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Abstract

In this paper we give a general necessary condition
for a non-additive measure to be dominated by a k-
additive measure. The dominating measure is seen as
a linear transformation of the original measure. We
investigate some algebraic properties of these trans-
formations, and study the case of belief functions.
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1 Introduction

The problem of upper and lower approximation of a
non-additive measure (also called fuzzy measure, ca-
pacity, or game in cooperative game theory) by a
probability measure is an important one in the field of
decision making, game theory, and is closely related
to imprecise probabilities.

On the one hand, non-additive measures, which are
complex mathematical entities, can be replaced by
more tractable additive measures (probability), on the
other hand, families of probability measures (impre-
cise probabilities) can be handled considering their
lower or upper envelopes, which are non-additive mea-
sures in general. In this paper, we adopt rather the
first point of view.

However, the approximation capability of probability
measure is rather narrow, since many non-additive
measures have no upper or lower approximation. For
example, it is known that convex (or supermodular)
measures have such an approximation [10].

Recently, considering finite spaces, the author has
proposed the concept of k-additive measure, which is
a compromise between complexity and richness. In-
deed, on finite universe of n elements, a probability
measure needs n coefficients to be defined, but of-
fers a limited modelling power, while a non-additive

measure, which is much more flexible, needs 2" coef-
ficients. k-additive measures allow to situate oneself
between probability measures (k = 1) and general
non-additive measures (k = n).

Therefore, it should be interesting to investigate in
what respect k-additive measures can approximate
non-additive measures, since one can expect to have a
better approximation, at the price of a small increase
of complexity compared to probability measures.

The paper investigates this problem. It extends and
completes previous results published by the author on
this topic [7, 6].

A last comment is in order here. The work we are pre-
senting could be considered as the first steps towards a
natural generalization of the theory of imprecise prob-
abilities, giving new tools to approximate from above
or below, in a more precise way, any non-additive mea-
sure. However, this approach makes sense only if we
are able to build, by some experimental apparatus,
k-additive measures. Although in multicriteria deci-
sion making, the meaning of k-additive measures has
become clear through the concept of interaction [4], it
remains to find such an interpretation in the field of
uncertainty modelling and decision under uncertainty.

Throughout the paper, we will consider a finite set of
elements X = {1,2,...,n} (index set). P(X) indi-
cates the power set of X, i.e. the set of all subsets in
X, while #P(X) indicates the set of subsets A C X
such that |A|] < k. We will often omit braces for sin-
gletons and pairs.

2 k-additive measures

We introduce here some basic definitions on non-
additive measures and k-additive measures.

Definition 1 A (discrete) non-additive measure or
fuzzy measure or capacity on X is a set function u :

P(X) — [0,1] satisfying p(®) = 0, w(X) = 1, and



the monotonicity condition [A C B implies p(A) <
w(B)]-

If p is a non-additive measure, then its conjugate is
defined by

a(A) =1—pu(A%), VACX.

For a given non-additive measure p, the Mdbius trans-
form [8] of p is a set function m : P(X) — [0,1] de-
fined by :

m(A) = Y (-1)"\Plu(B),

BCA

VACX,

which can be inverted as well:

w(A)=> m(B), VACX.
BCA

It can be shown [5] that the M&bius transform m of
[i can be expressed as
m(A) = (=DM m(B), VACX,A#0,
BDA (1)

and m(0) = 0. Also, from pu(X) =1= 3 5-x m(B),
it is easy to obtain

> m(B), VACX. (2)
ANB#0

A belief function [9] is a non-additive measure for
which the Mobius transform is non-negative. The
conjugate of a belief function is called a plausibility
function.

Definition 2 Let p be a fuzzy measure on X. u is a
k-additive measure if its Mobius transform vanishes
on subsets of more than k elements, i.e. m(A) =0 if
|A| > k, and it exists at least one A C X containing
k elements such that m(A) # 0.

3 Upper approximation by additive
measures

We begin by recalling a result from Chateauneuf and
Jaffray [1] for probability measures, which extends
previous results from Dempster [2]. We will restrict
in the sequel to the case of upper approximation (the
lower approximation case is much the same), and we
will say that, 4 and v being two non-additive mea-
sures, u dominates v iff u(A) > v(A4), for all A C X.

Theorem 1 [I1] Let i be a non-additive measure on
X, m its Mobius transform, and suppose that P is a

probability measure on X dominating . Then neces-
sarily, P can be put under the following form :

P({i}) =) @(i, B)m(B),Vi € X,
B>i

and P(A) =3 ;4 P({i}) for any A C X. The func-
tion ® : X x P(X) — [0,1] is a weight function satis-

fying:
> @i,B) =
i€EB
®(i,B) =

1,VBC X
0 whenever i & B.

The function ® performs a sharing of the Md&bius
transform. It has to be noted that any sharing of the
above form does not necessarily lead to a dominating
probability.

4 Upper approximation by k-additive
measures

We try to generalize the previous result to k-additive
measures. We can show the following.

Theorem 2 Let p be a non-additive measure on X,
m its Mébius transform, and suppose that p* is a
k-additive measure which dominates p, 1 < k < n.
Then necessarily, the Mobius transform m* of u* can
be put under the following form:

m*(A)= > ®(A,B)m(B),VA € ¥P(X).
BNA#0D (3)

Moreover, the weight function ® : *P(X) x P(X) —
IR is such that

> ®(A,B)=1,YBC X, (4)
A|ANB#0
®(4,B)=0,YA€*P(X),AnB=0.
(5)

In particular, ®(0,B) = 0 for oll B C X,B # 0, and
®(0,0) :=1 by convention.

It should be noted that this time the weight function
® is not exactly a sharing nor a weight function since
it can take negative values, as well as values greater
than 1. Also, in previous papers [7, 6], the author did
not notice that ® was not limited to [0, 1].

Sketch of the proof and example: we proceed
similarly as in [1], using the theorem of Gale for net-
work flow problems. As illustration, we take the fol-
lowing example with n = 3 (figure 1). The upper part
represents the Mobius transform of p, while the lower
part concerns the dominating measure, which is 2-
additive in this case. The corresponding non-additive
measures are given in the table below, where it can
be checked that p* is indeed a dominating measure.
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Figure 1: Example of flow network for n = 3.

subset 1 2 3 1,2 13 23 123
p 01 02 02 05 03 03 L
p~ 05 03 04 08 07 07 L

The proof of the theorem consists to show that there
exists in any case a feasible flow ¢ which saturates
the demand and the supply. Figures on the arrows
give the value of the flow ¢(A, B) when the arrow
goes from A to B. It can be checked that the figures
effectively constitute a solution to the flow problem.

It is easy to show that the weight function ® satisfying
the constraints in the above theorem is linked to ¢ by
the following relation®:
B, A
o4, B) = 2B 4 cipx) Bepx)

m(DB) (6)

since m*(A) = ZB‘BOA#Z) ¢(B, A).

For the (lengthy) proof that a feasible flow always
exists, using the theorem of Gale, see [7]. O

Note that again we have only a necessary condition.

5 Algebraic properties

We investigate here the algebraic properties behind
the upper approximation problem. Let us introduce
the following operations, similarly to what was done
in [3].

We consider real functions on the power set P(X) in

one and two variables,
v:P(X)— R ®:P(X)xP(X) —R,

which we always write with small and capital greek
letters, respectively. The functions of two variables

Tn [7], the formula for ® was incorrect, hence the in-
complete result.

will play the role of transformations applied to the
functions of one variable. For this purpose we in-
troduce a multiplication x between functions of two
variables and between a function of one variable and
a function of two variables. For A,B € P(X), we
define

(@+T)(A4,B) = > &A,C)¥(C,B),
CeP(X)
(@xv)(4) = Y 2(4,0w(0),
CeP(X)
(vx¥)(B) = > v(C)¥(C,B)
CeP(X)

If we fix a linear order on P(X) we can identify P(X)
with {1,2,...,2"} and the operation * becomes ordi-
nary multiplication of square matrices or of a vector
with a matrix. This shows that the operation x is
distributive with respect to the usual sum of func-
tions. « is also associative, but with the restriction
that a function of one variable is not allowed be-
tween two functions of two variables, i.e. in general
(P *xv)* T # & (v* ) like for matrices and vectors,
where one of the products is not defined.

Furthermore Kronecker’s delta

1 if A=1B

A(4,B) := { 0 otherwise

is the unique neutral element from the left and from
the right. If @ is invertible we denote the inverse with
O 1l je PxPL=A, & Lxd=A.

It is an elementary fact that triangular matrices with
non zero entries on the diagonal are invertible. Thus
we consider in the sequel, that ®(A, A) # 0 for all
AcCX.

We introduce now the following definitions. & is any



integer in {1,...,n}.

Gn i ={®: P(X) x P(X) - R | ®(4,A4) #0,
VAeP(X), > ®(4,B)=1,
ANB#0

®(A,B)=0if ANB =0}

GE ={® :*P(X)x P(X) >R | ® € Gn}
Gy ={® :P(X)xP(X) =R | ®€Gn}
Gh . ={2:"P(X)x P(X) > R" | ® € Gn}

Ge :={®:P(X) x P(X) = R | ®(A, A) #0,

VA€ P(X), Y ®4,B)=1,
ACB
®(A,B) =0if A ¢ B}

Gk ={® . "P(X)x P(X) >R | ® € G}
Gey ={®:P(X)xP(X) > R"| @G}
Ge, ={®:"P(X)xP(X) > R | ® € G}

Note that G = G, Gt = Gn, etc.

We can easily prove the following.

Proposition 1 Using the above definitions, we have:

(i) (Gc,x) is a group. The inverse of ® is defined

d1(A4, A) :(I)(j ) (7)

(ﬁil(Aa B) = Qil(AaA) (8)
> @(4,0)% (C,B).

AGCCB (9)

(ii) (GE,%) is a monoid, Vk < n
(iit) (Gc,+,%) is a semi-group
(iv) (GE ,,%) is a monoid, Yk < n.

Note that G~ and gﬁ] are not stable under .

Proof: note that associativity of x is already shown,
and that the neutral element A belongs to Gn, Gc,
and Gc 4 only. Also, for stability of %, we have
(@xT)(A4,A) = ®(A, A)¥(A, A) #0for G, GE, G 4,
and gé+.

(i) we show that * is stable.

> (®x)(A,B)

A|ACB

= > > ®4,0¥(C,B)

AJACBACCCB

= > ¥(C,B) Y ¥(4,0)

CcCB ACC
= > ¥(C,B)=1.
CCB

We express the inverse element. We have by def-
inition (® x ®71)(4,B) = 1if A = B, and 0
otherwise. Thus

(@%@ 1)(4,4) = 1 = B(4, )3 (4, A)
which gives ®~1(4, A). Now for A # B,

(@x® ) (A,B)=0
= Y 4,02 B)

ACCCB
=®(A4, )2 (A,B)+ > ¥(4,C)% (C,B),

A;CCB
which leads to the desired result.

(ii) we just have to show that * is stable.

S (@xT)(4,B)

AJACB,|A|ILk

= > wC,B) > ®(4,0)
CCB,|C|<k ACC,|AI<Lk

= 1.

(iii) clear from (i) and the fact that the inverse ®~!
can be negative.

(iv) clear from (ii).

O

6 The case of belief functions

We focus now on the case of belief functions. We can
prove the following.

Proposition 2 Let u be a belief function. Vk €
{1,...,n}, V® € gng, the induced p* is a dominat-
ing k-belief function (shorthand for k-additive belief
function).



Proof: Applying the definition, we have:

prA) =3 mi(B) = Y 3 #(B,C)m(0)

BCA BCACDB

=Y m(C) > @B,C)+

CCcA B|BcCC

>, m(C)

CZA,CNA#D

> ®(B,0).

B|BCCNA

The first term is equal to p(A), while the second is
always non negative, since p is a belief function and
® is non negative. O

Note that we recover the fact with & = 1 that any
sharing of the Mébius transform of a belief function
leads to a dominating probability measure (see [1, 2]).

Unlike the case of probability measures, the reciprocal
does not hold: there exist dominating belief functions
which are not induced by a member of gg 4, as the
following example shows.

Counter-example 1 Let us consider X = {1,2,3},
and let us define the following belief function u (blanks
indicate 0), and a dominating 2-additive measure be-
lief function p*, whose Mébius transform is m*.

subset 1 2 3 12 13 23 123

m 01 01 01 01 02 0.1 0.3
w 01 01 01 03 04 03 1.

m* 035 01 0.1 0.45
p* 035 01 01 045 045 0.65 1.

Clearly, pu* > u, but it is not possible to express
it by a member of Qé+. Indeed, in the sharing,
m*(2,3) receives only from m(2,3) and m(1,2,3).
But m(2,3) + m(1,2,3) = 0.4, which is inferior to
m*(2,3), so that no sharing of G- + can lead to this
dominating solution.

However, this sharing can be obtained as a member
of g;ﬁ 1, suggesting that this set can lead to dominat-
ing belief functions too. The following example shows
that this is however not always the case.

Counter-example 2 Let us consider X = {1,2,3},
and let us define the following belief function u (blanks
indicate 0).

subset 1 2 3 12 13 23 123
m 05 0.2 0.2 0.1
n 0.5 0.7 0.7 1.

Now we define the sharing function ®(A, B) in g?H.

AB[1 2 3 12 13 23 123
1
2 1 1
3 1 0.5 0.2
1,2
131 05 0.2 0.3
2.3 0.5 0.3 0.5
Then it is easy to see that m*(1) = m*(2) =

m*(1,2) = 0, so that p*(1,2) = 0, and p* does not
dominate p.

Belief functions are not the only dominating measures
for belief functions, since obviously if 1 is a belief func-
tion, then g, which is a plausibility function, domi-
nates p. Indeed, due to non-negativeness of u,

aA) = > m(B)> Y m(B)=mp(d), VACX,
ANB#0 BCA
using (2). This implies that for any belief function

dominating a non-additive measure, its conjugate be-
longs also to the set of dominating functions. We can
express the corresponding sharing function, denoted
®.

Proposition 3 Let pu be a belief function, and con-
sider any ® in Qé7+, for some k in {1,... ,n}. Then
® generates a dominating measure, which is a k-
plausibility function (shorthand for k-additive plau-
sibility function), and ® € G

B(A, B) =(—1)lAIH! >

ACCCB,|C|<k
VA e"P(X),A#0,YBe P(X),

®(C, B),

and ®(0, B) := 0, for all B # 0.

Proof: From Proposition 2, we know that ® induces a
dominating k-belief function p*. Consequently, p* is
also dominating, and so from Theorem 2 there exists
a function ® in G~ which generates u*, i.e.:

m¥(A) = > @A, B)m(B). (10)
ANB#0

Using (1), we have, for any A # 0, |A| < k:

mE(A) = (~phlt Yo

BDA,|B|<k

> ) e(B,0)m(C)

BOA,|B|<kCDB

=) m®B >

CCB,CDA,|C|<k

= Y mB)

BDA ACCCB,|C|<k

m*(B)
= (-
(-1, B)

&(C, B).



Comparing with (10), we get the desired form for o,
and we can put ®(A, B) :=0 for A ¢ B.

Now, it remains to prove that ® is a member of
GE. We have already ®(4,B) := 0 for A ¢ B, also
®((, B) := 0 by hypothesis. It remains to show that
>acp ®(4,B) =1. We have:

Y eAB) =Y -yt YT (¢, B)
ACB ACB ACCCB,|C|<k (11)
= > ®C,B) Y (-nAtL
CCB,|C|<k AcC (12)
Now

1€

5 o () -

AcCC i=1
which proves the result. O

Let us remark that if 12 is a belief function, then p < fi,
which corresponds to ® = A. Therefore A(A4, B) =
(—1)I4+1. We recover equation (1).

A second remark is that ® = ®. This comes from the
fact that g4 = u, and that the definition of ® can be
extended to negative ® transforms as well.

Finally, let us remark that, if we denote gk ={o|
® € GE |}, the law « is not stable on GE, so it is not
a monoid.

In summary, we know that, for a belief function:

e the set of dominating belief functions contains
Gc,+, and a part of Gn 4.

e the conjugate of every dominating belief function
is a dominating measure (plausibility function),
and the corresponding ® is known, provided the
dominating belief comes from G 4.

e it may exist other dominating non-additive mea-
sures, yet to be characterized.

7 Conclusion

We have given in this paper some insights into the
problem of approximating non-additive measures by
k-additive measures. We have found a necessary con-
dition on the Mobius transform to be a dominating
measure, under the form of a transformation ®, and
we have investigated the algebraic properties of sev-
eral sets of transforms.

The approximation of belief functions has been stud-
ied. Unlike the case of dominating probability mea-
sures where the set of dominating measures is com-
pletely known, the case of k-additive measures is much
more complex, and needs further study.

A topic of interest for further study would be the fol-
lowing. Taking for example the case of belief func-
tions, and knowing the set of dominating measures,
how to choose in this huge set? Are they some partic-
ular measures of interest, as it is the case with prob-
ability measures (e.g. the Shapley value)? Related
to this problem, the following situation has a practi-
cal interest, as suggested by one of the referee: for a
given belief function u, what is the k-additive belief
function dominated by p and closest, in some sense,
to p? This corresponds to the case where we loose
the less possible information, but do not create more
belief than justified by pu.
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