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Abstract theory of imprecise probability. | will argue that none of

Belief functions, possibility measures and Choquet capac-the mathematical models that are most popular at present

ities of order 2, which are special kinds of coherent upper(numbers 1-41in the list below) is sufficiently general, and

. | will suggest several other models that do seem to be suf-
or lower probability, are amongst the most popular math-_. . : )
. : o ficiently general but have received less attention than they
ematical models for uncertainty and partial ignorance. |

. .deserve. By a ‘sufficiently general’ model, | mean one that

give examples to show that these models are not suffi- . L
. can represent all the types of uncertainty and partial igno-

ciently general to represent some common types of uncer- . N
) o .. rance that are commonly encountered in applications.

tainty. Coherent lower previsions and sets of probability

measures are considerably more general but they may ndthe mathematical models that | consider are, in order of

be sufficiently informative for some purposes. | discussincreasing generality,

two other models for uncertainty, involving sets of desir-

able gambles and partial preference orderings. These are1. possibility measures and necessity measures [4, 33]

more informative and more general than the previous mod- _ _ o _

els, and they may provide a suitable mathematical setting 2- belief functions and plausibility functions 2, 18]

for a unified theory of imprecise probability. 3. Choquet capacities of order 2 [1, 3]

Keywords. Choquet capacity, coherence, comparative
probability, desirable gambles, imprecise probability, in-
complete preference, lower prevision, lower probability.

4. coherent upper and lower probabilities [13, 19]
coherent upper and lower previsions [22, 23, 24, 31]
sets of probability measures [9, 15]

1 Introduction
sets of desirable gambles [22, 30, 32]

© N o O

Can there be a unified theory of imprecise probability? At
present there are numerous mathematical models, interpre-
tations and applications of imprecise probabilities. As a ] .
general or unified theory may be expected to accommoAnother important type of model, which can be regarded
date this variety of mathematical models, interpretations2S & special case of models 5-8 but which does not fit
and applications, it may appear that such a theory will ben€atly into the preceding list, is

difficult to attain.

. partial preference orderings [8, 22].

N . . ) . 9. partial comparative probability orderings [5, 11, 12].
My view is that a single theory of imprecise probability, as

in [22], can accommodate all the kinds of uncertainty and
partial ignorance that are currently being studied, includ-
ing vague or qualitative judgements of uncertainty, com-
plete ignorance and near ignorance, random sets and mu

tivalued mappings, and partial information about an un_information; (3) some types of statistical neighbourhood

known probability measure. To defend this view it is nec- . . . . o
. L in robustness studies, and various economic applications;
essary to examine these types of uncertainty in some de;

tail, and this has been attempted in [22, 23, 26]. ) perggpal .bettlng rgtes, and upper aqd lower bounds for
probabilities; (5) buying and selling prices for gambles,

My aim in this paper is more limited: to consider what and envelopes of expert opinions; (6) partial information

level of mathematical generality will be needed in a unified about an unknown probability measure; (7,8) judgements

I think that all the models | have listed are appropriate and
useful in particular types of application. Some well known

F_xamples are: (1) vague judgements of uncertainty in nat-
ural language; (2) multivalued mappings and non-specific



of the desirability of, or preference between, gambles; andlo show that order-2 capacities are not sufficiently gen-
(9) qualitative judgements of uncertainty. eral, | will give a simple example of coherent lower proba-
bilities that are not 2-monotone. This example also shows
‘that belief functions and necessity or possibility measures
are not sufficiently general, since these models are special

?&/pes of order-2 capacities. In my experience, most of the

If each of these models is useful in some types of applica
tion, of course it follows that a sufficiently general model
should include all the listed models as special cases. Thi
argument supports th? most ge_neral of the mp_dels, ! ancoherent lower probability models that occur in applica-
8, as the most promising candidates for a unified theory,.

. tions are not 2-monotone.
In the rest of the paper | develop this argument by exam-
ining the mathematical models and the relationships bexample 1 Coin Tossing ([20] and [22], sec. 5.13.4).
tween them in more detail, especially with regard to their Suppose that a fair coin is ‘tossed’ twice, in such a way
mathematical generality. | have already discussed possithat heads and tails are equally likely on each of the tosses
bility measures and belief functions in [23]. In this paper but there can be arbitrary dependence between the tosses.

| consider models 3-8 in order of increasing generality.

Almost all of the results in this paper have been discusse
in my previous work, especially in [22, 23]. Nevertheless |
feel that it is important to review these results at this sym-

For example, the coin may be tossed first in the usual way,

puton the second ‘toss’ it may be placed to have the same

outcome as the first toss, or it may be placed to have the
opposite outcome from the first toss.

posium, beca_use the choice of a mathem_atical model is @et H, and 7; denote the possible outcomes (heads or
fundamental issue and many people continue to advocatgiijls) of the first toss, and similarlyd, and 75 for the

models which have limited applicability.

My argument is based largely on examples which sho

second toss. To simplify the notation, denote the possible

\NjOint Outcome?{Hle, H1T2, T1H2, T1T2) by ((l, b, c, d)

that models 3-6 are not sufficiently general. To simplify If we are completely ignorant about the interaction be-

the argument, | have chosen the examples to be as si

mween the two tosses, we can model our uncertainty about

ple as possible and to involve only 3 or 4 possible out-the outcomes by using the set of all probability measures

comes. The phenomenaillustrated in the examples are ndf_that assign”

restricted to small problems but actually occur more fre-
guently in larger problems.

2 Choquet Capacities of Order 2

Let Q2 denote the set of possibilities under consideration.
Suppose that lower probabilitig3(4) are defined for all
A € K, whereK is a collection of subsets @1. In this

(Hy) = P(H,) = . Let M denote
this set of probability measures. The two extreme points of
M are the probability measures that assign probabilities
(0,1,1,0) and (£,0,0, %) to (a,b,c,d). These two ex-
treme points correspond to the two possible mechanisms,
mentioned in the preceding paragraph, by which the first

outcome may determine the second.

We find the upper and lower probabilities that are gen-
erated byM by maximizing and minimizing probabilities

sectionk is assumed to be an algebra. For models 1-4under the two extreme points. Sinkle N H> = {a} and

in the earlier list, lower probabilities determine conjugate
upper probabilities throughP(4) = 1 — P(A°), so it
suffices to consider lower probabilities.

Assume that0 < P(A4) <1 forall A € K, P(0) =0
and P(Q?) = 1. The lower probabilityP is said to be2-
monotoneor aChoquet capacity of order,2vhen it also
satisfies, whenevet andB are in/C,

P(AUB) +P(ANB) > P(A) +P(B). (1)
Itis well known that probability measures, belief functions
and necessity measures (the conjugates of possibility me
sures) are always 2-monotone lower probabilities. A sim
ple method of constructing 2-monotone lower probabili-
ties is to apply a convex transformation to the probability
interval: if P is a probability measure aofj, f is a convex
function from|0, 1] into [0, 1] with f(0) = 0, andP. is de-
finedby P(?) =1 and P(A) = f(Py(A)) whend € K
and A # , thenP is a 2-monotone lower probability.

1

H,UH, = {a,b,c},we ObtalnB(Hl) ﬁ(Hl) 5

P(H,) = P(H,), P(Hy N Hy) =0, P(H, N H) = 1,
P(H, U H,) = %, and P(H, U Hy) = 1. These upper
and lower probabilities are coherent, because they are up-
per and lower envelopes of a set of probability measures.
But the lower probabilities are not 2-monotone, since

P(H,UH>)) +P(HiNH,) = § < 1= P(Hy)+ P(H,).

This example also illustrates that the Choquet integral is a
bad way of defining lower expectations when lower prob-
abilities are not 2-monotone. Léf denote the number of
heads obtained in the two tosses, andldenote indicator

e1’[mction. Since both tosses are fair, we should obtain the

precise expectation(X) = E(Ig, +Ig,) = E(Ig, )+
E(IH2) P(Hl) +P(H2) = % -{—% =1.

It can be verified that the Choquet integral produces up-
per and lower expectations(X) = 2 and E(X) = 3
values that are incoherent with the probabilitiB$H, ) =
P(H,) = L. Generally the Choquet integral produces

5"

Many of the neighbourhood models used in Bayesian anccoherent upper and lower expectations if and only if the

frequentist studies of robust statistics are of this form [25].

initial lower probability function is 2-monotor{20].



3 Coherent Lower Probabilities vex polyhedron (in this case a triangle) whose three ex-
treme points assign probabilities;, £,0), (3, +, 1) and

The simplest mathematical characterization of coherents, 3, 5) to the outcomeg¥V, D, L). The setM generates

lower probabilities is that they arwer envelopeof upper probabilitiest, 1, + and lower probabilitiest, 1,0

a set of probability measures. That is, lower probabili- for W, D, L respectively, by maximizing and minimizing

ties P, defined onk’, are coherent if and only if there probabilities under the extreme points.

is a nonempty set of probability measuréd, such that L . .
P(A) = inf {P(4) : P € M} forall A € K. Another Now suppose that the subject is permitted to express his

L LA L o uncertainty only by making judgements of upper and lower
characterization in terms of positive linear combinations yonlyby 9ludg P

of desirable gambles, which shows that coherence is a non}-)mbab”mes’ and he assesses the upper and lower prob-

i . tof ist S N[22 23 24 abilities that were just specified. Lat* be the set of all
mative requirement of consistency, is given in [22, 23, ]'probability measures that lie between the upper and lower

All 2-monotone lower probabilities are coherent [20]. Ex- probabilities, i.e., that satisfi?(A) < P(A) < P(A) for
ample 1 therefore shows that coherence is more generall = W, D, L. We find thatM* is a closed convex poly-
than 2-monotonicity. But coherent lower probabilities are hedron with five extreme points: in addition to the three

still not sufficiently general, for the following reasons.  extreme points abt, M* has the extreme pointg, 5, )
and (35, 1, 3). BecauseM is strictly contained inM*,
(a) They cannot model comparative probability judge- the new modelM* is less informative than the previous
ments such as “event is at least as probable & model M. In other words, the upper and lower probabil-
or “A is at least times as probable 8. ities are less informative than the qualitative judgements

(i)-(iii) which generated them. Information may be lost
(b) They do not determine unique lower (or upper) ex- when uncertainty is modeled only in terms of upper and
pectations, which are needed in making decisions. |ower probabilities.

(c) They do not determine unique conditional lower (or To see that the lost information is relevant in calculating
upper) probabilities, which are needed in making in- lower expectations, consider the gamBle= Iy — Ip,
ferences. which takes the valué if W occurs, —1 if D, and 0

otherwise. By minimizing expectations with respect to

(d) Even in problems where lower probabilities are anthe extreme points, we find that the lower expectation is
adequate model for an initial state of uncertainty, af- E(X) = 0 under the first model{1), but B(X) = —%
ter we condition on a subset &f, the updated lower | nder the second model(*).

probabilities may no longer be adequate because the%_ ] o ) )
have lost relevant information [10]. 0 see that the lost information is relevant in calculating

conditional lower probabilities, consider conditioning on

Problems (a), (b) and (c) can be illustrated by a single ex—the observation ) that the outcome is nak. By con-

ample involving comparative probability judgements; sim- 21?;? |'g? t_helixr:;eenrw/(\e/lp&?ﬁ(?;('ﬂlgl?lilgIﬁl:gérvj\\/i*flnd that
ilar examples are in [14] and [22] (sec. 2.7.3, ch. 4). = T2 = 5 '

The setsM and M* generate the same unconditional up-
Example 2 A Football Game [22, 23]Consider a foot-  per and lower probabilities. Given only these upper and
ball game with three possible outcomes for the home teamipwer probabilities, we cannot tell whether the underly-
labeled agV (win), D (draw) andL (loss). Suppose that ing model for uncertainty is\{ or M* or some other set.
a subject makes three qualitative judgements of his uncerConsequently we cannot tell whether the upper and lower
tainty concerning the outcome: (i) not win is at least as expectations and conditional probabilities should be those
probable as win; (ii) win is at least as probable as draw; generated byM or by M* or by some other model.

and (iii) draw is at least as probable as loss.
(i) P The lower probability function in this example is not a be-

Judgement (i) can be represented in terms of upper orief function, but it is 2-monotone, simply because the pos-
lower probabilities byP(W) < 2 or P(DUL) > 1. The  sibility space is so small: all coherent lower probabilities
other two judgements cannot be represented adequately iBn a 3-point space are 2-monotone. Suppose that we ex-
terms of upper or lower probabilities: for example, the tend the space to 4 possible outcomes by distinguishing
translationP (W) > P(D) of judgement (ii) is too strong.  scoring draws from non-scoring draws, and we add one
Instead, the three judgements should be regarded as corjudgement to the earlier ones (i-iii): the event that there is
straints on a coherent lower prevision, or equivalently as a scoring draw or a loss is at least as probable as a win.
constraints on a probability measure, of the form: ()  Then the resulting lower probabilities are not 2-monotone.
P(W) < %; (i) P(W) > P(D); and (i) P(D) > P(L).  When the lower probabilities are generated by the kinds of
Let M denote the set of all probability measures that sat- qualitativeju_dgements in this_e>_<gmple, 2-monotonicity be-
isfy these three constraints. Thew is a closed con- comes less likely as the possibility space gets larger.



Example 3 Coin Tossing. To illustrate problem (d), to determine unique lower expectations or unique condi-
consider the set of probability measure${, defined in  tional lower probabilities. In my experience, lower prob-
Example 1, which models two coin tosses with unknowrabilities are inadequate models in many applications, in-
interaction. It can be verified thaM is the set of all  cluding most applications in which imprecise probability
probability measures that lie between the upper and lowermodels are constructed from sets of probability measures,
probabilities stated in Example 1, and in fadt is the as in Example 1, or from qualitative judgements of uncer-
unique closed convex set of probability measures that gentainty, as in Example 2.

erates these upper anq lower probabilities as its upper andUpper and lower probability models which are not neces-
lower envelopes. In this case the upper and lower proba-

bilities are adequate models for uncertainty, because theysarlly coherent, m(.:l.UdngZZy measurga7] (also I_mown
uniguely determing. as Choquet capacities of order 1), are mathemauc_gl_ly more
general than coherent upper and lower probabilities but
Now suppose that we learn partial information about the they are inadequate for the same reasons: as set functions,
outcomes of the two tosses: we learn that at least one outthey are not sufficiently informative about upper and lower
come was heads. How does this change our uncertainty@xpectations and conditional probabilities.
We should updaté to M’ by conditioning the two ex-
treme points ofM on {a, b, c}, using Bayes’ rulg[22],
sec. 6.4) Hence the two extreme points 8ff’ assign
probabilities (0, 1, 1) and (1,0,0) to (a,b,c). The up-

120 2

4 Coherent Lower Previsions

. g A bounded mapping fron2 to IR (the real numbers) is
dated setM’ generates upper probabilitieB({a}) = 1 5jjed agamble Let K be a nonempty set of gambles. A
and P({b}). = P({c}) = 3, and lower probability0 for mapping P : £ — IR is called dower previsioror lower
each possible outcome. But now these upper and lowep, o tationA lower prevision is said to beoherentvhen
probabilities arenot an adequate model for the updated j; g the jower envelope of some set of linear expectations,
uncertainty, because they are not sufficiently mformanvei_e_’ when there is a nonempty set of probability measures,
to determineM’. The set of all probability measures that M, such that P(X) = inf {Ep(X) : P € M} for all

lie between the upper and lower probabilities{”, has ’ .- '
four extreme points:(0, 5, 1), (1,0,0), (3,3,0), and
(1,0,1). If we replaceM’ by the upper and lower prob-
abilities or by M", we lose information that might be
needed in making decisions. Example 4 Coin Tossing. The set of probability mea-

. . . suresM in Example 1 generates a coherent lower previ-
In view of these inadequacies of upper and lower proba- P 9 P

bilities, why have they received so much attention in thesmnﬂthrough E.(X) - |r_1f {EP.(X) : P e Mj. Using
X . . - . o the fact that the infimum is achieved by one of the two ex-
literature on imprecise probability? | think that this is due . R :

o I treme points specified in Example 1, we find that
largely to an uncritical acceptance of the traditional ap-
proach of probability theory. A precise probability mea- 1 .
sure P does determine unique expectations, through the L(X) = 5 min {X(b) + X(c), X(a) + X(d)} ~ (2)
formula Ep(X) = > cq X(w)P({w}) if Qis finite, o
andE is the unique linear expectation operator whose re-for every gambleX. The upper previsiorP(X) is ob-
striction to events if?. Thus there is a one-to-one cor- tained by replacingmin by max in this formula.
respondence between probability measures and linear ex- _ _ _ _
pectations, and no information is lost when uncertainty isWhenk is a linear space of gambles, coherence is equiv-
specified in terms of a probability measure. Also a proba-alent to the three simple axioms (for all, " € K):
bility measureP determines unique conditional probabil-
ities through the formulaP(A|B) = P(A N B)/P(B) Al. P(X)>inf{X(w):we N}
(Bayes’ rule), provided thatP(B) > 0. This explains
why probability theory can be formulated in terms of un-A2- L(c¢X) = ¢P(X) whenever ¢ > 0
conditione}l probabilit.ies. Nevert_h.eless,the.re are some agyg P(X +Y) > P(X)+P(Y).
vantages in formulating probability theory in terms of ex-

pectatlc_ms or previsions, as in [6, 29], and, as de Fineti .[6]Coherent lower probabilities can be regarded as a special

with conditioning events that have probability zero. Theg[yp.e O.f coherent_lower prevision, by tak!d(gto_ b? a set
A . X of indicator functions of subsets 6f and identifying the
case P(B) = 0 is discussed in later sections. - ; e
lower probability of a subset with the lower prevision of
It is clear from (b) and (c) above that these properties ofits indicator function. For that reason, it is convenient to
probability measures do not generalize to lower probabil-adopt de Finetti's convention of using the same symbol
ities. Lower probabilities are not sufficiently informative to denote both a subset @fand its indicator function.

X € K, where Ep(X) denotes the expectation &f with
respect ta”. The conjugate upper prevision is determined
by P(X) = —~P(-X).



Coherent lower previsions avoid most of the defects ofproduced the same outcome: either both head$ ¢r
lower probabilities that were discussed in Section 3: both tails ('). What are the updated lower probabilities
P(H|S) and P(T'|S)? BecauseP(S) = 0, the general-
(a) Lower previsions can model the comparative proba-ized Bayes rule (3) does not have a unique solution. Itim-
bility judgement “4 is at least as probable & by  plies only thatP(H|S) < 5 and P(T'|S) < 3. The vacu-
P(A—B) >0, and “4 is at least: times as probable ~0us conditional probabilitie®’(H1S) = P(T'|S) = 0 are
asB" by P(A —cB) > 0. (HereA and B denote coherent with the initial model, but so are the precise con-
indicator functions.) In Example 2, for instance, the ditional probabilitiesP(H|S) = P(T|S) = }, and so are
three judgements would be modeled through the con@any conditional lower prObab”ities that lie between these
straints P(D + L — W) > 0, P(W — D) > 0 and  two extremes. A modified conditioning rule which pro-
P(D-L)>0. duces the precise conditional probabilities as the unique
solution was studied if22], Appendix J;this is equiva-
(b) Lower expectations (i.e., lower previsions) are lentto removing the extreme poiftt, 1, 1, 0) from the set
uniquely determined for all gambles i of probability measures in Example 1.

(c

~

Provided thatP(B) > 0 and the gambleB[X —
P(X|B)] isin K, lower previsions determine con-
ditional lower previsionsP(-|B) uniquely, through
thegeneralized Bayes rule

(f) Lower previsions cannot distinguish preference from
weak preference. For example Xf andY are two
gambles such thaP(X —Y") = 0, thenX is weakly
preferredtdr” (X > Y), but we do not know whether

P(B[X — P(X|B)]) = 0. (3) X is preferred tat” (X > Y), and it is possible that
B B Y is preferred toX. This may be important in de-
This equation, like Bayes’ rule, is necessary for co- cision problems, wher& andY represent the utility

herence of conditional and unconditional previsions functions that are associated with two feasible actions
([22], sec. 6.4). The equation has a unique solution ~ and we must decide which action to select.
P(X|B) becauseP(B[X —¢]) is strictly decreasing
in ¢ if P(B) > 0. Conditional lower probabilities  Problems (e) and (f) are both caused by the inadequacy
P(A|B) are determined by taking in (3) to be the  of the real-number scale. The same problems occur for
indicator function ofA. precise probabilities, which of course are a special case
of lower probability or lower prevision. Conditioning on
Example 5 Coin Tossing. In Example 1, suppose we events of probability zero causes real difficulties in Kol-
want to condition on the eveiit = {a,b,c}, thatatleast mogorov’s theory of probability (Borel's paradox is a well
one outcome was heads. Using formula (2) for lower pre-known example): if P(B) = 0 then the conditional
visions, we can solve (3) to obtain the conditional lower probability measureP(-|B) is completely indeterminate.
previsionsP(X|B) = min {X (a), 5 X (b) +5X(c)} (for  Also, if two gamblesY andY have the same expectation
all gamblesX). This is the lower envelope of the updated £(X) = E(Y) then preferences between them are inde-
set of probability measureg(!’, in Example 3. terminate: we may haveX = Y, Y = X, or X ~ YV
(we areindifferentbetweenX andY’). It may seem that
(d) Because there is a one-to-one correspondence beve should always be indifferent betweahandY” when
tween coherent lower previsions and closed convexE(X) = E(Y), butif X > Y and X(w) > Y(w)
sets of probability measures, coherent lower previ-for some possible outcomesthen we would surely pre-

sions also solve the problem of missing information fer X to Y. De Finetti [6] considered using infinitesimals
that was illustrated in Example 3. (nonstandard real numbers) to provide a richer scale for

probability.

So coherent lower previsions are more general and morgt is arguable that problems (e) and (f) are unimportant,

informative than coherent lower probabilities. However, pecause they concern infinitesimal differences in uncon-
there remain two respects in which coherent lower previ-ditional expected utility. In the Kolmogorov approach, it
sions may not be sufficiently informative: is often claimed that events of probability zero are negli-

gible. That may be true before the conditioning event is

(e) When P(B) = 0, coherent lower previsions do not observed, but after observing an event of probability zero,

determine conditional lower previsiod3(:| B) ([22], differences that were previously negligible may become
sec. 6.10). This is important when we need to updateimportant. In statistical problems with a continuous sam-
lower previsions after observing. ple space, it is usual that all possible observations have

(upper) probability zero, and then posterior probabilities
Example 6 Coin Tossing. In Example 1, suppose based on the observation are indeterminate. Also, it is
we learn the information, denoted I8, that the tosses more common for an event to have lower probability zero



than to have precise probability zero: on an epistemic in-it satisfy P(W) > P(D), whereas the closed sét con-
terpretation,P(B) = 0 means only that there is no evi- tains probability measures witR(WW) = P(D) and mod-
dence at the present time to support the occurrendg, of els only a weak preference foF over D. Distinguishing

not that it has no chance of occurring. In Example 6, for between open and closed sets of probability measures can
instance, we hav@(S) = 0 but P(S) > 0. therefore solve problem (f) in some cases.

Problem (e) could be solved by takimgnditionallower Similarly, problem (e) can be avoided in some examples
prevision to be the fundamental concept, and specifyingby using an open set of probability measures which does
P(-|B) directly, when necessary, rather than attempting tonot assign probability zero to any conditioning evéht
define it in terms of unconditional lower previsions. That but may have lower envelopé’(B) = 0. Then condi-
approach was followed in [6] for prevision and in [22] for tional probabilities and lower probabilities are uniquely

lower prevision. But it does not solve problem (f). determined through Bayes’ rule. In the coin-tossing Ex-
ample 6, if we modify the sei by removing the extreme
5 Sets of Probability Measures point(0, £, 1,0), then all probability measures in the mod-

ified set assign positive probability £ and we obtain the

Can these problems be solved by using a set of probabilit;}m'que conditional probabilitieB (H|S) = P(T'|S) = %
measures as the mathematical model for uncertainty? ISets of probability measures can be a little more infor-
is immediately clear that the answer is no. In the speciamative than coherent lower previsions, but they are still
case of precise probability, the set of probability measuresot sufficiently informative to avoid problems (e) and (f)
reduces to a single measure and the inadequacies of tha general. Problem (e) remains whenevB(B) = 0,
real-number scale remain. More generally, there is a oneas in statistical problems with a continuous sample space,
to-one correspondence between coherent lower previsionsince then every probability measure in the set must as-
(defined on the set of all gambles) and nonempty closedsign P(B) = 0 and conditional probabilities are com-
convex sets of probability measures: the closed convexletely indeterminate. Problem (f) remains whenever
set is the set of all probability measures whose expectaP(X — V) = P(X —Y) = 0.
tions dominate the lower prevision, and the lower previ-
sion is the lower envelope of this set of expectations ([22], . .
Thm. 3.6.1). Examples of closed convex sets of probabil-6 Sets of DeSIrable_Gambles and Partial
ity measures have been given in Examples 1-3. Ifwe re-  Preference Orderings
strict attention to sets of probability measuretthat are
closed and convex, they are exactly as general as cohereh€t £ denote the set of all gambles (bounded mappings
lower previsions. Q2 — R). ForX,Y € £, write X > Y to mean that

] ] ) ] X(w) > Y(w) forall w € 2, and writeX > Y to mean
Greater generality might be achieved by dropping the reh4t x > v andX (w) > Y (w) for somew € Q. A set of
quirement of convexity, but convexity 0¥ does not ap-  jesjrable gamblesienoted by, is a subset of.. A set of

pear to have any behavioural or practical significance, ajjesjrable gambles is said to beherentwhen it satisfies
least when the behaviour is generated¥yalone. (This  1a four axioms [22, 30]:

can change when we combind with other sets of prob-

ability measures.) Any sett has exactly the same be- :

havigural implicat)ions )8/5 its convex huII:yboth sets gener-Dl' if XeLland0>X thenX ¢D
ate the same lower previsions and preference orderings. o if x ¢ £ and X > 0 then X € D

Example 1, for instance, it makes no difference to prefer-

ences whether we are completely ignorant about the inteB3. if X € D andc € RT thenc¢X € D

action between the two tosses, which produces the convex

set M in Example 1 as the model for uncertainty, or weP4. if X € D andY € D then X +Y € D.

know that the second outcome is completely determined

by the first through one of the two possible determinis- Thus a coherent set of desirable gambles is a convex cone
tic mechanisms, which produces the 2-point set containingdf gambles that contains all positive gambl&s £ 0) but

the two extreme points of1. no negative gamblesX( < 0). An additional conglomer-
ability axiom, which implies stronger properties of coher-

A little more generality can be achieved by dropping the ence, was required in [22].

closure requirement. For example, if the three qualitative
judgements in the football example are modified by replac-A partial preference ordering> is a partial ordering of

ing ‘at least as probable as’ by ‘more probable than’, thethe gambles inC. X = Y is read as ‘gambleX is pre-
judgements determine an open set which is the interior offerred to gamble”. Coherent partial preference order-
the setM in Example 2. The open set models a prefer- ings can be characterized through a set of axioms that are
ence forl¥ over D, since all the probability measures in closely related to D1-D4 ([22], Appendix F).



There is a one-to-one correspondence between cohere

nmiay or may not be desirable. By classifying the desir-

sets of desirable gambles and coherent partial preferencability of these gambles we can obtain a larger and more

orderings, defined byX > Y ifandonlyif X —Y € D.
(See [22], p. 153, for justification.) With this correspon-

informative setD. For example, consider the coherent set
Dy, ={X € L:X >0,0r X(b)+ X(c) > 0and

dence, the two models are equally general. As mathematiX (a) + X (d) > 0}, which strictly containg;. BothD,

cal objects, coherent sets of desirable gambles are simpleand D, generate the same s@tt, through (7), and the
than coherent partial preference orderings because thegame lower previsions, through (5), but we shall see that
eliminate some of the redundancy in the ordering. Here Ithey produce different conditional lower probabilities and
concentrate on sets of desirable gambles, but all of the foldifferent preferences.

lowing discussion applies to partial preference orderings

through the one-to-one correspondence.

A set of desirable gambles can retain all the information in

The modelD can be sufficiently informative to overcome
problems (e) and (f):

mation by specifying which of the gambles on the bound-

mined byD through the formula

ary of the set are desirable ([22], sec. 3.8.6 and App. F).

This additional information is exactly what is needed to
condition on events of probability zero and to distinguish
preference from weak preference.

To see that all the information in the earlier models can

be represented in terms of a set of desirable gambles, sup-

pose that a coherent lower previsiBndefined on a set of
gamblesC, is given. Define

D= {XeLl:X>Y" ¢[Xi—P(X;)+¢]

for some n > 0,¢; > 0,e >0,X; € K}. (4)

ThenD is a coherent set of desirable gambles, &xchn
be recovered fror® by, forall X € K,

P(X) =sup{c: X —ceD}. (5)

Coherent lower probabilities are a special case of coherent

lower previsions and so they can be recovered fidimy
P(A) =sup{c: A—ceD}.

Similarly, given a closed convex set of probability mea-
sures, M, define

D={XeL:X>0,or Ep(X) >0, VP € M}. (6)
ThenD is coherent and can be recovered from it by
(7)

Example 7 Coin Tossing. The set of probability mea-
sures, M, in Example 1 generates a coherent set of de-
sirable gamblesD; through (6). Using the fact that
Ep(X) >0 forall P e M ifandonlyif Ep(X) >0

for both extreme points aM, which are the probabil-
ity distributions (0, 3, 1,0) and (3,0,0, 1), we find that
D={XeL:X >0 0orX(b)+ X(c) > 0and
X (a) + X(d) > 0}. This is the set of all gambles that
must be judged desirable, given.

M ={P:Ep(X) >0, VX € D}.

Gambles on the boundary db,, those which satisfy
X(@®)+ X(¢) > 0 and X(a) + X(d) > 0 with at
least one equality, are not included i, because they

P(X|B) = sup{c: B(X —¢) € D). )

Hence conditional lower probabilitie®(A|B) are
determined by taking to be the indicator function
of A. There is no special difficulty wherP(B) =

0, becauseD can provide sufficient information to
discriminate between sets of probability zero ([22],
App. F). An example is given below (Example 8).

(f) Thereis a preference forf overY ifand only if X —
Y € D. There is a weak preference far overY if
andonlyif X —Y +¢e €D forall e > 0. Thus the
model can distinguish between preference and weak
preference. In Example 7, 1&f = 2{a} andY =
{d}. Since the gambl& — Y = (2,0,0,-1) isin
Ds but notinDy, X is preferred td” under mode?,
but X is only weakly preferred t&” under modell.
SoD, is more informative that; about preferences.

Similarly, a comparative probability judgementA“is
more probable tha®” can be modeled by requiring that
A — B € D, and “Ais at least as probable &' by re-
quiring A — B+ ¢ € D forall € > 0. Sets of desirable
gambles are therefore more general tpartial compara-

tive probability orderingswhich are a special type of par-
tial preference ordering in which preferences are specified
only between indicator functions of events. Partial com-
parative probability orderings are not sufficiently general
because usually they do not determine lower probabilities,
lower previsions and preferences between other gambles.

Coherent sets of desirable gambles, or (equivalently) co-
herent partial preference orderings, appear to be suffi-
ciently general and sufficiently informative to model the
common types of uncertainty and the most important as-
pects of uncertainty. Of course coherence is a normative
(consistency) requirement and it is unlikely to be an accu-
rate description of people’s intuitive reasoning. Sets of de-
sirable gambles or partial preference orderings which sat-
isfy weaker properties than coherence, such as ‘avoiding
sure loss’ or h-coherence’ [22], may be more useful as
descriptive models.



Although sets of desirable gambles are more general than;,cs,c3 > 0, and X # 0}. ThisD generates, through
the previous models, they simplify the mathematical the-(7), the set of probability measurggl that was defined in
ory of coherence and natural extension [22]. For exampleExample 2, and, through (5), the upper and lower proba-
the generalized Bayes rule (3) can be expressed in the folbilities in Example 2.
lowing simple form: if we observe a subsBtof 2, we
should update the initial set of desirable gambiBs to For finitely generated models, it is often convenient to cal-
D' = {X € L : BX € D} ([22], sec. 6.1.6). More culate inferences directly fro, rather than to first cal-
generally, if we obtain a statistical observation that gen-culate the extreme points g#. For example, upper and
erates a bounded likelihood functidnon €2, we should lower previsions, defined by (5), can be computed directly
updateD to D' = {X € £ : LX € D}. More generally  from Dy by using linear programming techniques. Also
still, if we observe upper and lower likelihood functions the generalized Bayes rule can be applied directl{po
U and L ([22], sec. 8.5.3), then we should updd®eto Suppose that we obtain a statistical observation which gen-
D'={XeL:LXt+UX~ € D}, whereX+ andX~ erates a likelihood functiod. on  and L(w) > 0 for
denote the positive and negative partstaf These simple  all w € Q. Then we simply updat®, to the finite set
rules apply even when conditioning on events of upper orD; = {X/L : X € Dy}. Inferences can be calculated
lower probability zero. directly from Dy, because the updated uncertainty model

D' = {X € L : LX € D} is the natural extension d?;.
Example 8 Coin Tossing. Consider the coin tossing
example, and suppose we learn titat= {a,d} has oc- Example 10 Football. In the football example, suppose
curred, as in Example 6. Two sets of desirable gamblesthat we observe a crowd of unhappy spectators leaving the
D, andD,, were defined in Example 7. After observing game. If we interpret this as evidence that the home team
S, these are updated td] = {X € L: SX € D} = did not win, and model it through likelihoods, 1, 1) for
{X e L:(X(a),X(d)>(0,0)},and D ={X € L: (W, D, L), then we would simply update the initial set of
SX € Dy} ={X € L : X(a) + X(d) > 0}. Using  judgementsD, = {D+L—-W,W —D,D—L} tothe set
(8) or (5), D1 generates the vacuous conditional proba- D = {X/L: X € Do} ={D+ L —-2W,2W — D, D —
bilities and D, generates the precise conditional proba- L}. We can obtain a new modé&l', and any inferences
bilities given in Example 6. The extra informationZn that are required, directly frorDy,.
determines conditional probabilities precisely.

Another argument in favour of partial preference order-
A central idea of the theory in [22] is the idea of natural jngs is that they are needed in a general theory of decision
extension. Suppose we judge all the gamblesin @séd  which allows imprecision in both probabilities and utili-
be desirable, wherB, is a subset of some coherent set but ties, as in [7, 17, 21]. In a general theory of decision, the
is not necessarily coherent. Then theural extensiof  primary mathematical model will be some kind of partial
Dy, denoted byD, is defined to be the smallest coherent set preference ordering, of either the possible actions or more
of desirable gambles that contaiRs. SoD is the smallest  general objects such as randomized actions, Savage acts or
convex cone that contaifi% and all positive gambles, and  horse lotteries. Such orderings might be constructed from
it can be generated frof, by applying the rules D2-D4  separate assessments of imprecise probabilities and impre-
[32]. The coherent se® fully expresses the implications  ¢ijse utilities, but it is important to recognize that not all the
of the desirability judgements iR . reasonable partial preference orderings can be constructed

An important special case is that in which bétrand D, in this way. Thgt ?s iIIustrateq by the following example.
are finite sets. In that case the mofak said to bdinitely ~ S€€ [17] for a similar conclusion.

generated[22], sec. 4.2). Finitely generated models oc- £ le 11 | . fC lete Pref ord
cur frequently in practice, when the modeling or elicitation xample ntersection of Complete Preference Orders

process produces a finite set of basic judgements whicili21]' Consider the simplest possiple non-trivial decision
can be translated into judgements that particular gamble rgblle;n, where dth?re acrje two poss_lbblle states of the world,
are desirable. A finitely generated $&produces, through a O?e asw an wr’]ar; two pOSEII e Consequenhceﬁ,
(7). a closed convex set of probability measures, that 219 <2+ Deno(';e t e four pOfSSI le ECtS hy;, where
has finitely many extreme points. aij(w) = ¢; and ayj(w') = ¢; for i,j =1,2.

) Suppose that a subject evaluates the acts by assessing both
Example9 Football. Suppose _that we take_ the judge_- a probability P(w) > % and utility values U(c,) >
ments in Example 2 to be the strict comparative probabil-; ..,y By ordering acts according to their expected utility,
't?’ lutdtgetmlf_ntsg UL ?Dwiz D ‘; év whghll)s equJ]{V' he obtains the complete preference ordering
alent to taking Dy = -W,2W - D,D — L}.
The natural extension of these judgements is the coher- a1 > Q1o > G21 > as9. 9)
ent set of desirable gamble® = {X € £ : X >

ci(D+L—W)+c2(W—D)+c3(D— L) forsome A second subject assessé3(w) < 1 and U(c) <



U(c2) and he obtains the complete preference ordering make it interesting from a theoretical point of view. How-
ever, | suggest that much more effort should be devoted
to studying the more general models which are needed in

The intersection of these two complete orderings is themany applications.

partial ordering in which a, - a5, but all other pairs | g\yer previsions are much more general and informative
of acts are incomparable. This partial ordepng mod_els than lower probabilities, and they seem to be adequate
the ‘consensus preferences’ that the two rational subjectsgdels in the great majority of applications that are con-

have in common. It would also be the appropriate modelerned with uncertainty but not with utility, and those ap-
for an individual who produced the complete orderings (9) plications in which utilities are precisely known. They

and (10) by analyzing the decision problem in two differ- 5155 have an advantage of familiarity over the more gen-

ent ways, but who was undecided about which analysig, 4| models: they are closer to well established concepts of

to accept; such a person may have determined only thap,papility and expectation, and especially to de Finetti's
a12 > az1. The partial ordering is therefore a reasonable concept of prevision [6].

model for preferences.

a2 > Q12 > Q21 > G11- (10)

) ) _ ) There is a duality relationship between coherentlower pre-
But this partial ordering cannot be obtained from a set of yjsjons and sets of probability measures. Some aspects of
probability measures\1 and a set of utility function&/,  the mathematical theory can be handled most conveniently
by takinga - bif and only ifa has greater expected utility  yith one model and some with the other. It is therefore im-
thanb under all combinations of a probability measure in -, rtant to be able to use both models and to exploit the du-
M with a utility function ini/. To prove that, SUppose ity Coherent lower previsions have the advantage of be-
that a partial ordering is obtained in this way. Then the g more closely related to preferences and behaviour than
comparisonas; > as; impliesthat[1 —2P(w)][U(c2) = are sets of probability measures. Many authors, particu-
U(er)] > 0 for all 1P € M and U € U. Thisimplies |51y those studying robust Bayesian inference, have not
that either P(w) > 5 and U(c1) > Ulcz) forall P € yefrecognized that many of the things they are doing with
M and 1U € U, giving the complete ordering (9), or  gets of probability measures can be done more easily with
P(w) < 5 and Ule;) < Ule) forall P e M and  coperent lower previsions. For example, simpler methods
U € U, giving the complete ordering (10). So a partial ¢an pe found for checking coherence and making infer-
preference ordering which is obtained from some sets  ences from precise or imprecise probability assessments
andi/, and which includes the preferenag, - a1, Must 125 24]. As another example, the main result of [28] was
proved much more simply in [20] using only elementary

be a complete ordering.
Compare this example with Savage’s result [16], that eV_properties of coherent lower previsions; see also [25].

ery reasonable complete preference ordering of acts can b8ets of desirable gambles and partial preference orderings
constructed from separate assessments of a precise probare the most informative of the mathematical models |
bility measure and a precise utility function. Partial prefer- have discussed, and they seem to be able to model all the
ence orderings are more general than combinations of imeommon types of uncertainty. They uniquely determine
precise probability and imprecise utility. This is important upper and lower previsions and conditional previsions, and
because it shows that preferences need to be constructddey contain all the information about preferences that is
in other ways, not just by assessing imprecise probabil+televant in making decisions. In many ways they are the
ities and imprecise utilities. A very general method of simplest and most natural mathematical models. The co-
constructing a coherent partial preference ordering fromherence axioms and rules of inference (natural extension)

simple judgements was outlined in [21]. for sets of desirable gambles are especially simple. In this
paper | have advocated these models on the grounds of
7 Conclusions mathematical generality, but it is also arguable that they

are the simplest and most natural models from the point of
view of interpretation [22]. | conclude that sets of desir-
able gambles and partial preference orderings may be the
best mathematical models for a general theory of impre-
cise probability.

Until now, most studies of imprecise probability have been
concerned with special types of upper and lower probabil-
ity or with comparative probability orderings. | have ar-
gued that these models are not sufficiently general to rep
resent some common types of uncertainty. In advocating

a more general model, | am not suggesting that we should

stop studying coherent upper and lower probabilities, Cho-Acknowledgements

guet capacities, belief functions, possibility measures and

other special kinds of model. As | said in the introduction,

each of these models is useful in special kinds of applicad want to thank FAPESP and the Escola Raditica, Uni-
tion, and each has special mathematical properties whiclversidade de &5 Paulo, for supporting this research.
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