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Abstract

Belief functions, possibility measures and Choquet capac-
ities of order 2, which are special kinds of coherent upper
or lower probability, are amongst the most popular math-
ematical models for uncertainty and partial ignorance. I
give examples to show that these models are not suffi-
ciently general to represent some common types of uncer-
tainty. Coherent lower previsions and sets of probability
measures are considerably more general but they may not
be sufficiently informative for some purposes. I discuss
two other models for uncertainty, involving sets of desir-
able gambles and partial preference orderings. These are
more informative and more general than the previous mod-
els, and they may provide a suitable mathematical setting
for a unified theory of imprecise probability.

Keywords. Choquet capacity, coherence, comparative
probability, desirable gambles, imprecise probability, in-
complete preference, lower prevision, lower probability.

1 Introduction

Can there be a unified theory of imprecise probability? At
present there are numerous mathematical models, interpre-
tations and applications of imprecise probabilities. As a
general or unified theory may be expected to accommo-
date this variety of mathematical models, interpretations
and applications, it may appear that such a theory will be
difficult to attain.

My view is that a single theory of imprecise probability, as
in [22], can accommodate all the kinds of uncertainty and
partial ignorance that are currently being studied, includ-
ing vague or qualitative judgements of uncertainty, com-
plete ignorance and near ignorance, random sets and mul-
tivalued mappings, and partial information about an un-
known probability measure. To defend this view it is nec-
essary to examine these types of uncertainty in some de-
tail, and this has been attempted in [22, 23, 26].

My aim in this paper is more limited: to consider what
level of mathematical generality will be needed in a unified

theory of imprecise probability. I will argue that none of
the mathematical models that are most popular at present
(numbers 1-4 in the list below) is sufficiently general, and
I will suggest several other models that do seem to be suf-
ficiently general but have received less attention than they
deserve. By a ‘sufficiently general’ model, I mean one that
can represent all the types of uncertainty and partial igno-
rance that are commonly encountered in applications.

The mathematical models that I consider are, in order of
increasing generality,

1. possibility measures and necessity measures [4, 33]

2. belief functions and plausibility functions [2, 18]

3. Choquet capacities of order 2 [1, 3]

4. coherent upper and lower probabilities [13, 19]

5. coherent upper and lower previsions [22, 23, 24, 31]

6. sets of probability measures [9, 15]

7. sets of desirable gambles [22, 30, 32]

8. partial preference orderings [8, 22].

Another important type of model, which can be regarded
as a special case of models 5-8 but which does not fit
neatly into the preceding list, is

9. partial comparative probability orderings [5, 11, 12].

I think that all the models I have listed are appropriate and
useful in particular types of application. Some well known
examples are: (1) vague judgements of uncertainty in nat-
ural language; (2) multivalued mappings and non-specific
information; (3) some types of statistical neighbourhood
in robustness studies, and various economic applications;
(4) personal betting rates, and upper and lower bounds for
probabilities; (5) buying and selling prices for gambles,
and envelopes of expert opinions; (6) partial information
about an unknown probability measure; (7,8) judgements



of the desirability of, or preference between, gambles; and
(9) qualitative judgements of uncertainty.

If each of these models is useful in some types of applica-
tion, of course it follows that a sufficiently general model
should include all the listed models as special cases. This
argument supports the most general of the models, 7 and
8, as the most promising candidates for a unified theory.
In the rest of the paper I develop this argument by exam-
ining the mathematical models and the relationships be-
tween them in more detail, especially with regard to their
mathematical generality. I have already discussed possi-
bility measures and belief functions in [23]. In this paper
I consider models 3-8 in order of increasing generality.

Almost all of the results in this paper have been discussed
in my previous work, especially in [22, 23]. Nevertheless I
feel that it is important to review these results at this sym-
posium, because the choice of a mathematical model is a
fundamental issue and many people continue to advocate
models which have limited applicability.

My argument is based largely on examples which show
that models 3-6 are not sufficiently general. To simplify
the argument, I have chosen the examples to be as sim-
ple as possible and to involve only 3 or 4 possible out-
comes. The phenomena illustrated in the examples are not
restricted to small problems but actually occur more fre-
quently in larger problems.

2 Choquet Capacities of Order 2

Let 
 denote the set of possibilities under consideration.
Suppose that lower probabilitiesP (A) are defined for all
A 2 K, whereK is a collection of subsets of
. In this
sectionK is assumed to be an algebra. For models 1-4
in the earlier list, lower probabilities determine conjugate
upper probabilities throughP (A) = 1 � P (Ac), so it
suffices to consider lower probabilities.

Assume that0 � P (A) � 1 for all A 2 K, P (;) = 0
and P (
) = 1. The lower probabilityP is said to be2-
monotone, or aChoquet capacity of order 2, when it also
satisfies, wheneverA andB are inK,

P (A [ B) + P (A \ B) � P (A) + P (B): (1)

It is well known that probability measures, belief functions
and necessity measures (the conjugates of possibility mea-
sures) are always 2-monotone lower probabilities. A sim-
ple method of constructing 2-monotone lower probabili-
ties is to apply a convex transformation to the probability
interval: ifP0 is a probability measure onK, f is a convex
function from[0; 1] into [0; 1] with f(0) = 0, andP is de-
fined byP (
) = 1 andP (A) = f(P0(A)) whenA 2 K
andA 6= 
, thenP is a 2-monotone lower probability.
Many of the neighbourhood models used in Bayesian and
frequentist studies of robust statistics are of this form [25].

To show that order-2 capacities are not sufficiently gen-
eral, I will give a simple example of coherent lower proba-
bilities that are not 2-monotone. This example also shows
that belief functions and necessity or possibility measures
are not sufficiently general, since these models are special
types of order-2 capacities. In my experience, most of the
coherent lower probability models that occur in applica-
tions are not 2-monotone.

Example 1 Coin Tossing ([20] and [22], sec. 5.13.4).
Suppose that a fair coin is ‘tossed’ twice, in such a way
that heads and tails are equally likely on each of the tosses
but there can be arbitrary dependence between the tosses.
For example, the coin may be tossed first in the usual way,
but on the second ‘toss’ it may be placed to have the same
outcome as the first toss, or it may be placed to have the
opposite outcome from the first toss.

Let H1 and T1 denote the possible outcomes (heads or
tails) of the first toss, and similarlyH2 and T2 for the
second toss. To simplify the notation, denote the possible
joint outcomes(H1H2; H1T2; T1H2; T1T2) by (a; b; c; d).
If we are completely ignorant about the interaction be-
tween the two tosses, we can model our uncertainty about
the outcomes by using the set of all probability measures
P that assignP (H1) = P (H2) = 1

2
. Let M denote

this set of probability measures. The two extreme points of
M are the probability measures that assign probabilities
(0; 1

2
; 1
2
; 0) and ( 1

2
; 0; 0; 1

2
) to (a; b; c; d). These two ex-

treme points correspond to the two possible mechanisms,
mentioned in the preceding paragraph, by which the first
outcome may determine the second.

We find the upper and lower probabilities that are gen-
erated byM by maximizing and minimizing probabilities
under the two extreme points. SinceH1 \H2 = fag and
H1 [H2 = fa; b; cg, we obtainP (H1) = P (H1) =

1

2
=

P (H2) = P (H2), P (H1 \ H2) = 0, P (H1 \ H2) = 1

2
,

P (H1 [ H2) =
1

2
, andP (H1 [ H2) = 1. These upper

and lower probabilities are coherent, because they are up-
per and lower envelopes of a set of probability measures.
But the lower probabilities are not 2-monotone, since
P (H1 [H2) +P (H1 \H2) =

1

2
< 1 = P (H1)+P (H2).

This example also illustrates that the Choquet integral is a
bad way of defining lower expectations when lower prob-
abilities are not 2-monotone. LetX denote the number of
heads obtained in the two tosses, and letI denote indicator
function. Since both tosses are fair, we should obtain the
precise expectationE(X) = E(IH1

+IH2
) = E(IH1

)+
E(IH2

) = P (H1) +P (H2) =
1

2
+ 1

2
= 1.

It can be verified that the Choquet integral produces up-
per and lower expectationsE(X) = 3

2
andE(X) = 1

2
,

values that are incoherent with the probabilitiesP (H1) =
P (H2) = 1

2
. Generally the Choquet integral produces

coherent upper and lower expectations if and only if the
initial lower probability function is 2-monotone[20].



3 Coherent Lower Probabilities

The simplest mathematical characterization of coherent
lower probabilities is that they arelower envelopesof
a set of probability measures. That is, lower probabili-
ties P , defined onK, are coherent if and only if there
is a nonempty set of probability measures,M, such that
P (A) = inf fP (A) : P 2 Mg for all A 2 K. Another
characterization in terms of positive linear combinations
of desirable gambles, which shows that coherence is a nor-
mative requirement of consistency, is given in [22, 23, 24].

All 2-monotone lower probabilities are coherent [20]. Ex-
ample 1 therefore shows that coherence is more general
than 2-monotonicity. But coherent lower probabilities are
still not sufficiently general, for the following reasons.

(a) They cannot model comparative probability judge-
ments such as “eventA is at least as probable asB”
or “A is at leastc times as probable asB”.

(b) They do not determine unique lower (or upper) ex-
pectations, which are needed in making decisions.

(c) They do not determine unique conditional lower (or
upper) probabilities, which are needed in making in-
ferences.

(d) Even in problems where lower probabilities are an
adequate model for an initial state of uncertainty, af-
ter we condition on a subset of
, the updated lower
probabilities may no longer be adequate because they
have lost relevant information [10].

Problems (a), (b) and (c) can be illustrated by a single ex-
ample involving comparative probability judgements; sim-
ilar examples are in [14] and [22] (sec. 2.7.3, ch. 4).

Example 2 A Football Game [22, 23].Consider a foot-
ball game with three possible outcomes for the home team,
labeled asW (win),D (draw) andL (loss). Suppose that
a subject makes three qualitative judgements of his uncer-
tainty concerning the outcome: (i) not win is at least as
probable as win; (ii) win is at least as probable as draw;
and (iii) draw is at least as probable as loss.

Judgement (i) can be represented in terms of upper or
lower probabilities byP (W ) � 1

2
or P (D [L) � 1

2
. The

other two judgements cannot be represented adequately in
terms of upper or lower probabilities: for example, the
translationP (W ) � P (D) of judgement (ii) is too strong.
Instead, the three judgements should be regarded as con-
straints on a coherent lower prevision, or equivalently as
constraints on a probability measureP , of the form: (i)
P (W ) � 1

2
; (ii) P (W ) � P (D); and (iii) P (D) � P (L).

LetM denote the set of all probability measures that sat-
isfy these three constraints. ThenM is a closed con-

vex polyhedron (in this case a triangle) whose three ex-
treme points assign probabilities( 1

2
; 1
2
; 0); ( 1

2
; 1
4
; 1
4
) and

( 1
3
; 1
3
; 1
3
) to the outcomes(W;D;L). The setM generates

upper probabilities1
2
; 1
2
; 1
3

and lower probabilities1
3
; 1
4
; 0

for W;D;L respectively, by maximizing and minimizing
probabilities under the extreme points.

Now suppose that the subject is permitted to express his
uncertainty only by making judgements of upper and lower
probabilities, and he assesses the upper and lower prob-
abilities that were just specified. LetM� be the set of all
probability measures that lie between the upper and lower
probabilities, i.e., that satisfyP (A) � P (A) � P (A) for
A = W;D;L. We find thatM� is a closed convex poly-
hedron with five extreme points: in addition to the three
extreme points ofM,M� has the extreme points( 1

3
; 1
2
; 1
6
)

and ( 5

12
; 1
4
; 1
3
). BecauseM is strictly contained inM�,

the new modelM� is less informative than the previous
modelM. In other words, the upper and lower probabil-
ities are less informative than the qualitative judgements
(i)-(iii) which generated them. Information may be lost
when uncertainty is modeled only in terms of upper and
lower probabilities.

To see that the lost information is relevant in calculating
lower expectations, consider the gambleX = IW � ID ,
which takes the value1 if W occurs,�1 if D, and 0
otherwise. By minimizing expectations with respect to
the extreme points, we find that the lower expectation is
E(X) = 0 under the first model (M), butE(X) = � 1

6

under the second model (M�).

To see that the lost information is relevant in calculating
conditional lower probabilities, consider conditioning on
the observation (B) that the outcome is notL. By con-
ditioning the extreme points and minimizing, we find that
P (W jB) = 1

2
underM butP (W jB) = 2

5
underM�.

The setsM andM� generate the same unconditional up-
per and lower probabilities. Given only these upper and
lower probabilities, we cannot tell whether the underly-
ing model for uncertainty isM or M� or some other set.
Consequently we cannot tell whether the upper and lower
expectations and conditional probabilities should be those
generated byM or byM� or by some other model.

The lower probability function in this example is not a be-
lief function, but it is 2-monotone, simply because the pos-
sibility space is so small: all coherent lower probabilities
on a 3-point space are 2-monotone. Suppose that we ex-
tend the space to 4 possible outcomes by distinguishing
scoring draws from non-scoring draws, and we add one
judgement to the earlier ones (i-iii): the event that there is
a scoring draw or a loss is at least as probable as a win.
Then the resulting lower probabilities are not 2-monotone.
When the lower probabilities are generated by the kinds of
qualitative judgements in this example, 2-monotonicity be-
comes less likely as the possibility space gets larger.



Example 3 Coin Tossing. To illustrate problem (d),
consider the set of probability measures,M, defined in
Example 1, which models two coin tosses with unknown
interaction. It can be verified thatM is the set of all
probability measures that lie between the upper and lower
probabilities stated in Example 1, and in factM is the
unique closed convex set of probability measures that gen-
erates these upper and lower probabilities as its upper and
lower envelopes. In this case the upper and lower proba-
bilities are adequate models for uncertainty, because they
uniquely determineM.

Now suppose that we learn partial information about the
outcomes of the two tosses: we learn that at least one out-
come was heads. How does this change our uncertainty?
We should updateM to M0 by conditioning the two ex-
treme points ofM on fa; b; cg, using Bayes’ rule([22],
sec. 6.4). Hence the two extreme points ofM0 assign
probabilities(0; 1

2
; 1

2
) and (1; 0; 0) to (a; b; c). The up-

dated setM0 generates upper probabilitiesP (fag) = 1
andP (fbg) = P (fcg) = 1

2
, and lower probability0 for

each possible outcome. But now these upper and lower
probabilities arenot an adequate model for the updated
uncertainty, because they are not sufficiently informative
to determineM0. The set of all probability measures that
lie between the upper and lower probabilities,M00, has
four extreme points:(0; 1

2
; 1

2
); (1; 0; 0), ( 1

2
; 1
2
; 0), and

( 1
2
; 0; 1

2
). If we replaceM0 by the upper and lower prob-

abilities or byM00, we lose information that might be
needed in making decisions.

In view of these inadequacies of upper and lower proba-
bilities, why have they received so much attention in the
literature on imprecise probability? I think that this is due
largely to an uncritical acceptance of the traditional ap-
proach of probability theory. A precise probability mea-
sureP does determine unique expectations, through the
formula EP (X) =

P
!2
X(!)P (f!g) if 
 is finite,

andE is the unique linear expectation operator whose re-
striction to events isP . Thus there is a one-to-one cor-
respondence between probability measures and linear ex-
pectations, and no information is lost when uncertainty is
specified in terms of a probability measure. Also a proba-
bility measureP determines unique conditional probabil-
ities through the formulaP (AjB) = P (A \ B)=P (B)
(Bayes’ rule), provided thatP (B) > 0. This explains
why probability theory can be formulated in terms of un-
conditional probabilities. Nevertheless, there are some ad-
vantages in formulating probability theory in terms of ex-
pectations or previsions, as in [6, 29], and, as de Finetti [6]
recognized, the usual formulation is inadequate for dealing
with conditioning events that have probability zero. The
caseP (B) = 0 is discussed in later sections.

It is clear from (b) and (c) above that these properties of
probability measures do not generalize to lower probabil-
ities. Lower probabilities are not sufficiently informative

to determine unique lower expectations or unique condi-
tional lower probabilities. In my experience, lower prob-
abilities are inadequate models in many applications, in-
cluding most applications in which imprecise probability
models are constructed from sets of probability measures,
as in Example 1, or from qualitative judgements of uncer-
tainty, as in Example 2.

Upper and lower probability models which are not neces-
sarily coherent, includingfuzzy measures[27] (also known
as Choquet capacities of order 1), are mathematically more
general than coherent upper and lower probabilities but
they are inadequate for the same reasons: as set functions,
they are not sufficiently informative about upper and lower
expectations and conditional probabilities.

4 Coherent Lower Previsions

A bounded mapping from
 to IR (the real numbers) is
called agamble. LetK be a nonempty set of gambles. A
mappingP : K ! IR is called alower previsionor lower
expectation. A lower prevision is said to becoherentwhen
it is the lower envelope of some set of linear expectations,
i.e., when there is a nonempty set of probability measures,
M, such thatP (X) = inf fEP (X) : P 2 Mg for all
X 2 K, whereEP (X) denotes the expectation ofX with
respect toP . The conjugate upper prevision is determined
by P (X) = �P (�X).

Example 4 Coin Tossing. The set of probability mea-
suresM in Example 1 generates a coherent lower previ-
sionP through P (X) = inf fEP (X) : P 2 Mg. Using
the fact that the infimum is achieved by one of the two ex-
treme points specified in Example 1, we find that

P (X) =
1

2
min fX(b) +X(c); X(a) +X(d)g (2)

for every gambleX . The upper previsionP (X) is ob-
tained by replacingmin by max in this formula.

WhenK is a linear space of gambles, coherence is equiv-
alent to the three simple axioms (for allX;Y 2 K):

A1. P (X) � inf fX(!) : ! 2 
g

A2. P (cX) = cP (X) whenever c > 0

A3. P (X + Y ) � P (X) + P (Y ).

Coherent lower probabilities can be regarded as a special
type of coherent lower prevision, by takingK to be a set
of indicator functions of subsets of
 and identifying the
lower probability of a subset with the lower prevision of
its indicator function. For that reason, it is convenient to
adopt de Finetti’s convention of using the same symbolA
to denote both a subset of
 and its indicator function.



Coherent lower previsions avoid most of the defects of
lower probabilities that were discussed in Section 3:

(a) Lower previsions can model the comparative proba-
bility judgement “A is at least as probable asB” by
P (A�B) � 0, and “A is at leastc times as probable
asB” by P (A � cB) � 0. (HereA andB denote
indicator functions.) In Example 2, for instance, the
three judgements would be modeled through the con-
straints P (D + L�W ) � 0, P (W �D) � 0 and
P (D � L) � 0.

(b) Lower expectations (i.e., lower previsions) are
uniquely determined for all gambles inK.

(c) Provided thatP (B) > 0 and the gambleB[X �
P (X jB)] is in K, lower previsions determine con-
ditional lower previsionsP (�jB) uniquely, through
thegeneralized Bayes rule

P (B[X � P (X jB)]) = 0: (3)

This equation, like Bayes’ rule, is necessary for co-
herence of conditional and unconditional previsions
([22], sec. 6.4). The equation has a unique solution
P (X jB) becauseP (B[X�c]) is strictly decreasing
in c if P (B) > 0. Conditional lower probabilities
P (AjB) are determined by takingX in (3) to be the
indicator function ofA.

Example 5 Coin Tossing. In Example 1, suppose we
want to condition on the eventB = fa; b; cg, that at least
one outcome was heads. Using formula (2) for lower pre-
visions, we can solve (3) to obtain the conditional lower
previsionsP (X jB) = min fX(a); 1

2
X(b) + 1

2
X(c)g (for

all gamblesX). This is the lower envelope of the updated
set of probability measures,M0, in Example 3.

(d) Because there is a one-to-one correspondence be-
tween coherent lower previsions and closed convex
sets of probability measures, coherent lower previ-
sions also solve the problem of missing information
that was illustrated in Example 3.

So coherent lower previsions are more general and more
informative than coherent lower probabilities. However,
there remain two respects in which coherent lower previ-
sions may not be sufficiently informative:

(e) When P (B) = 0, coherent lower previsions do not
determine conditional lower previsionsP (�jB) ([22],
sec. 6.10). This is important when we need to update
lower previsions after observingB.

Example 6 Coin Tossing. In Example 1, suppose
we learn the information, denoted byS, that the tosses

produced the same outcome: either both heads (H) or
both tails (T ). What are the updated lower probabilities
P (H jS) andP (T jS)? BecauseP (S) = 0, the general-
ized Bayes rule (3) does not have a unique solution. It im-
plies only thatP (H jS) � 1

2
andP (T jS) � 1

2
. The vacu-

ous conditional probabilitiesP (H jS) = P (T jS) = 0 are
coherent with the initial model, but so are the precise con-
ditional probabilitiesP (H jS) = P (T jS) = 1

2
, and so are

any conditional lower probabilities that lie between these
two extremes. A modified conditioning rule which pro-
duces the precise conditional probabilities as the unique
solution was studied in[22], Appendix J;this is equiva-
lent to removing the extreme point(0; 1

2
; 1
2
; 0) from the set

of probability measuresM in Example 1.

(f) Lower previsions cannot distinguish preference from
weak preference. For example, ifX andY are two
gambles such thatP (X �Y ) = 0, thenX is weakly
preferred toY (X � Y ), but we do not know whether
X is preferred toY (X � Y ), and it is possible that
Y is preferred toX . This may be important in de-
cision problems, whereX andY represent the utility
functions that are associated with two feasible actions
and we must decide which action to select.

Problems (e) and (f) are both caused by the inadequacy
of the real-number scale. The same problems occur for
precise probabilities, which of course are a special case
of lower probability or lower prevision. Conditioning on
events of probability zero causes real difficulties in Kol-
mogorov’s theory of probability (Borel’s paradox is a well
known example): if P (B) = 0 then the conditional
probability measureP (�jB) is completely indeterminate.
Also, if two gamblesX andY have the same expectation
E(X) = E(Y ) then preferences between them are inde-
terminate: we may haveX � Y , Y � X , or X � Y
(we areindifferentbetweenX andY ). It may seem that
we should always be indifferent betweenX andY when
E(X) = E(Y ), but if X � Y and X(!) > Y (!)
for some possible outcomes! then we would surely pre-
ferX to Y . De Finetti [6] considered using infinitesimals
(nonstandard real numbers) to provide a richer scale for
probability.

It is arguable that problems (e) and (f) are unimportant,
because they concern infinitesimal differences in uncon-
ditional expected utility. In the Kolmogorov approach, it
is often claimed that events of probability zero are negli-
gible. That may be true before the conditioning event is
observed, but after observing an event of probability zero,
differences that were previously negligible may become
important. In statistical problems with a continuous sam-
ple space, it is usual that all possible observations have
(upper) probability zero, and then posterior probabilities
based on the observation are indeterminate. Also, it is
more common for an event to have lower probability zero



than to have precise probability zero: on an epistemic in-
terpretation,P (B) = 0 means only that there is no evi-
dence at the present time to support the occurrence ofB,
not that it has no chance of occurring. In Example 6, for
instance, we haveP (S) = 0 butP (S) > 0.

Problem (e) could be solved by takingconditional lower
prevision to be the fundamental concept, and specifying
P (�jB) directly, when necessary, rather than attempting to
define it in terms of unconditional lower previsions. That
approach was followed in [6] for prevision and in [22] for
lower prevision. But it does not solve problem (f).

5 Sets of Probability Measures

Can these problems be solved by using a set of probability
measures as the mathematical model for uncertainty? It
is immediately clear that the answer is no. In the special
case of precise probability, the set of probability measures
reduces to a single measure and the inadequacies of the
real-number scale remain. More generally, there is a one-
to-one correspondence between coherent lower previsions
(defined on the set of all gambles) and nonempty closed
convex sets of probability measures: the closed convex
set is the set of all probability measures whose expecta-
tions dominate the lower prevision, and the lower previ-
sion is the lower envelope of this set of expectations ([22],
Thm. 3.6.1). Examples of closed convex sets of probabil-
ity measures have been given in Examples 1-3. If we re-
strict attention to sets of probability measuresM that are
closed and convex, they are exactly as general as coherent
lower previsions.

Greater generality might be achieved by dropping the re-
quirement of convexity, but convexity ofM does not ap-
pear to have any behavioural or practical significance, at
least when the behaviour is generated byM alone. (This
can change when we combineM with other sets of prob-
ability measures.) Any setM has exactly the same be-
havioural implications as its convex hull: both sets gener-
ate the same lower previsions and preference orderings. In
Example 1, for instance, it makes no difference to prefer-
ences whether we are completely ignorant about the inter-
action between the two tosses, which produces the convex
setM in Example 1 as the model for uncertainty, or we
know that the second outcome is completely determined
by the first through one of the two possible determinis-
tic mechanisms, which produces the 2-point set containing
the two extreme points ofM.

A little more generality can be achieved by dropping the
closure requirement. For example, if the three qualitative
judgements in the football example are modified by replac-
ing ‘at least as probable as’ by ‘more probable than’, the
judgements determine an open set which is the interior of
the setM in Example 2. The open set models a prefer-
ence forW overD, since all the probability measures in

it satisfyP (W ) > P (D), whereas the closed setM con-
tains probability measures withP (W ) = P (D) and mod-
els only a weak preference forW overD. Distinguishing
between open and closed sets of probability measures can
therefore solve problem (f) in some cases.

Similarly, problem (e) can be avoided in some examples
by using an open set of probability measures which does
not assign probability zero to any conditioning eventB
but may have lower envelopeP (B) = 0. Then condi-
tional probabilities and lower probabilities are uniquely
determined through Bayes’ rule. In the coin-tossing Ex-
ample 6, if we modify the setM by removing the extreme
point(0; 1

2
; 1
2
; 0), then all probability measures in the mod-

ified set assign positive probability toS, and we obtain the
unique conditional probabilitiesP (H jS) = P (T jS) = 1

2
.

Sets of probability measures can be a little more infor-
mative than coherent lower previsions, but they are still
not sufficiently informative to avoid problems (e) and (f)
in general. Problem (e) remains wheneverP (B) = 0,
as in statistical problems with a continuous sample space,
since then every probability measure in the set must as-
sign P (B) = 0 and conditional probabilities are com-
pletely indeterminate. Problem (f) remains whenever
P (X � Y ) = P (X � Y ) = 0.

6 Sets of Desirable Gambles and Partial
Preference Orderings

Let L denote the set of all gambles (bounded mappings

 ! IR). For X;Y 2 L, write X � Y to mean that
X(!) � Y (!) for all ! 2 
, and writeX > Y to mean
thatX � Y andX(!) > Y (!) for some! 2 
. A set of
desirable gambles, denoted byD, is a subset ofL. A set of
desirable gambles is said to becoherentwhen it satisfies
the four axioms [22, 30]:

D1. if X 2 L and 0 > X then X 62 D

D2. if X 2 L and X > 0 then X 2 D

D3. if X 2 D and c 2 IR+ then cX 2 D

D4. if X 2 D and Y 2 D then X + Y 2 D.

Thus a coherent set of desirable gambles is a convex cone
of gambles that contains all positive gambles (X > 0) but
no negative gambles (X < 0). An additional conglomer-
ability axiom, which implies stronger properties of coher-
ence, was required in [22].

A partial preference ordering� is a partial ordering of
the gambles inL. X � Y is read as ‘gambleX is pre-
ferred to gambleY ’. Coherent partial preference order-
ings can be characterized through a set of axioms that are
closely related to D1-D4 ([22], Appendix F).



There is a one-to-one correspondence between coherent
sets of desirable gambles and coherent partial preference
orderings, defined byX � Y if and only if X �Y 2 D.
(See [22], p. 153, for justification.) With this correspon-
dence, the two models are equally general. As mathemati-
cal objects, coherent sets of desirable gambles are simpler
than coherent partial preference orderings because they
eliminate some of the redundancy in the ordering. Here I
concentrate on sets of desirable gambles, but all of the fol-
lowing discussion applies to partial preference orderings
through the one-to-one correspondence.

A set of desirable gambles can retain all the information in
the earlier models, and it can supply some additional infor-
mation by specifying which of the gambles on the bound-
ary of the set are desirable ([22], sec. 3.8.6 and App. F).
This additional information is exactly what is needed to
condition on events of probability zero and to distinguish
preference from weak preference.

To see that all the information in the earlier models can
be represented in terms of a set of desirable gambles, sup-
pose that a coherent lower previsionP , defined on a set of
gamblesK, is given. Define

D = fX 2 L : X >
Pn

i=1 ci[Xi � P (Xi) + "]

for some n � 0; ci � 0; " > 0; Xi 2 Kg: (4)

ThenD is a coherent set of desirable gambles, andP can
be recovered fromD by, for allX 2 K,

P (X) = supfc : X � c 2 Dg: (5)

Coherent lower probabilities are a special case of coherent
lower previsions and so they can be recovered fromD by
P (A) = supfc : A� c 2 Dg.

Similarly, given a closed convex set of probability mea-
sures,M, define

D = fX 2 L : X > 0; or EP (X) > 0; 8P 2Mg: (6)

ThenD is coherent andM can be recovered from it by

M = fP : EP (X) � 0; 8X 2 Dg: (7)

Example 7 Coin Tossing. The set of probability mea-
sures,M, in Example 1 generates a coherent set of de-
sirable gamblesD1 through (6). Using the fact that
EP (X) > 0 for all P 2 M if and only if EP (X) > 0
for both extreme points ofM, which are the probabil-
ity distributions(0; 1

2
; 1
2
; 0) and ( 1

2
; 0; 0; 1

2
), we find that

D1 = fX 2 L : X > 0; or X(b) + X(c) > 0 and
X(a) + X(d) > 0g. This is the set of all gambles that
must be judged desirable, givenM.

Gambles on the boundary ofD1, those which satisfy
X(b) + X(c) � 0 and X(a) + X(d) � 0 with at
least one equality, are not included inD1 because they

may or may not be desirable. By classifying the desir-
ability of these gambles we can obtain a larger and more
informative setD. For example, consider the coherent set
D2 = fX 2 L : X > 0; or X(b) + X(c) � 0 and
X(a) +X(d) > 0g, which strictly containsD1. BothD1

andD2 generate the same setM, through (7), and the
same lower previsions, through (5), but we shall see that
they produce different conditional lower probabilities and
different preferences.

The modelD can be sufficiently informative to overcome
problems (e) and (f):

(e) Conditional lower previsions are uniquely deter-
mined byD through the formula

P (X jB) = supfc : B(X � c) 2 Dg: (8)

Hence conditional lower probabilitiesP (AjB) are
determined by takingX to be the indicator function
of A. There is no special difficulty whenP (B) =
0, becauseD can provide sufficient information to
discriminate between sets of probability zero ([22],
App. F). An example is given below (Example 8).

(f) There is a preference forX overY if and only if X�
Y 2 D. There is a weak preference forX overY if
and only if X � Y + " 2 D for all " > 0. Thus the
model can distinguish between preference and weak
preference. In Example 7, letX = 2fag andY =
fdg. Since the gambleX � Y = (2; 0; 0;�1) is in
D2 but not inD1,X is preferred toY under model2,
butX is only weakly preferred toY under model1.
SoD2 is more informative thanD1 about preferences.

Similarly, a comparative probability judgement “A is
more probable thanB” can be modeled by requiring that
A � B 2 D, and “A is at least as probable asB” by re-
quiring A � B + " 2 D for all " > 0. Sets of desirable
gambles are therefore more general thanpartial compara-
tive probability orderings, which are a special type of par-
tial preference ordering in which preferences are specified
only between indicator functions of events. Partial com-
parative probability orderings are not sufficiently general
because usually they do not determine lower probabilities,
lower previsions and preferences between other gambles.

Coherent sets of desirable gambles, or (equivalently) co-
herent partial preference orderings, appear to be suffi-
ciently general and sufficiently informative to model the
common types of uncertainty and the most important as-
pects of uncertainty. Of course coherence is a normative
(consistency) requirement and it is unlikely to be an accu-
rate description of people’s intuitive reasoning. Sets of de-
sirable gambles or partial preference orderings which sat-
isfy weaker properties than coherence, such as ‘avoiding
sure loss’ or ‘n-coherence’ [22], may be more useful as
descriptive models.



Although sets of desirable gambles are more general than
the previous models, they simplify the mathematical the-
ory of coherence and natural extension [22]. For example,
the generalized Bayes rule (3) can be expressed in the fol-
lowing simple form: if we observe a subsetB of 
, we
should update the initial set of desirable gambles,D, to
D0 = fX 2 L : BX 2 Dg ([22], sec. 6.1.6). More
generally, if we obtain a statistical observation that gen-
erates a bounded likelihood functionL on 
, we should
updateD to D0 = fX 2 L : LX 2 Dg. More generally
still, if we observe upper and lower likelihood functions
U andL ([22], sec. 8.5.3), then we should updateD to
D0 = fX 2 L : LX+ + UX� 2 Dg, whereX+ andX�

denote the positive and negative parts ofX . These simple
rules apply even when conditioning on events of upper or
lower probability zero.

Example 8 Coin Tossing. Consider the coin tossing
example, and suppose we learn thatS = fa; dg has oc-
curred, as in Example 6. Two sets of desirable gambles,
D1 andD2, were defined in Example 7. After observing
S, these are updated toD0

1 = fX 2 L : SX 2 D1g =
fX 2 L : (X(a); X(d)) > (0; 0)g, and D0

2 = fX 2 L :
SX 2 D2g = fX 2 L : X(a) + X(d) > 0g. Using
(8) or (5), D1 generates the vacuous conditional proba-
bilities andD2 generates the precise conditional proba-
bilities given in Example 6. The extra information inD2

determines conditional probabilities precisely.

A central idea of the theory in [22] is the idea of natural
extension. Suppose we judge all the gambles in a setD0 to
be desirable, whereD0 is a subset of some coherent set but
is not necessarily coherent. Then thenatural extensionof
D0, denoted byD, is defined to be the smallest coherent set
of desirable gambles that containsD0. SoD is the smallest
convex cone that containsD0 and all positive gambles, and
it can be generated fromD0 by applying the rules D2-D4
[32]. The coherent setD fully expresses the implications
of the desirability judgements inD0.

An important special case is that in which both
 andD0

are finite sets. In that case the modelD is said to befinitely
generated([22], sec. 4.2). Finitely generated models oc-
cur frequently in practice, when the modeling or elicitation
process produces a finite set of basic judgements which
can be translated into judgements that particular gambles
are desirable. A finitely generated setD produces, through
(7), a closed convex set of probability measures,M, that
has finitely many extreme points.

Example 9 Football. Suppose that we take the judge-
ments in Example 2 to be the strict comparative probabil-
ity judgementsD [ L � W � D � L, which is equiv-
alent to taking D0 = fD + L � W;W � D;D � Lg.
The natural extension of these judgements is the coher-
ent set of desirable gamblesD = fX 2 L : X �
c1(D + L �W ) + c2(W � D) + c3(D � L) for some

c1; c2; c3 � 0; andX 6= 0g. ThisD generates, through
(7), the set of probability measuresM that was defined in
Example 2, and, through (5), the upper and lower proba-
bilities in Example 2.

For finitely generated models, it is often convenient to cal-
culate inferences directly fromD0, rather than to first cal-
culate the extreme points ofM. For example, upper and
lower previsions, defined by (5), can be computed directly
from D0 by using linear programming techniques. Also
the generalized Bayes rule can be applied directly toD0.
Suppose that we obtain a statistical observation which gen-
erates a likelihood functionL on 
 andL(!) > 0 for
all ! 2 
. Then we simply updateD0 to the finite set
D0

0 = fX=L : X 2 D0g. Inferences can be calculated
directly fromD0

0 because the updated uncertainty model
D0 = fX 2 L : LX 2 Dg is the natural extension ofD0

0.

Example 10 Football. In the football example, suppose
that we observe a crowd of unhappy spectators leaving the
game. If we interpret this as evidence that the home team
did not win, and model it through likelihoods( 1

2
; 1; 1) for

(W;D;L), then we would simply update the initial set of
judgementsD0 = fD+L�W;W�D;D�Lg to the set
D0

0 = fX=L : X 2 D0g = fD+L� 2W; 2W �D;D�
Lg. We can obtain a new modelD0, and any inferences
that are required, directly fromD0

0.

Another argument in favour of partial preference order-
ings is that they are needed in a general theory of decision
which allows imprecision in both probabilities and utili-
ties, as in [7, 17, 21]. In a general theory of decision, the
primary mathematical model will be some kind of partial
preference ordering, of either the possible actions or more
general objects such as randomized actions, Savage acts or
horse lotteries. Such orderings might be constructed from
separate assessments of imprecise probabilities and impre-
cise utilities, but it is important to recognize that not all the
reasonable partial preference orderings can be constructed
in this way. That is illustrated by the following example.
See [17] for a similar conclusion.

Example 11 Intersection of Complete Preference Orders
[21]. Consider the simplest possible non-trivial decision
problem, where there are two possible states of the world,
labeled as! and!0, and two possible consequences,c1
and c2. Denote the four possible acts byaij , where
aij(!) = ci and aij(!

0) = cj for i; j = 1; 2.

Suppose that a subject evaluates the acts by assessing both
a probability P (!) > 1

2
and utility values U(c1) >

U(c2). By ordering acts according to their expected utility,
he obtains the complete preference ordering

a11 � a12 � a21 � a22: (9)

A second subject assessesP (!) < 1

2
and U(c1) <



U(c2) and he obtains the complete preference ordering

a22 � a12 � a21 � a11: (10)

The intersection of these two complete orderings is the
partial ordering in which a12 � a21 but all other pairs
of acts are incomparable. This partial ordering models
the ‘consensus preferences’ that the two rational subjects
have in common. It would also be the appropriate model
for an individual who produced the complete orderings (9)
and (10) by analyzing the decision problem in two differ-
ent ways, but who was undecided about which analysis
to accept; such a person may have determined only that
a12 � a21. The partial ordering is therefore a reasonable
model for preferences.

But this partial ordering cannot be obtained from a set of
probability measuresM and a set of utility functionsU ,
by takinga � b if and only ifa has greater expected utility
thanb under all combinations of a probability measure in
M with a utility function inU . To prove that, suppose
that a partial ordering is obtained in this way. Then the
comparisona12 � a21 implies that [1�2P (!)][U(c2)�
U(c1)] > 0 for all P 2 M and U 2 U . This implies
that either P (!) > 1

2
and U(c1) > U(c2) for all P 2

M and U 2 U , giving the complete ordering (9), or
P (!) < 1

2
and U(c1) < U(c2) for all P 2 M and

U 2 U , giving the complete ordering (10). So a partial
preference ordering which is obtained from some setsM
andU , and which includes the preferencea12 � a21, must
be a complete ordering.

Compare this example with Savage’s result [16], that ev-
ery reasonable complete preference ordering of acts can be
constructed from separate assessments of a precise proba-
bility measure and a precise utility function. Partial prefer-
ence orderings are more general than combinations of im-
precise probability and imprecise utility. This is important
because it shows that preferences need to be constructed
in other ways, not just by assessing imprecise probabil-
ities and imprecise utilities. A very general method of
constructing a coherent partial preference ordering from
simple judgements was outlined in [21].

7 Conclusions

Until now, most studies of imprecise probability have been
concerned with special types of upper and lower probabil-
ity or with comparative probability orderings. I have ar-
gued that these models are not sufficiently general to rep-
resent some common types of uncertainty. In advocating
a more general model, I am not suggesting that we should
stop studying coherent upper and lower probabilities, Cho-
quet capacities, belief functions, possibility measures and
other special kinds of model. As I said in the introduction,
each of these models is useful in special kinds of applica-
tion, and each has special mathematical properties which

make it interesting from a theoretical point of view. How-
ever, I suggest that much more effort should be devoted
to studying the more general models which are needed in
many applications.

Lower previsions are much more general and informative
than lower probabilities, and they seem to be adequate
models in the great majority of applications that are con-
cerned with uncertainty but not with utility, and those ap-
plications in which utilities are precisely known. They
also have an advantage of familiarity over the more gen-
eral models: they are closer to well established concepts of
probability and expectation, and especially to de Finetti’s
concept of prevision [6].

There is a duality relationship between coherent lower pre-
visions and sets of probability measures. Some aspects of
the mathematical theory can be handled most conveniently
with one model and some with the other. It is therefore im-
portant to be able to use both models and to exploit the du-
ality. Coherent lower previsions have the advantage of be-
ing more closely related to preferences and behaviour than
are sets of probability measures. Many authors, particu-
larly those studying robust Bayesian inference, have not
yet recognized that many of the things they are doing with
sets of probability measures can be done more easily with
coherent lower previsions. For example, simpler methods
can be found for checking coherence and making infer-
ences from precise or imprecise probability assessments
[22, 24]. As another example, the main result of [28] was
proved much more simply in [20] using only elementary
properties of coherent lower previsions; see also [25].

Sets of desirable gambles and partial preference orderings
are the most informative of the mathematical models I
have discussed, and they seem to be able to model all the
common types of uncertainty. They uniquely determine
upper and lower previsions and conditional previsions, and
they contain all the information about preferences that is
relevant in making decisions. In many ways they are the
simplest and most natural mathematical models. The co-
herence axioms and rules of inference (natural extension)
for sets of desirable gambles are especially simple. In this
paper I have advocated these models on the grounds of
mathematical generality, but it is also arguable that they
are the simplest and most natural models from the point of
view of interpretation [22]. I conclude that sets of desir-
able gambles and partial preference orderings may be the
best mathematical models for a general theory of impre-
cise probability.
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