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Abstract aggregation methods for imprecise probabilities
ave met with theoretical and practical difficulties

Two methods are presented for the aggregation o f their own

imprecise probabilities elicited from a group of

experts in terms of betting rates. In the first method,This paper describes two approaches to the
the experts bet with a common opponent subject t@ggregation of imprecise probabilities, both of
limits on their personal betting stakes, and theirwhich have firm “quasi-Bayesian” theoretical
individual and aggregate beliefs are represented bfpundations and circumvent the impossibility
confidence-weighted lower and upper probabilities.theorem for the aggregation of precise probabilities.
In the second method, the experts bet directly withThey also both have implicit game-theoretic
each other as a means of reconciling incoherenc&lements, which is not coincidental. We suggest
and their beliefs are represented by lower and uppghat all subjective probabilities are intrinsically
risk neutral probabilities—i.e., products of intersubjective in nature—that is, they do not
probabilities and relative marginal utilities for represent beliefs that exish vacuq but rather
money. beliefs that exist in a strategic environment
inhabited by other individuals—and it is only
through modeling of the intersubjective dimension
that aggregation of probabilities can be justified and
‘carried out in a non-arbitrary fashion.

Keywords: lower and upper probabilities,
confidence-weighted probabilities, expert resolution
consensus, coherence, arbitrage

In the first methodconfidence-weighted lower and

. upper probabilitiesare used as the fundamental
1" Introduction representation of uncertainty. The confidence
The question of how the subjective probabilities ofweights permit tradeoffs to be made in a systematic
different individuals ought to be aggregated—if atway between the imprecise probability judgments of
all—has long been controversial. A well-known different individuals, and the confidence-weighted
impossibility theorem (Genest and Zidek 1986) [9]representation has an axiomatic foundation that
says that there is no satisfactory way to aggregateupports the aggregation of opinions through a slight
ordinary, precise probabilities: the aggregatedweakening of the property of transitivity (Nau 1992)
probabilities must either fail to respect unanimity of [15].  In the second method, the parameters of
beliefs or they must fail to follow the Bayesian interest are not “true” subjective probabilities but
recipe for prior-to-posterior updating. Indeed, rather risk-neutral probabilities—i.e., products of
standard Bayesian theory provides little support foprobabilities and relative marginal utilities for
the idea of aggregation: according to the usuamoney. An individual’'s risk-neutral probabilities
definition, all subjective probabilities are purely are the apparent probabilities revealed by his
personalprobabilities. (See Winkler et al. 1986 [26] acceptance of money bets under conditions of risk
for a discussion.) It has often been suggested thatversion (nonlinear utility for money and significant
imprecise probabilities might be more suitable forprior stakes in the outcomes of events). The natural
aggregation than precise probabilities, because theway to aggregate risk-neutral probabilities is to
allow room for disagreement among individuals andsimply let a group of individuals bet with each other
they provide additional parameters for reflecting theand observe the market prices that are obtained after
degree of consensus or dissensus. Howevergciprocal learning has occurred, risks have been



hedged, and arbitrage opportunities have beeevaluator) to be better or worse informed than
exploited. (Markets for betting on securities prices,another individual about a particular event under
sporting events, and political races are conducted igonsideration. Some sort of weighted averaging
exactly this fashion.) Both of these approachesover lower and upper probabilities could be
permit the construction of a “representative performed in principle, but the theoretical rationale
individual,” and the behavior of the representativefor doing so is unclear.

individual is qualitatively identical to the behavior It has often been pointed out (e.g., by Good 1962)

of a single individual. Hence, the representatlve[lo] that a question of infinite regress seemingly

individual IS necessarily qua1_3|—Bay¢§|an:ariseS once it is admitted that probabilities are
Furthermore, in both approaches, the imprecision in

T ; imprecise: if imprecision in probability judgements
;[250;1@(2?&:'Egssproot;abtl)lg;iee?‘s Isanp dartlyarf[ilue dtl(J)e th[gis measured by lower and upper bounds, why aren’t
) P ) . . partly the bounds themselves somewhat imprecise? But
irreducible strategic considerations.

this naturally raises further questions about how the
higher-order imprecision could be measured in a
2 Aggregation of confidence-weighted meaningful way and about whether there would be
probabilities practical or conceptual benefits in doing so.

In one of the most widely-used models of impreciseA generalization of lower and upper probabilities
probabilities (e.g., Smith 1961, Walley 1991) [23] that yields a meaningful measure of second-order
[24], aconvex set of probability measulissused to ~ imprecision was given by Nau (1989, 1992) [13]
represent the beliefs of an individual, yielding lower[14]. There, so-called “confidence weights” are
and upper probabilities for events as well as lowe@ttached to lower and upper probabilities, and an
and upper expectations for random variables. Thighdividual is permitted to assess more than one
representation of uncertainty is a naturallower or upper probability for a given event, at
generalization of precise subjective probabilities thadifferent levels of confidence. This representation
is obtained by relaxing the axiom of completenessof subjective uncertainty follows in a natural way
But it is not obvious how aggregation should befrom a further relaxation of the standard axioms of
carried out under this representation. For examplegoherent preferences among gambles, in which
an aggregate measure of uncertainty could b#&ansitivity is weakened at the same time as
defined either by the union or the intersection of thecompleteness is abandoned. It can also be derived
sets of probability measures of different individuals,as a generalization of de Finetti's operational
but both of these alternatives appear problematicnethod of measuring subjective probabilities.

The union_ of convex sets of probability measuresye Finetti (1937, 1974) [1] [2] proposed that an
generally is nonconvex—although of course it canngiviqual's subjective  conditional  probability

be convexified—and it yields too loose a («hrevision”) for a eventE given another everft
representation of aggregate uncertainty. As MOrgn,1d be defined as the (presumably  unique)
opinions are pooled, the union can only get largermnerp for which the individual is indifferent to
and it reflects only the least informative opinions, betting on or againg at ratep, conditional onF.
whereas intuitively there ought to be (at least therpy s is the number for which he is willing to
possibility of) an increase in precision as the pool ccept a gamble with payodf(E-p)F, whered is a
gets larger. On the other hand, the mt_ersectlon Ok mall but otherwise arbitrary nur,nbeprositive or
convex sets of measures may be empty if the experﬁegative chosen at the discretion of an opponent.

?ritmutually mc;al:_erent% and it g?nerally %"?kzs to: HereE andF are used as indicator variables as well
Ight a representation o aggregate uncertainty. s names of events—i.e., the variaBlédakes the

more opinions are pooled, the intersection can °n|¥/alues 1 or 0 when the eveBtoccurs or doesn't
shrink, ar_ld_ it reflects only_ the_ most extreme among,eeur, respectively.) De Finetti's definition of
those opinions, whereas intuitively th_er_e should besubjective probability  readily  admits  a
some convergence to an “average” opinion when th%eneralization in terms of lower and upper
pool gets sufficiently large. Moreover, neither theconditional probabilities: for given everiissandF,

union nor the intersection provides an opportunityje 1o individual give lower and upper betting rates

for the differential weighting of opinions, which and ; - :
. . o . g, respectively, forE|F, meaning that he is
would be desirable in cases where one individual '%illing to accept a gambla(E-p)F + B(G-E)F,

considered (either by herself or by an external



where a and B are smallnon-negativenumbers  confidence weight to a lower or upper probability is
chosen at the discretion of an opponent. that it directly addresses a shortcoming that de
Finetti acknowledged in his original definition of
probability, namely *“the possibility that people
accepting bets against our individual have better
information than he has... [which] would bring us to
ame-theoretic situations” [footnote to Kyburg and
mokler translation]. The constrained betting
system described above has the useful property that
it allows the individual to perform a reciprocal
measurement on the subjective probability of his
opponent and to adjust his own betting rate
accordingly in advance. To see this, note that the
fhdividual's assessment of confidence weighted
probabilities presents a well-defined statistical
decision problem to a Bayesian opponent (“she”).
For simplicity, consider the case of an unconditional

Now consider a further extension of de Finetti's
elicitation method in which the individual is
assumed to have fanite total betting stake-i.e., a
maximum amount he can afford to lose. Without
loss of generality, let the size of the betting stake b
normalized to 1. Then the individual is able to
qualify each of his lower or upper betting rates by
specifying the maximum fraction of his total stake
that he is willing to risk in betting at that rate, and
that fraction is defined to be tle®nfidence weight
associated with the betting rate. For example, h
might attach a confidence weight ofto a lower
probability p for eventE, meaning that he will
accept a gamble with payodf(c/p)(E-p)F, subject
to the constraint that a < 1. (Note that because probability assessment for a single evétand

of the scal_lng factoc/p, the maximum loss is equal suppose that three lower probabilitigs, p1, p,) and
to ac, which occurs where=0 andF=1. The three upper probabilitiesyd o, d,) are assessed
constraint < 1 then means the maximum loss mustwith distinct confidence weightsq c,, ¢,), where 1
be less than or equal &) Similarly, if he attaches =¢,>¢,>c,. Correspondinglypo< p:< p. andgo>
a confidence weight of to an upper probability, g, >q,.  In other words, the individual is “100%
this means he will accept a gamble with payoffconfident” that the probability lies in the intervak
B(c/(1-0))(a-B)F. More generally, if he  qJ. He is somewhat less confident that it lies in
simultaneously ~ assigns lower and  upperthe narrower intervalpf, o], and still less confident
probabilitiesp; andg; with confidence weight; to  that it lies in the still-narrower intervap], qz]. The
eventEj|F;, forj=1, ...,J, this means he will accept a statistical decision problem that this probability
gamble with total payoff: assessment presents to an opponent is described by a

ey A e e . N EVE. Bayes risk function(DeGroot 1970) [3] which

% oG/ E) + B/ (1-a)G-EIR, specifies the opponent’s minimum expected loss as
where the nonegative multipliersyfand {B; Jare  a function of her own hypothetical probability
chosen by an opponent subject to the constraint:  distribution. The construction of the Bayes risk
5 o +By] < 1 function is shown in the graph below.

(The events E} and {F} in the preceding

expression can have any logical relationships
whatever, and need not be distinct.) The individual
is free to assign more than one confidence-weighted p p R G @
lower or upper probability to the same event—
indeed, for reasons to be explained below, he will
usually wish to do so. Higher confidence is
associated with looser probability bounds: the les

Figure 1: Construction of the Bayes risk
function representing as assessment of
confidence-weighted probabilities

- . 1
[greater] of two lower [upper] probabilities will 2 €
have the higher confidence.
It is intuitively reasonable that, the more favorable
the betting rate to himself, the higher the stakes ap 1¢

individual should be willing to play for, but it may
not be immediately apparent why he should do so in i

exactly the way just described—i.e., why he should 0 p q’ q

want to adopt this particular formula for constrained

betting at the discretion of an opponent. TheHere, the horizontal interval [0,1] represents
rationale for this particular method of attaching apossible values for the opponent’s probabilityEof




The vertical interval [0,1] measures the opponent’sconsider how this optimal strategy for the opponent
“loss” which is defined as the opponent’s maximumeffectively allows the probability assessor to adjust
possible gain minus her actual gain. Because thhis betting rates in response to what he learns about
opponent’s maximum possible gain is 1 (the size othe opponent’s probability. If the opponent’s
the probability assessor’s total stake), her expectedrobability is betweeng, and p, (the assessor's
loss is 1 minus her expected gain from the bets shgreatest lower and least upper probability with non-
places. Hence her loss is equal to 1 if she places rmero confidence), he does not wish to bet at all with
bets at all, and her loss cannot be less than zero. the opponent: he cannot discern a profitable

Each of the sloping construction lines in the figure is@fference of opinion. _If the op!c,)onent N probabll_lty
s less tham, but greater thap”, the assessor is

an upper bound on the opponent’s Bayes riskS. . ,
function determined by a single confidence—WIIIIng to bet at ratep,. But if the opponent's

weighted lower or upper probability. In particular, Probability is revealed to be less thefy though

the assessment of a lower probabilipy with ~ greater tham’, the assessor revises his betting rate
confidencec determines a construction line through downward fromp; to p;, and so on. Similarly, on
the points (0, ) and p,1). If the opponent takes the upper end, the assessor is willing to bet against
this bet alone (i.e., assigns it a multiplierl), then the event at rate; if the opponent’s probability is
the opponent's expected loss as a function of hePetweerg, andq”, but he revises the rate upward to
probability is a point somewhere on this line. (If herd: if the opponent's probability is revealed to be
probability is 0, then she is certdiwill not occur, ~ greater thamy”, though less thagy.

and she expects to win the amoonin which case | the more general case of multiple, conditional
her “Ios_,§” is equ_al to t- On the other hand, if hgr events that are subsets of a finite state space, the
probability for E is exactlyp, she thinks the bet is Bayes risk function is defined on the probability
fair, and her e_xpected gain from it is zero, in Wh'ChsimpIex inO™ wherem is the number of states.
case her loss is equal to 1. Expected losses for othgfe gayes risk function on the simplex is typically a
probability values follow by linear interpolation.) niecewise linear concave function—i.e., its graph is
Similarly, the assessment of a single uppery convex polytope. Details are given in Nau (1989,

probabilit_y q_With confidence_c determines a 1992) [14] [15]. The Bayes risk function on the
construction line through the points (1cfland 6, gimplex can then be “marginalized” to obtain

1). If the opponent take®neof the bets, her actual concave, piecewise linear Bayes risk functions for
and expected loss is equal to 1 regardiess of hepqividual conditional probabilities. These Bayes
probability for E, which corresponds to the gk fynctions behave very much like fuzzy-set

horizontal line ay=1 in the figure. The opponent's mempership functions—in particular, they obey the
optimal decision is to take tisnglebet, if any, that 3y min rules of union and intersection—although

yields theminimum expected losand consequently ey are not derived from the assumptions of fuzzy

her Bayes risk function is the envelope (pointwiseget theory. Rather, these results can be interpreted
minimum) of the aforementioned construction Ilnes,tO establishas a theorenthat fuzzy set theory is

which is the heavy line shown in the figure. applicable to the modeling of imprecise subjective
Note that the Bayes risk function partitions theprobabilities, as previously suggested by Freeling
probability interval into subintervals in which the (1980) [6] Watson et al. (1979) [25], and Dubois
same bet is always taken by the opponent. Fo@nd Prade (1989) [5]. The Bayes risk function also
example, if the opponent's probability lies in the has the same qualititative properties as the
subinterval p, p'], she will take the bet determined “epistemic reliability ~function” proposed by
by lower probabilityp; with confidencec,. If the  Gardenfors and Sahlin (1982, 1983) [7] [8], insofar
opponent’s probability lies in the subintervgl [p- @S it serves to index nested convex sets of
)], she will take the bet determined by lower Probability measures.

probability p, with confidencec,. (Herep” is the  The use of confidence-weighted probabilities in
probability value at which the construction lines decision analysis is discussed by Nau (1989) [13].
corresponding tqy; and p, intersect, etc.) If her Briefly, the second-order imprecision in the

probability is in the subintervapj, q], she will not  probabilities leads naturally to second-order
bet at all. If her probability is in the subintervad,[  imprecision in expected values of decisions, and the
g'], she will take the bet determined by upperBayes risk function provides a metric in terms of
probability ¢, with confidencec,, and so on. Now which alternative decisions can be ranked according



to their “distance” from the set of potentially when beliefs are represented by confidence-
optimal (expected-value-maximizing) decisions.weighted probabilities. (See Nau 1990 for further
This decision-ranking criterion is similar in details.) [14]

ggcg:g:oee d tt())y Rri‘:)estTr?sdja ((laggosie[risgl]tlwty analysis When confidence-v_veighted p(opabilit_ies are

' aggregated as described above, it is quite possible
To determine the implications of the confidence-that the aggregate assessment will ibbeoherent
weighted probability model for the aggregation of This will happen, for example, if one expert assesses
opinions of different experts, consider a “roomful ofa lower probability (at some positive level of
experts”, each of whom has a finite total bettingconfidence) which exceeds an upper probability for
stake. Letw; denote the betting stake of expert the same event (at some positive level of
and without loss of generality assume that, = 1.  confidence) assessed by another expert. However,
Let each expert assess his own subjectivéancoherence is not catastrophic in the framework of
uncertainty for various (possibly conditional) eventsconfidence-weighted probabilities: the aggregate set
in terms of confidence-weighted probabilities, of probability measures is not merely empty, as it
where the confidence weights are the fractions of higvould be in the case of incoherent precise
own betting stake that he is willing to risk in betting probabilities or incoherent interval probabilities.
at the corresponding lower or upper probabilities.Rather, the [fuzzy] set of aggregate probability
(The experts need not all contemplate the sameieasures merely has a “subnormal” Bayes risk
events, although we assume that the eventfnembership] function—i.e., a Bayes risk function
considered by different experts are somehowwvhose maximum value is less than 1. The common
logically related—i.e., they are subsets of a commorbetting opponent will perceive an arbitrage
state space.) Now consider the statistical decisioepportunity, but the magnitude of the arbitrage
problem that is perceived by an opponent who betprofit—which measures theelative incoherencef
against all of the experts simultaneously. Becaus#he assessment—will be bounded at some fraction of
the opponent’s gain is naturally the sum of her gainghe maximum betting stake. In particular, the
in the bets against the different experts, itarbitrage profit is precisely the amount by which the
immediately follows that her Bayes risk is a maximum value of the aggregate Bayes risk is less
weighted average of the Bayes risks of the differenthan 1 (Nau 1989) [13]. This measure of relative
experts, with weights equal to their respectiveincoherence is a generalization of one of the two
betting stakesv. In other wordsthe Bayes risk measures of incoherence independently proposed by
function of the combined experts is a linear pool ofSchervish et al. (1998) [20]: their model is a special
their individual Bayes risk functions, and the expertscase of confidence-weighted probabilities in which a
are weighted in proportion to the size of their point probability (i.e., a lower and upper probability
betting stakes. Because the concavity and that coincide) is assessed for every event with a
piecewise linearity and 0-1 range of the Bayes riskconfidence weight of 1.
function are preserved under weighted averages, ‘lf'he
follows that the Bayes risk function of the combined
experts has exactly the same qualititative propertie
as the Bayes risk function of a single expert. Hence,
if all she observes are the combined bets that ar,
available, as summarized by the aggregate Bay

aggregation of confidence-weighted
robabilities of two equally-weighted experts for the
ame unconditional event, in terms of their Bayes
sk functions, is illustrated by Figures 2 and 3.
eElote that the combined Bayes risk function (the
: . eavy line in each figure) is simply an average of
risk _ function, _the opponent _cannot _really tell the Bayes risk functions of the individual experts,
whether there is a single expert or multiple experts, 4 it typically has a smoother appearance. Figure 2

‘on the other side of the door.” In particular, if thea'gllustrates the case in which the experts are mutually

experts are unanimous in their assessments, then t 8herent: the combined Bayes risk is “normal” with
combined assessment agrees with all their individu maximiJm height of 1. Figure 3 illustrates the

assessments as it should.  But meanwhile, t.hgase in which the experts are mutually incoherent.

combined _assessment_ foIIows_the usual Bay_eS|ap|ere’ one expert has asserted that 0.4 is an upper
rules of prior-to-posterior updating—as generalized robability while the other has asserted that 0.5 is a

to the case of confidence-weighted probabilities—s ower probability, both with positive confidence.

itis also “externally Bay_esian.” 'I_'he impossibility The Bayes risk function is therefore subnormal: its
theorem for the aggregation of beliefs thus collapses



maximum height is 0.95, indicating a relative r=5" wz
incoherence of 5%. =
z<1
Figure 2: aggregation of coherent experts 1) z < 1-cj+ (G /py)x
z < 1 +005 /(1-ay) — (G /(1-ay))x
1 i x=20,x<1,z=0.
08 | Next consider the following three linear programs
% o6 B\ incorporating these constraints:
Z; os LP1: maximize over all {r, z, X} subject to (1).
S04
@ ) LP2: for a fixedx in [0,1], maximizer over all {,
021 z} subject to (1).
° 0 02 04 06 o8 1 LP3: for a fixe_ds > 0, minimize [maximizek over
Opponent's probability all {r, z, x} subject to (1) and = 1-<.
e R — Combined Let r** denote the optimal objective value for LP1,
e e ombined | let r*(x) denote the optimal objective value for LP2,
and letx, (€) andx*(€) denote the optimal min and
max objective values for LP3. Thari* is the
maximum value of the Bayes risk function on the
interval [0,1], r*(X) is the value of the Bayes risk
Figure 3: aggregation of incoherent experts function atx, andx, (¢) andx*(g) are the endpoints
of the level set obtained by cutting the graph of the
1 Bayes risk function at a height ofel-The quantity
-~ 1-** is the relative degree of incoherence of the
084 . experts, anc, (€) andx*(g) are the greatest lower
$ 06 and least upper probabilities at a “distanedtom
8 : ’ the “fuzzy” set of aggregate probabilities. (A more
g4 efficient and more general LP algorithm applicable
0211 to the case of multiple, conditional events is given in
Nau 1990 & 1992.) [14] [15]
0¥ T T T T
02 04 06 08 1 There are several noteworthy features of this
Opponent's probability approach to aggregating imprecise probabilities.
First, it uses a measure of thsecond-order
| Expertl - - - - - - Expert 2 Combined | imprecisionin the experts’ probability judgments as

a basis for making tradeoffs among the lower and
upper bounds offered by different experts. The
The aggregation method illustrated in the precedingonfidence weights provide the necessary measure
figures can be formalized in terms of linear of second-order imprecision. Second, the
programming.  Suppose that experts assess assumption of limited total betting stakeand the
confidence-weighted probabilities for the sameinterpretation of confidence weights as fractions of
unconditional event. In particular, suppose thatthe total stake allocated to different bets, turns out to
experti assesses lower and upper probabilifies be the key to modeling the second-order imprecision
andg; with confidencec, for j=1, ...,J. Consider and adapting de Finetti's probability elicitation
the following system of constraints (1), where method to the case of multiple experts. Under the
ranges from 1 t andj ranges from 1 ta) as  usual extension of de Finetti's elicitation method to
appropriate: the case of lower and upper probabilities, there is no
explicit limit on the size of any of the bets—they are



just said to be “small.” If an opponent bets with room betwith each otheprior to interacting with a
multiple experts under such conditions, she willcommon betting opponent. Specifically, we assume
only bet against the expert offering the mostthat upon entering the room, the experts announce to
favorable rate on any given event: she will have naach other their lower and upper betting rates on
incentive for betting with anyone offering a less events—i.e., their bid-ask spreads for Arrow-Debreu
attractive rate. Hence the opponent will only “see”securities pegged to those events—and they then
the greatest lower and least upper probabilityproceed to make sequences of small bets with each
bounds among all the experts, and the aggregate sether at the quoted rates. Presumably their betting
of probability measures will naturally be the rates will change somewhat over time due to a
intersection of their individual sets of probability combination of reciprocal learning, mutual hedging
measures. Here, by comparison, the fact that eaabf risks, and exploitation of arbitrage opportunities.
expert's stake is limited means that the opponentnder these conditions, an expert's bid-ask spread
will wish to bet some amount against every expertfor a given security at any given time may reflect
whose “least confident” probability bounds are not only the intrinsic imprecision in his beliefs but
disjoint from her own probabilities. The possibility also his desire to hedge himself against the
that different experts might be endowed with possibility that his opponents have superior
different total betting stakes also provides a basis fomformation and/or to profit from the possibility that
differential weighting. his opponents have inferior information. Note that
ﬂ'f the individual bets are small relative to the
experts’ total betting stakes, and if the experts have
6he opportunity to adjust their rates continuously
information that is revealed about the probabilitiesgve.r tlmef, It |sf'(;mnecesse_1r)t/1tfor dthe”?bt% use ttr?e
held by his betting opponent. It is precisely this evice ol coni gnce weights —described In he
intersubjective quality that sets the stage for aprecedln_g section: the only be_ttlng rates that matter
rational aggregation method, because the probabilitat any given moment are their greatest _Iower and
assessments of different experts are all referenced SaSt Upper betting rates with positive confidence.

a common betting opponent. In this setting (or indeed, any setting in which
material rewards are used to elicit beliefs), the
agents’ lower and upper betting rates on events are
not necessarily measures of pure belief. Rather,
In the preceding method of aggregating subjectivéhey are measures of beliefompounded with
probabilities, each probability assessor was giverpossibly-state-dependent marginal utilities for
the ability to adjust his betting rate in response tamoney For, on the assumption that an individual is
the actions of a betting opponent, but the details o&n expected-utility-maximizer, his (greatest lower or
the adjustment process had to be specified ineast upper) betting rate on an event ought to be
advance, encoded in the assignment of appropriageroportional to the product of his true (lower or
confidence weights to different lower and upperupper) probability and his relative marginal utility
probabilities. The aggregation of such probabilitiesfor money given the occurrence of that event,
was imagined to be carried out by assembling anotwithstanding any additional hedging that he may
group of experts “in the same room” for purposes ofwish to perform for strategic reasons. This product
betting against a common opponent, but the expertsf true probability and relative marginal utility for
did not interact directly with each other. The money is known as ask neutral probabilityin the
possibility was admitted that the combined expertditerature of finance: it is the probability we would
could be incoherent (i.e., that a lower probability ofinfer from the individual’'s betting behavior on the
one expert might be greater than the uppe(possibly incorrect) assumption that he is risk
probability of another expert for the same event, aheutral.  If the individuals in the room all have
some positive level of confidence), but the effects ofdecreasing marginal utility for money in every state,
incoherence were not disastrous, since betting stakélsen as they accumulate bets with each other, their
werea priori limited. Indeed, a useful measure of state-dependent marginal utilities will shift so as to
the relative incoherence of the experts was obtainedoroduce a convergence in their risk neutral
probabilities, even if their “true” probabilities
éemain relatively constant. Of course, their true

Third, the second-order imprecision has an explici
intersubjectivedimension: it encodes the way in
which the probability assessor wishes to respond t

3 Aggregation of risk-neutral probabilities

An alternative, though conceptually related,
approach, is to let the different experts in the sam



probabilities might also converge to some extent aby the fact that the experts have had the opportunity
the experts learn from their interactions with eachto learn from each other and revise their beliefs.

other, but the precise extent of that convergence wil
remain unknown: their true probabilities and their
marginal utilities will be inseparable in the eyes of
an observer. Fortunately, the distortion of
subjective probabilities by marginal utilities for
money is not catastrophic for purposes of decisio
analysis. It is possible in principle to perform

ks a simple example, suppose there are two experts
and a single eveld whose probability is of interest.
Suppose the experts have initial lower and upper
risk neutral probabilities pj, ;] and [p., ]
respectively. If the intervals overlap—say, if
rIql>pz—then the experts will not bet at all with each
other, and trivially their aggregated risk neutral

decision analysis using risk neutral probabilities o , : : .
; - probabilities will be the intersection of the intervals,
(Nau 1995a) [16], and risk neutral probabilities alsonamely bu, o] In the more interesting case where

provide the basis for a useful integration of decisiontheir intervals are initially disjoint—sayy < p
—sayy; < Pr—

analysis and options pricing methods of project . : : L
valuation (Smith and Nau 1995) [22]. Further they will bet with each other and adjust their risk

discussion of the oractical problem of separatin neutral probabilities until some overlap is achieved.
" Ppractical p P gSuppose, for example, that their initial intervals are
probability and utility is given by Kadane and

) ) [0.2, 0.3] and [0.4, 0.5], respectively. Then for any
Winkler (1988) [11], Schervish et al. (1990) [20] . .
and Karni and Safra (1995). [12] betting rate between 0.3 and 0.4, expert 1 is initially

willing to bet againsk while expert 2 is willing to

As the experts in the room continue to bet with eachbet onE. The actual rate at which betting occurs
updating their beliefs and marginal utilities and may depend on which agent has more patience,
strategic positions, an equilibrium will eventually be stubbornness, or power relative to the other. A
reached in which their betting rates converge orcanonical way to model the outcome of the betting
stable values, and those stable values wilis to imagine that an arbitrageur bets with each
necessarily be coherent if all arbitrage opportunitieexpert at the least favorable rate the expert is willing
have been rationally exploited. A “consensus” ofto accept, so that the expert's total expected utility
the experts is thereby achieved, but the consensusiemains unchanged. Thus, initially, the arbitrageur
with respect to risk neutral probabilities rather thanwill bet with expert 1 at the rate 0.3 (with the expert
“true” subjective probabilities of events. In the final bettingagainstE) and with expert 2 at the rate 0.4
equilibrium, every expert has his own lower and(with the expert bettingon E). As the stakes
upper risk neutral probabilities for events (or moreaccumulate, the betting rate of expert 1 will rise
generally, bid-ask spreads for arbitrary securitiesvhile that of expert 2 falls, until they converge on a
pegged to those events), definiagconvex set of common value that represents their aggregate
risk-neutral probability measures From the beliefs. The arbitrageur will reap a positive profit
perspective of an observer who enters the room aluring this process, and the total arbitrage profit can
this point, only the greatest lower and least uppetater be redistributed (or not) between the experts in
betting rates (or bid-ask prices) are of interestan arbitrary manner, which may (or may not) trigger
Hence, from the perspective of the observer, there iurther rounds of betting. If the arbitrage profits are
a single “representative agent” whose convex set ofiot redistributed, the solution is generally unique
risk-neutral probability measures is thntersection  (under suitable regularity conditions on the utility
of the (final) sets of risk-neutral probability functions) and can be found by solving a nonlinear
measures of the separate experts. Thus we fingrogramming problem in which the arbitrageur’s
support for the idea of representing the aggregatminimum profit across states is maximized while
opinion of the experts by the intersection of theirholding the experts’ expected utilities constant.

respective convex sets of propability measures, bU‘I’o complete the analysis in this example, suppose
the probability measures are “Sk'”.e“”?" rather tha'ﬂwat the experts have exponential utility functions
“true” measures, and the intersection is taken Onh(/vith fisk tolerances of $10000 and $20 000

ﬂttf]r tgaecﬁx%%t:r hg\rﬁ htid égelo(?{o pg;tungb;[t?ab?espectively. A convenient property of exponential
P y 9 utility functions is that they exhibit constant

. : ) . Mbsolute risk aversion, which implies that lump-sum
of incoherence (i.e., an empty intersection) therefor%hanges in wealth have no effects on risk neutral

?nooesst Peoitgrlﬁg"attegili”e’f:g?etkrlg Fr’ézglﬁtz dt?satm?tri'Igtt:%robabilities. Hence, if the experts have exponential
P 9 tility functions, they will converge on a unigue risk



neutral distribution regardless of whether or howexcept under restrictive conditions (exponential
they share the arbitrage profits. In this case, withutility, no learning, etc.). There may be many
respective risk tolerances of $10,000 and $20,000possible final allocations of state-contingent wealth
they will converge uniquely on an aggregate riskthat are mutually preferred to the initial allocation,
neutral probability of 0.3652, which is closer to theand correspondingly many possible systems of final
initial risk neutral probability of expert 2 than expert state prices. The one to which the experts converge
1 because expert 2 has a higher risk tolerancenay depend on the vagaries of the sequence of
(Under more general utility functions, such as log ortrades, on their relative bargaining powers with
power functions, the solution would not be uniquerespect to each other, on the way they learn from
and would depend on details of the betting sequencileir interactions with each other, and on other
and the sharing of profits.) In this example it haspsychological factors or environmental
been assumed that no learning or strategicontingencies. The final equilibrium therefore is not
maneuvering takes place, so that changes in theniquely determined by initial conditions that are
experts’ risk neutral probabilities are doely to  subject to independent measurement. Rather, the
changes in relative marginal utilities as bettingobservation of the final equilibrium isfandamental
stakes accumulate. If their true probabilities alsomeasuremendf aggregate belief.

change because they learn from each other while

pettlng,_ the final §olgtlon will be hard (perhapSAcknowledgementS
impossible) to predict in advance.
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