(X) = 1 =
P

B�X m(B),
it is easy to obtain

��(A) =
X

A\B 6=;

m(B); 8A � X: (2)

A belief function [9] is a non-additive measure for
which the M�obius transform is non-negative. The
conjugate of a belief function is called a plausibility
function.

De�nition 2 Let � be a fuzzy measure on X. � is a
k-additive measure if its M�obius transform vanishes
on subsets of more than k elements, i.e. m(A) = 0 if
jAj > k, and it exists at least one A � X containing
k elements such that m(A) 6= 0.

3 Upper approximation by additive

measures

We begin by recalling a result from Chateauneuf and
Ja�ray [1] for probability measures, which extends
previous results from Dempster [2]. We will restrict
in the sequel to the case of upper approximation (the
lower approximation case is much the same), and we
will say that, � and � being two non-additive mea-
sures, � dominates � i� �(A) � �(A), for all A � X .

Theorem 1 [1] Let � be a non-additive measure on
X, m its M�obius transform, and suppose that P is a

probability measure on X dominating �. Then neces-
sarily, P can be put under the following form :

P (fig) =
X
B3i

�(i; B)m(B);8i 2 X;

and P (A) =
P

i2A P (fig) for any A � X. The func-
tion � : X �P(X)! [0; 1] is a weight function satis-
fying: X

i2B

�(i; B) = 1;8B � X

�(i; B) = 0 whenever i 62 B:

The function � performs a sharing of the M�obius
transform. It has to be noted that any sharing of the
above form does not necessarily lead to a dominating
probability.

4 Upper approximation by k-additive

measures

We try to generalize the previous result to k-additive
measures. We can show the following.

Theorem 2 Let � be a non-additive measure on X,
m its M�obius transform, and suppose that �� is a
k-additive measure which dominates �, 1 � k � n.
Then necessarily, the M�obius transform m� of �� can
be put under the following form:

m�(A) =
X

B\A6=;

�(A;B)m(B);8A 2 kP(X):
(3)

Moreover, the weight function � : kP(X) � P(X) !
IR is such thatX

AjA\B 6=;

�(A;B) = 1;8B � X; (4)

�(A;B) = 0;8A 2 kP(X); A \ B = ;:
(5)

In particular, �(;; B) = 0 for all B � X;B 6= ;, and
�(;; ;) := 1 by convention.

It should be noted that this time the weight function
� is not exactly a sharing nor a weight function since
it can take negative values, as well as values greater
than 1. Also, in previous papers [7, 6], the author did
not notice that � was not limited to [0; 1].

Sketch of the proof and example: we proceed
similarly as in [1], using the theorem of Gale for net-
work 
ow problems. As illustration, we take the fol-
lowing example with n = 3 (�gure 1). The upper part
represents the M�obius transform of �, while the lower
part concerns the dominating measure, which is 2-
additive in this case. The corresponding non-additive
measures are given in the table below, where it can
be checked that �� is indeed a dominating measure.
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Figure 1: Example of 
ow network for n = 3.

subset 1 2 3 1,2 1,3 2,3 1,2,3
� 0.1 0.2 0.2 0.5 0.3 0.3 1.
�
� 0.5 0.3 0.4 0.8 0.7 0.7 1.

The proof of the theorem consists to show that there
exists in any case a feasible 
ow � which saturates
the demand and the supply. Figures on the arrows
give the value of the 
ow �(A;B) when the arrow
goes from A to B. It can be checked that the �gures
e�ectively constitute a solution to the 
ow problem.

It is easy to show that the weight function � satisfying
the constraints in the above theorem is linked to � by
the following relation1:

�(A;B) =
�(B;A)

m(B)
; 8A 2 kP(X); B 2 P(X)

(6)

since m�(A) =
P

BjB\A6=; �(B;A).

For the (lengthy) proof that a feasible 
ow always
exists, using the theorem of Gale, see [7]. 2

Note that again we have only a necessary condition.

5 Algebraic properties

We investigate here the algebraic properties behind
the upper approximation problem. Let us introduce
the following operations, similarly to what was done
in [3].

We consider real functions on the power set P(X) in
one and two variables,

� : P(X) �! IR � : P(X)�P(X) �! IR;

which we always write with small and capital greek
letters, respectively. The functions of two variables

1In [7], the formula for � was incorrect, hence the in-
complete result.

will play the role of transformations applied to the
functions of one variable. For this purpose we in-
troduce a multiplication ? between functions of two
variables and between a function of one variable and
a function of two variables. For A;B 2 P(X), we
de�ne

(� ?	)(A;B) :=
X

C2P(X)

�(A;C)	(C;B) ;

(� ? �)(A) :=
X

C2P(X)

�(A;C)�(C) ;

(� ?	)(B) :=
X

C2P(X)

�(C)	(C;B) :

If we �x a linear order on P(X) we can identify P(X)
with f1; 2; :::; 2ng and the operation ? becomes ordi-
nary multiplication of square matrices or of a vector
with a matrix. This shows that the operation ? is
distributive with respect to the usual sum of func-
tions. ? is also associative, but with the restriction
that a function of one variable is not allowed be-
tween two functions of two variables, i.e. in general
(� ? �) ?	 6= � ? (� ?	) like for matrices and vectors,
where one of the products is not de�ned.

Furthermore Kronecker's delta

�(A;B) :=

�
1 if A = B

0 otherwise

is the unique neutral element from the left and from
the right. If � is invertible we denote the inverse with
��1, i.e. � ?��1 = �, ��1 ?� = �.

It is an elementary fact that triangular matrices with
non zero entries on the diagonal are invertible. Thus
we consider in the sequel, that �(A;A) 6= 0 for all
A � X .

We introduce now the following de�nitions. k is any



integer in f1; : : : ; ng.

G\ :=f� : P(X)�P(X)! IR j �(A;A) 6= 0;

8A 2 P(X);
X

A\B 6=;

�(A;B) = 1;

�(A;B) = 0 if A \ B = ;g

Gk\ :=f� : kP(X)�P(X)! IR j � 2 G\g

G\;+ :=f� : P(X)�P(X)! IR+ j � 2 G\g

Gk\;+ :=f� : kP(X)�P(X)! IR+ j � 2 G\g

G� :=f� : P(X)�P(X)! IR j �(A;A) 6= 0;

8A 2 P(X);
X
A�B

�(A;B) = 1;

�(A;B) = 0 if A 6� Bg

Gk� :=f� : kP(X)�P(X)! IR j � 2 G�g

G�;+ :=f� : P(X)�P(X)! IR+ j � 2 G�g

Gk�;+ :=f� : kP(X)�P(X)! IR+ j � 2 G�g:

Note that Gn� = G�, Gn\ = G\, etc.

We can easily prove the following.

Proposition 1 Using the above de�nitions, we have:

(i) (G�; ?) is a group. The inverse of � is de�ned
as:

��1(A;A) =
1

�(A;A)
(7)

��1(A;B) =���1(A;A) (8)X
A$C�B

�(A;C)��1(C;B):
(9)

(ii) (Gk�; ?) is a monoid, 8k < n

(iii) (G�;+; ?) is a semi-group

(iv) (Gk�;+; ?) is a monoid, 8k < n.

Note that G\ and Gk\ are not stable under ?.

Proof: note that associativity of ? is already shown,
and that the neutral element � belongs to G\, G�,
and G�;+ only. Also, for stability of ?, we have
(�?	)(A;A) = �(A;A)	(A;A) 6= 0 for G�;G

k
�;G�;+,

and Gk�;+.

(i) we show that ? is stable.

X
AjA�B

(� ?	)(A;B)

=
X

AjA�B

X
A�C�B

�(A;C)	(C;B)

=
X
C�B

	(C;B)
X
A�C

�(A;C)

=
X
C�B

	(C;B) = 1:

We express the inverse element. We have by def-
inition (� ? ��1)(A;B) = 1 if A = B, and 0
otherwise. Thus

(� ?��1)(A;A) = 1 = �(A;A)��1(A;A);

which gives ��1(A;A). Now for A 6= B,

(� ?��1)(A;B) = 0

=
X

A�C�B

�(A;C)��1(C;B)

=�(A;A)��1(A;B) +
X

A$C�B

�(A;C)��1(C;B);

which leads to the desired result.

(ii) we just have to show that ? is stable.

X
AjA�B;jAj�k

(� ?	)(A;B)

=
X

C�B;jCj�k

	(C;B)
X

A�C;jAj�k

�(A;C)

= 1:

(iii) clear from (i) and the fact that the inverse ��1

can be negative.

(iv) clear from (ii).

2

6 The case of belief functions

We focus now on the case of belief functions. We can
prove the following.

Proposition 2 Let � be a belief function. 8k 2
f1; : : : ; ng, 8� 2 Gk�;+, the induced �� is a dominat-
ing k-belief function (shorthand for k-additive belief
function).



Proof: Applying the de�nition, we have:

��(A) =
X
B�A

m�(B) =
X
B�A

X
C�B

�(B;C)m(C)

=
X
C�A

m(C)
X

BjB�C

�(B;C) +

X
C 6�A;C\A6=;

m(C)
X

BjB�C\A

�(B;C):

The �rst term is equal to �(A), while the second is
always non negative, since � is a belief function and
� is non negative. 2

Note that we recover the fact with k = 1 that any
sharing of the M�obius transform of a belief function
leads to a dominating probability measure (see [1, 2]).

Unlike the case of probability measures, the reciprocal
does not hold: there exist dominating belief functions
which are not induced by a member of Gk�;+, as the
following example shows.

Counter-example 1 Let us consider X = f1; 2; 3g,
and let us de�ne the following belief function � (blanks
indicate 0), and a dominating 2-additive measure be-
lief function ��, whose M�obius transform is m�.

subset 1 2 3 1,2 1,3 2,3 1,2,3
m 0.1 0.1 0.1 0.1 0.2 0.1 0.3
� 0.1 0.1 0.1 0.3 0.4 0.3 1.

m� 0.35 0.1 0.1 0.45
�� 0.35 0.1 0.1 0.45 0.45 0.65 1.

Clearly, �� � �, but it is not possible to express
it by a member of G2�;+. Indeed, in the sharing,
m�(2; 3) receives only from m(2; 3) and m(1; 2; 3).
But m(2; 3) + m(1; 2; 3) = 0:4, which is inferior to
m�(2; 3), so that no sharing of G�;+ can lead to this
dominating solution.

However, this sharing can be obtained as a member
of G2\;+, suggesting that this set can lead to dominat-
ing belief functions too. The following example shows
that this is however not always the case.

Counter-example 2 Let us consider X = f1; 2; 3g,
and let us de�ne the following belief function � (blanks
indicate 0).

subset 1 2 3 1,2 1,3 2,3 1,2,3
m 0.5 0.2 0.2 0.1
� 0.5 0.7 0.7 1.

Now we de�ne the sharing function �(A;B) in G2\;+.

AnB 1 2 3 1,2 1,3 2,3 1,2,3
1
2 1 1
3 1 0.5 0.2

1,2
1,3 1 0.5 0.2 0.3
2,3 0.5 0.3 0.5

Then it is easy to see that m�(1) = m�(2) =
m�(1; 2) = 0, so that ��(1; 2) = 0, and �� does not
dominate �.

Belief functions are not the only dominating measures
for belief functions, since obviously if � is a belief func-
tion, then ��, which is a plausibility function, domi-
nates �. Indeed, due to non-negativeness of �,

��(A) =
X

A\B 6=;

m(B) �
X
B�A

m(B) = �(A); 8A � X;

using (2). This implies that for any belief function
dominating a non-additive measure, its conjugate be-
longs also to the set of dominating functions. We can
express the corresponding sharing function, denoted
��.

Proposition 3 Let � be a belief function, and con-
sider any � in Gk�;+, for some k in f1; : : : ; ng. Then
�� generates a dominating measure, which is a k-
plausibility function (shorthand for k-additive plau-
sibility function), and �� 2 Gk�.

��(A;B) =(�1)jAj+1
X

A�C�B;jCj�k

�(C;B);

8A 2 kP(X); A 6= ;;8B 2 P(X);

and ��(;; B) := 0, for all B 6= ;.

Proof: From Proposition 2, we know that � induces a
dominating k-belief function ��. Consequently, �� is
also dominating, and so from Theorem 2 there exists
a function �� in G\ which generates ��, i.e.:

m�(A) =
X

A\B 6=;

��(A;B)m(B): (10)

Using (1), we have, for any A 6= ;, jAj � k:

m�(A) = (�1)jAj+1
X

B�A;jBj�k

m�(B)

= (�1)jAj+1
X

B�A;jBj�k

X
C�B

�(B;C)m(C)

=
X
B�A

m(B)
X

C�B;C�A;jCj�k

(�1)jAj+1�(C;B)

=
X
B�A

m(B)(�1)jAj+1
X

A�C�B;jCj�k

�(C;B):



Comparing with (10), we get the desired form for ��,
and we can put ��(A;B) := 0 for A 6� B.

Now, it remains to prove that �� is a member of
Gk�. We have already ��(A;B) := 0 for A 6� B, also
��(;; B) := 0 by hypothesis. It remains to show thatP

A�B �(A;B) = 1. We have:
X
A�B

�(A;B) =
X
A�B

(�1)jAj+1
X

A�C�B;jCj�k

�(C;B)
(11)

=
X

C�B;jCj�k

�(C;B)
X
A�C

(�1)jAj+1:
(12)

Now

X
A�C

(�1)jAj+1 =

jCjX
i=1

(�1)i+1
�
jCj

i

�
= 1;

which proves the result. 2

Let us remark that if � is a belief function, then � � ��,
which corresponds to � � �. Therefore ��(A;B) =
(�1)jAj+1. We recover equation (1).

A second remark is that ��� � �. This comes from the
fact that ��� � �, and that the de�nition of �� can be
extended to negative � transforms as well.

Finally, let us remark that, if we denote �Gk� := f�� j
� 2 Gk�;+g, the law ? is not stable on �Gk�, so it is not
a monoid.

In summary, we know that, for a belief function:

� the set of dominating belief functions contains
G�;+, and a part of G\;+.

� the conjugate of every dominating belief function
is a dominating measure (plausibility function),
and the corresponding � is known, provided the
dominating belief comes from G�;+.

� it may exist other dominating non-additive mea-
sures, yet to be characterized.

7 Conclusion

We have given in this paper some insights into the
problem of approximating non-additive measures by
k-additive measures. We have found a necessary con-
dition on the M�obius transform to be a dominating
measure, under the form of a transformation �, and
we have investigated the algebraic properties of sev-
eral sets of transforms.

The approximation of belief functions has been stud-
ied. Unlike the case of dominating probability mea-
sures where the set of dominating measures is com-
pletely known, the case of k-additive measures is much
more complex, and needs further study.

A topic of interest for further study would be the fol-
lowing. Taking for example the case of belief func-
tions, and knowing the set of dominating measures,
how to choose in this huge set? Are they some partic-
ular measures of interest, as it is the case with prob-
ability measures (e.g. the Shapley value)? Related
to this problem, the following situation has a practi-
cal interest, as suggested by one of the referee: for a
given belief function �, what is the k-additive belief
function dominated by � and closest, in some sense,
to �? This corresponds to the case where we loose
the less possible information, but do not create more
belief than justi�ed by �.
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