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Abstract

Two methods are presented for the aggregation of
imprecise probabilities elicited from a group of
experts in terms of betting rates. In the first method,
the experts bet with a common opponent subject to
limits on their personal betting stakes, and their
individual and aggregate beliefs are represented by
confidence-weighted lower and upper probabilities.
In the second method, the experts bet directly with
each other as a means of reconciling incoherence,
and their beliefs are represented by lower and upper
risk neutral probabilities—i.e., products of
probabilities and relative marginal utilities for
money.

Keywords:  lower and upper probabilities,
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consensus, coherence, arbitrage

1   Introduction

The question of how the subjective probabilities of
different individuals ought to be aggregated—if at
all—has long been controversial.  A well-known
impossibility theorem (Genest and Zidek 1986) [9]
says that there is no satisfactory way to aggregate
ordinary, precise probabilities:  the aggregated
probabilities must either fail to respect unanimity of
beliefs or they must fail to follow the Bayesian
recipe for prior-to-posterior updating.   Indeed,
standard Bayesian theory provides little support for
the idea of aggregation: according to the usual
definition, all subjective probabilities are purely
personal probabilities. (See Winkler et al. 1986 [26]
for a discussion.)  It has often been suggested that
imprecise probabilities might be more suitable for
aggregation than precise probabilities, because they
allow room for disagreement among individuals and
they provide additional parameters for reflecting the
degree of consensus or dissensus.  However,

aggregation methods for imprecise probabilities
have met with theoretical and practical difficulties
of their own.

This paper describes two approaches to the
aggregation of imprecise probabilities, both of
which have firm “quasi-Bayesian” theoretical
foundations and circumvent the impossibility
theorem for the aggregation of precise probabilities.
They also both have implicit game-theoretic
elements, which is not coincidental.  We suggest
that all subjective probabilities are intrinsically
intersubjective in nature—that is, they do not
represent beliefs that exist in vacuo, but rather
beliefs that exist in a strategic environment
inhabited by other individuals—and it is only
through modeling of the intersubjective dimension
that aggregation of probabilities can be justified and
carried out in a non-arbitrary fashion.

In the first method, confidence-weighted lower and
upper probabilities are used as the fundamental
representation of uncertainty.  The confidence
weights permit tradeoffs to be made in a systematic
way between the imprecise probability judgments of
different individuals, and the confidence-weighted
representation has an axiomatic foundation that
supports the aggregation of opinions through a slight
weakening of the property of transitivity (Nau 1992)
[15].   In the second method, the parameters of
interest are not “true” subjective probabilities but
rather risk-neutral probabilities—i.e., products of
probabilities and relative marginal utilities for
money.  An individual’s risk-neutral probabilities
are the apparent probabilities revealed by his
acceptance of money bets under conditions of risk
aversion (nonlinear utility for money and significant
prior stakes in the outcomes of events).  The natural
way to aggregate risk-neutral probabilities is to
simply let a group of individuals bet with each other
and observe the market prices that are obtained after
reciprocal learning has occurred, risks have been



hedged, and arbitrage opportunities have been
exploited.  (Markets for betting on securities prices,
sporting events, and political races are conducted in
exactly this fashion.)   Both of these approaches
permit the construction of a “representative
individual,” and the behavior of the representative
individual is qualitatively identical to the behavior
of a single individual.  Hence, the representative
individual is necessarily quasi-Bayesian.
Furthermore, in both approaches, the imprecision in
the revealed probabilities is partly due to the
incompleteness of beliefs and partly due to
irreducible strategic considerations.

2  Aggregation of confidence-weighted
probabilities

In one of the most widely-used models of imprecise
probabilities (e.g., Smith 1961, Walley 1991) [23]
[24], a convex set of probability measures is used to
represent the beliefs of an individual, yielding lower
and upper probabilities for events as well as lower
and upper expectations for random variables.  This
representation of uncertainty is a natural
generalization of precise subjective probabilities that
is obtained by relaxing the axiom of completeness.
But it is not obvious how aggregation should be
carried out under this representation.  For example,
an aggregate measure of uncertainty could be
defined either by the union or the intersection of the
sets of probability measures of different individuals,
but both of these alternatives appear problematic.
The union of convex sets of probability measures
generally is  nonconvex—although of course it can
be convexified—and it yields too loose a
representation of aggregate uncertainty.  As more
opinions are pooled, the union can only get larger,
and it reflects only the least informative opinions,
whereas intuitively there ought to be (at least the
possibility of) an increase in precision as the pool
gets larger.  On the other hand, the intersection of
convex sets of measures may be empty if the experts
are mutually incoherent, and it generally yields too
tight a representation of aggregate uncertainty.  As
more opinions are pooled, the intersection can only
shrink, and it reflects only the most extreme among
those opinions, whereas intuitively there should be
some convergence to an “average” opinion when the
pool gets sufficiently large.  Moreover, neither the
union nor the intersection provides an opportunity
for the differential weighting of opinions, which
would be desirable in cases where one individual is
considered (either by herself or by an external

evaluator) to be better or worse informed than
another individual about a particular event under
consideration.   Some sort of weighted averaging
over lower and upper probabilities could be
performed in principle, but the theoretical rationale
for doing so is unclear.

It has often been pointed out (e.g., by Good 1962)
[10] that a question of infinite regress seemingly
arises once it is admitted that probabilities are
imprecise:  if imprecision in probability judgements
is measured by lower and upper bounds, why aren’t
the bounds themselves somewhat imprecise?  But
this naturally raises further questions about how the
higher-order imprecision could be measured in a
meaningful way and about whether there would be
practical or conceptual benefits in doing so.

A generalization of lower and upper probabilities
that yields a meaningful measure of second-order
imprecision was given by Nau (1989, 1992) [13]
[14].  There, so-called “confidence weights” are
attached to lower and upper probabilities, and an
individual is permitted to assess more than one
lower or upper probability for a given event, at
different levels of confidence.  This representation
of subjective uncertainty follows in a natural way
from a further relaxation of the standard axioms of
coherent preferences among gambles, in which
transitivity is weakened at the same time as
completeness is abandoned.  It can also be derived
as a generalization of de Finetti’s operational
method of measuring subjective probabilities.

De Finetti (1937, 1974) [1] [2] proposed that an
individual’s subjective conditional probability
(“prevision”) for a  event E given another event F
should be defined as the (presumably unique)
number p for which the individual is indifferent to
betting on or against E at rate p, conditional on F.
That is, p is the number for which he is willing to
accept a gamble with payoff α(E-p)F, where α is a
small but otherwise arbitrary  number, positive or
negative, chosen at the discretion of an opponent.
(Here E and F are used as indicator variables as well
as names of events—i.e., the variable E takes the
values 1 or 0 when the event E occurs or doesn’t
occur, respectively.) De Finetti’s definition of
subjective probability readily admits a
generalization in terms of lower and upper
conditional probabilities:  for given events E and F,
let the individual give lower and upper betting rates
p and q, respectively, for E|F, meaning that he is
willing to accept a gamble α(E-p)F + β(q-E)F,



where α and β are small non-negative numbers
chosen at the discretion of an opponent.

Now consider a further extension of de Finetti’s
elicitation method in which the individual is
assumed to have a finite total betting stake—i.e., a
maximum amount he can afford to lose.  Without
loss of generality, let the size of the betting stake be
normalized to 1.  Then the individual is able to
qualify each of his lower or upper betting rates by
specifying the maximum fraction of his total stake
that he is willing to risk in betting at that rate, and
that fraction is defined to be the confidence weight
associated with the betting rate.  For example, he
might attach a confidence weight of c to a lower
probability p for event E, meaning that he will
accept a gamble with payoff α(c/p)(E-p)F, subject
to the constraint that 0 ≤ α ≤ 1.  (Note that because
of the scaling factor c/p, the maximum loss is equal
to αc, which occurs when E=0 and F=1.  The
constraint α ≤ 1 then means the maximum loss must
be less than or equal to c.)  Similarly, if he attaches
a confidence weight of c to an upper probability q,
this means he will accept a gamble with payoff
β(c/(1-q))(q-E)F.  More generally, if he
simultaneously assigns lower and upper
probabilities pj and qj with confidence weight cj to
event Ej|Fj, for j=1, …, J, this means he will accept a
gamble with total payoff:

Σj [αj(cj /pj)(Ej–pj) + βj(cj /(1–qj))(qj–Ej)]Fj,

where the nonegative multipliers {αj}and {βj }are
chosen by an opponent subject to the constraint:

Σj [αj + βj ] ≤ 1

(The events {Ej} and {Fj} in the preceding
expression can have any logical relationships
whatever, and need not be distinct.)  The individual
is free to assign more than one confidence-weighted
lower or upper probability to the same event—
indeed, for reasons to be explained below, he will
usually wish to do so.  Higher confidence is
associated with looser probability bounds:  the lesser
[greater] of two lower [upper] probabilities will
have the higher confidence.

It is intuitively reasonable that, the more favorable
the betting rate to himself, the higher the stakes an
individual should be willing to play for, but it may
not be immediately apparent why he should do so in
exactly the way just described—i.e., why he should
want to adopt this particular formula for constrained
betting at the discretion of an opponent.  The
rationale for this particular method of attaching a

confidence weight to a lower or upper probability is
that it directly addresses a shortcoming that de
Finetti acknowledged in his original definition of
probability, namely  “the possibility that people
accepting bets against our individual have better
information than he has… [which] would bring us to
game-theoretic situations”  [footnote to Kyburg and
Smokler translation].  The constrained betting
system described above has the useful property that
it allows the individual to perform a reciprocal
measurement on the subjective probability of his
opponent, and to adjust his own betting rate
accordingly in advance.  To see this, note that the
individual’s assessment of confidence weighted
probabilities presents a well-defined statistical
decision problem to a Bayesian opponent (“she”).
For simplicity, consider the case of an unconditional
probability assessment for a single event E, and
suppose that three lower probabilities (p0, p1, p2) and
three upper probabilities (q0, q1, q2) are assessed
with distinct confidence weights (c0, c1, c2), where  1
= c0 > c1 >c2.   Correspondingly, p0 < p1 < p2 and q0 >
q1 >q2.   In other words, the individual is “100%
confident” that the probability lies in the interval [p-
0, q0].  He is somewhat less confident that it lies in
the narrower interval [p1, q1], and still less confident
that it lies in the still-narrower interval [p2, q2].  The
statistical decision problem that this probability
assessment presents to an opponent is described by a
Bayes risk function (DeGroot 1970) [3] which
specifies the opponent’s minimum expected loss as
a function of her own hypothetical probability
distribution.  The construction of the Bayes risk
function is shown in the graph below.

Figure 1:  Construction of the Bayes risk
function representing as assessment of

confidence-weighted probabilities

        p0     p1   p2       q2   q1         q0

  1-c2           1-c2

  1-c1       1-c1

      p′      p′′                        q′′              q′

Here, the horizontal interval [0,1] represents
possible values for the opponent’s probability of E.



The vertical interval [0,1] measures the opponent’s
“loss” which is defined as the opponent’s maximum
possible gain minus her actual gain.   Because the
opponent’s maximum possible gain is 1 (the size of
the probability assessor’s total stake), her expected
loss is 1 minus her expected gain from the bets she
places.  Hence her loss is equal to 1 if she places no
bets at all, and her loss cannot be less than zero.

Each of the sloping construction lines in the figure is
an upper bound on the opponent’s Bayes risk
function determined by a single confidence-
weighted lower or upper probability.  In particular,
the assessment of a lower probability p with
confidence c determines a construction line through
the points (0, 1-c) and (p,1).  If the opponent takes
this bet alone (i.e., assigns it a multiplier α=1), then
the opponent’s expected loss as a function of her
probability is a point somewhere on this line.  (If her
probability is 0, then she is certain E will not occur,
and she expects to win the amount c, in which case
her “loss” is equal to 1-c.  On the other hand, if her
probability for E is exactly p, she thinks the bet is
fair, and her expected gain from it is zero, in which
case her loss is equal to 1.  Expected losses for other
probability values follow by linear interpolation.)
Similarly, the assessment of a single upper
probability q with confidence c determines a
construction line through the points (1, 1-c) and (q,
1).  If the opponent takes none of the bets, her actual
and expected loss is equal to 1 regardless of her
probability for E, which corresponds to the
horizontal line at y=1 in the figure.  The opponent’s
optimal decision is to take the single bet, if any, that
yields the minimum expected loss, and consequently
her Bayes risk function is the envelope (pointwise
minimum) of the aforementioned construction lines,
which is the heavy line shown in the figure.

Note that the Bayes risk function partitions the
probability interval into subintervals in which the
same bet is always taken by the opponent.  For
example, if the opponent’s probability lies in the
subinterval [p′, p′′], she will take the bet determined
by lower probability p1 with confidence c1.   If the
opponent’s probability lies in the subinterval [p′′, p-
2], she will take the bet determined by lower
probability p2 with confidence c2.  (Here p′′ is the
probability value at which the construction lines
corresponding to p1 and p2 intersect, etc.) If her
probability is in the subinterval [p2, q2], she will not
bet at all.  If her probability is in the subinterval [q2,
q′′], she will take the bet determined by upper
probability q2 with confidence c2, and so on.  Now

consider how this optimal strategy for the opponent
effectively allows the probability assessor to adjust
his betting rates in response to what he learns about
the opponent’s probability.  If the opponent’s
probability is between q2 and p2 (the assessor’s
greatest lower and least upper probability with non-
zero confidence), he does not wish to bet at all with
the opponent: he cannot discern a profitable
difference of opinion.   If the opponent’s probability
is less than p2 but greater than p′′, the assessor is
willing to bet at rate p2.  But if the opponent’s
probability is revealed to be less than p′′,  though
greater than p′, the assessor revises his betting rate
downward from p2 to p1, and so on.  Similarly, on
the upper end, the assessor is willing to bet against
the event at rate q2 if the opponent’s probability is
between q2 and q′′, but he revises the rate upward to
q1 if the opponent’s probability is revealed to be
greater than q′′,  though less than q′.

In the more general case of multiple, conditional
events that are subsets of a finite state space, the
Bayes risk function is defined on the probability
simplex in ℜm, where m is the number of states.
The Bayes risk function on the simplex is typically a
piecewise linear concave function—i.e., its graph is
a convex polytope.   Details are given in Nau (1989,
1992) [14] [15].  The Bayes risk function on the
simplex can then be “marginalized” to obtain
concave, piecewise linear Bayes risk functions for
individual conditional probabilities.  These Bayes
risk functions behave very much like fuzzy-set
membership functions—in particular, they obey the
max-min rules of union and intersection—although
they are not derived from the assumptions of fuzzy
set theory.   Rather, these results can be interpreted
to establish as a theorem that fuzzy set theory is
applicable to the modeling of imprecise subjective
probabilities, as previously suggested by Freeling
(1980) [6] Watson et al. (1979) [25], and Dubois
and Prade (1989) [5].  The Bayes risk function also
has the same qualititative properties as the
“epistemic reliability function” proposed by
Gärdenfors and Sahlin (1982, 1983) [7] [8], insofar
as it serves to index nested convex sets of
probability measures.

The use of confidence-weighted probabilities in
decision analysis is discussed by Nau (1989) [13].
Briefly, the second-order imprecision in the
probabilities leads naturally to second-order
imprecision in expected values of decisions, and the
Bayes risk function provides a metric in terms of
which alternative decisions can be ranked according



to their “distance” from the set of potentially
optimal (expected-value-maximizing) decisions.
This decision-ranking criterion is similar in
principle to methods of sensitivity analysis
developed by Rios Insua (1990) [19].

To determine the implications of the confidence-
weighted probability model for the aggregation of
opinions of different experts, consider a “roomful of
experts”, each of whom has a finite total betting
stake.  Let wi denote the betting stake of expert i,
and without loss of generality assume that Σi wi = 1.
Let each expert assess his own subjective
uncertainty for various (possibly conditional) events
in terms of confidence-weighted probabilities,
where the confidence weights are the fractions of his
own betting stake that he is willing to risk in betting
at the corresponding lower or upper probabilities.
(The experts need not all contemplate the same
events, although we assume that the events
considered by different experts are somehow
logically related—i.e., they are subsets of a common
state space.)  Now consider the statistical decision
problem that is perceived by an opponent who bets
against all of the experts simultaneously.  Because
the opponent’s gain is naturally the sum of her gains
in the bets against the different experts, it
immediately follows that her Bayes risk is a
weighted average of the Bayes risks of the different
experts, with weights equal to their respective
betting stakes wi.  In other words, the Bayes risk
function of the combined experts is a linear pool of
their individual Bayes risk functions, and the experts
are weighted in proportion to the size of their
betting stakes.   Because the concavity and
piecewise linearity and 0-1 range of the Bayes risk
function are preserved under weighted averages, it
follows that the Bayes risk function of the combined
experts has exactly the same qualititative properties
as the Bayes risk function of a single expert.  Hence,
if all she observes are the combined bets that are
available, as summarized by the aggregate Bayes
risk function, the opponent cannot really tell
whether there is a single expert or multiple experts
“on the other side of the door.”  In particular, if the
experts are unanimous in their assessments, then the
combined assessment agrees with all their individual
assessments as it should.  But meanwhile, the
combined assessment follows the usual Bayesian
rules of prior-to-posterior updating—as generalized
to the case of confidence-weighted probabilities—so
it is also “externally  Bayesian.”  The impossibility
theorem for the aggregation of beliefs thus collapses

when beliefs are represented by confidence-
weighted probabilities. (See Nau 1990 for further
details.) [14]

When confidence-weighted probabilities are
aggregated as described above, it is quite possible
that the aggregate assessment will be incoherent.
This will happen, for example, if one expert assesses
a lower probability (at some positive level of
confidence) which exceeds an upper probability for
the same event (at some positive level of
confidence) assessed by another expert.  However,
incoherence is not catastrophic in the framework of
confidence-weighted probabilities:  the aggregate set
of probability measures is not merely empty, as it
would be in the case of incoherent precise
probabilities or incoherent interval probabilities.
Rather, the [fuzzy] set of aggregate probability
measures merely has a “subnormal” Bayes risk
[membership] function—i.e., a Bayes risk function
whose maximum value is less than 1.   The common
betting opponent will perceive an arbitrage
opportunity, but the magnitude of the arbitrage
profit—which measures the relative incoherence of
the assessment—will be bounded at some fraction of
the maximum betting stake.  In particular, the
arbitrage profit is precisely the amount by which the
maximum value of the aggregate Bayes risk is less
than 1 (Nau 1989) [13].  This measure of relative
incoherence is a generalization of one of the two
measures of incoherence independently proposed by
Schervish et al. (1998) [20]:  their model is a special
case of confidence-weighted probabilities in which a
point probability (i.e., a lower and upper probability
that coincide) is assessed for every event with a
confidence weight of 1.

The aggregation of confidence-weighted
probabilities of two equally-weighted experts for the
same unconditional event, in terms of their Bayes
risk functions, is illustrated by Figures 2 and 3.
Note that the combined Bayes risk function (the
heavy line in each figure) is simply an average of
the Bayes risk functions of the individual experts,
and it typically has a smoother appearance.  Figure 2
illustrates the case in which the experts are mutually
coherent:  the combined Bayes risk is “normal” with
a maximum height of 1.   Figure 3 illustrates the
case in which the experts are mutually incoherent.
Here, one expert has asserted that 0.4 is an upper
probability while the other has asserted that 0.5 is a
lower probability, both with positive confidence.
The Bayes risk function is therefore subnormal:  its



maximum height is 0.95, indicating a relative
incoherence of 5%.

Figure 2:  aggregation of coherent experts

Figure 3:  aggregation of incoherent experts

The aggregation method illustrated in the preceding
figures can be formalized in terms of linear
programming.  Suppose that n experts assess
confidence-weighted probabilities for the same
unconditional event.  In particular, suppose that
expert i assesses lower and upper probabilities pij

and qij with confidence cij, for j=1, …, Ji.  Consider
the following system of constraints (1), where i
ranges from 1 to n and j ranges from 1 to Ji as
appropriate:

r = i

n

i i zw∑ =1

zi ≤ 1

(1) zi ≤ 1 – cij + (cij /pij)x

zi ≤ 1 + cijqij /(1-qij) – (cij /(1-qij))x

x ≥ 0, x ≤ 1, zi ≥ 0.

Next consider the following three linear programs
incorporating these constraints:

LP1:  maximize r over all {r, zi, x} subject to (1).

LP2:  for a fixed x in [0,1], maximize r over all {r,
zi} subject to (1).

LP3:  for a fixed ε ≥ 0, minimize [maximize] x over
all { r, zi, x} subject to (1) and r ≥ 1-ε.

Let r** denote the optimal objective value for LP1,
let r*(x) denote the optimal objective value for LP2,
and let x* (ε) and x*(ε) denote the optimal min and

max objective values for LP3.  Then r** is the
maximum value of the Bayes risk function on the
interval [0,1], r*(x) is the value of the Bayes risk
function at x, and x*(ε) and x*(ε) are the endpoints

of the level set obtained by cutting the graph of the
Bayes risk function at a height of 1-ε.  The quantity
1-r** is the relative degree of incoherence of the
experts, and x* (ε) and x*(ε) are the greatest lower

and least upper probabilities at a “distance” ε from
the “fuzzy” set of aggregate probabilities.  (A more
efficient and more general LP algorithm applicable
to the case of multiple, conditional events is given in
Nau 1990 & 1992.) [14] [15]

There are several noteworthy features of this
approach to aggregating imprecise probabilities.
First, it uses a measure of the second-order
imprecision in the experts’ probability judgments as
a basis for making tradeoffs among the lower and
upper bounds offered by different experts.  The
confidence weights provide the necessary measure
of second-order imprecision. Second, the
assumption of a limited total betting stake, and the
interpretation of confidence weights as fractions of
the total stake allocated to different bets, turns out to
be the key to modeling the second-order imprecision
and adapting de Finetti’s probability elicitation
method to the case of multiple experts.  Under the
usual extension of de Finetti’s elicitation method to
the case of lower and upper probabilities, there is no
explicit limit on the size of any of the bets—they are
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just said to be “small.”  If an opponent bets with
multiple experts under such conditions, she will
only bet against the expert offering the most
favorable rate on any given event:  she will have no
incentive for betting with anyone offering a less
attractive rate.  Hence the opponent will only “see”
the greatest lower and least upper probability
bounds among all the experts, and the aggregate set
of probability measures will naturally be the
intersection of their individual sets of probability
measures.  Here, by comparison, the fact that each
expert’s stake is limited means that the opponent
will wish to bet some amount against every expert
whose “least confident” probability bounds are
disjoint from her own probabilities.   The possibility
that different experts might be endowed with
different total betting stakes also provides a basis for
differential weighting.

Third, the second-order imprecision has an explicit
intersubjective dimension:  it encodes the way in
which the probability assessor wishes to respond to
information that is revealed about the probabilities
held by his betting opponent.  It is precisely this
intersubjective quality that sets the stage for a
rational aggregation method, because the probability
assessments of different experts are all referenced to
a common betting opponent.

3    Aggregation of risk-neutral probabilities

In the preceding method of aggregating subjective
probabilities, each probability assessor was given
the ability to adjust his betting rate in response to
the actions of a betting opponent, but the details of
the adjustment process had to be specified in
advance, encoded in the assignment of appropriate
confidence weights to different lower and upper
probabilities.  The aggregation of such probabilities
was imagined to be carried out by assembling a
group of experts “in the same room” for purposes of
betting against a common opponent, but the experts
did not interact directly with each other.  The
possibility was admitted that the combined experts
could be incoherent (i.e., that a lower probability of
one expert might be greater than the upper
probability of another expert for the same event, at
some positive level of confidence), but the effects of
incoherence were not disastrous, since betting stakes
were a priori limited.  Indeed, a useful measure of
the relative incoherence of the experts was obtained.

An alternative, though conceptually related,
approach, is to let the different experts in the same

room bet with each other prior to interacting with a
common betting opponent.   Specifically, we assume
that upon entering the room, the experts announce to
each other their lower and upper betting rates on
events—i.e., their bid-ask spreads for Arrow-Debreu
securities pegged to those events—and they then
proceed to make sequences of small bets with each
other at the quoted rates.  Presumably their betting
rates will change somewhat over time due to a
combination of reciprocal learning, mutual hedging
of risks, and exploitation of arbitrage opportunities.
Under these conditions, an expert’s bid-ask spread
for a given security at any given time may reflect
not only the intrinsic imprecision in his beliefs but
also his desire to hedge himself against the
possibility that his opponents have superior
information and/or to profit from the possibility that
his opponents have inferior information.   Note that
if the individual bets are small relative to the
experts’ total betting stakes, and if the experts have
the opportunity to adjust their rates continuously
over time, it is unnecessary for them to use the
device of confidence weights described in the
preceding section:  the only betting rates that matter
at any given moment are their greatest lower and
least upper betting rates with positive confidence.

In this setting (or indeed, any setting in which
material rewards are used to elicit beliefs), the
agents’ lower and upper betting rates on events are
not necessarily measures of pure belief.  Rather,
they are measures of belief compounded with
possibly-state-dependent marginal utilities for
money.  For, on the assumption that an individual is
an expected-utility-maximizer, his (greatest lower or
least upper) betting rate on an event ought to be
proportional to the product of his true (lower or
upper) probability and his relative marginal utility
for money given the occurrence of that event,
notwithstanding any additional hedging that he may
wish to perform for strategic reasons.  This product
of true probability and relative marginal utility for
money is known as a risk neutral probability in the
literature of finance:  it is the probability we would
infer from the individual’s betting behavior on the
(possibly incorrect) assumption that he is risk
neutral.   If the individuals in the room all have
decreasing marginal utility for money in every state,
then as they accumulate bets with each other, their
state-dependent marginal utilities will shift so as to
produce a convergence in their risk neutral
probabilities, even if their “true” probabilities
remain relatively constant.   Of course, their true



probabilities might also converge to some extent as
the experts learn from their interactions with each
other, but the precise extent of that convergence will
remain unknown:  their true probabilities and their
marginal utilities will be inseparable in the eyes of
an observer.   Fortunately, the distortion of
subjective probabilities by marginal utilities for
money is not catastrophic for purposes of decision
analysis.  It is possible in principle to perform
decision analysis using risk neutral probabilities
(Nau 1995a) [16], and risk neutral probabilities also
provide the basis for a useful integration of decision
analysis and options pricing methods of project
valuation (Smith and Nau 1995) [22].  Further
discussion of the practical problem of separating
probability and utility is given by Kadane and
Winkler (1988) [11], Schervish et al. (1990) [20]
and Karni and Safra (1995). [12]

As the experts in the room continue to bet with each,
updating their beliefs and marginal utilities and
strategic positions, an equilibrium will eventually be
reached in which their betting rates converge on
stable values, and those stable values will
necessarily be coherent if all arbitrage opportunities
have been rationally exploited.  A “consensus” of
the experts is thereby achieved, but the consensus is
with respect to risk neutral probabilities rather than
“true” subjective probabilities of events.  In the final
equilibrium, every expert has his own lower and
upper risk neutral probabilities for events (or more
generally, bid-ask spreads for arbitrary securities
pegged to those events), defining a convex set of
risk-neutral probability measures.  From the
perspective of an observer who enters the room at
this point, only the greatest lower and least upper
betting rates (or bid-ask prices) are of interest.
Hence, from the perspective of the observer, there is
a single “representative agent” whose convex set of
risk-neutral probability measures is the intersection
of the (final) sets of risk-neutral probability
measures of the separate experts.   Thus we find
support for the idea of representing the aggregate
opinion of the experts by the intersection of their
respective convex sets of probability measures, but
the probability measures are risk-neutral rather than
“true” measures, and the intersection is taken only
after the experts have had the opportunity to bet
with each other and to exploit any arbitrage
opportunities that may be discovered.   The problem
of incoherence (i.e., an empty intersection) therefore
does not arise at all, and the problem that only the
most “extreme” beliefs are represented is mitigated

by the fact that the experts have had the opportunity
to learn from each other and revise their beliefs.

As a simple example, suppose there are two experts
and a single event E whose probability is of interest.
Suppose the experts have initial lower and upper
risk neutral probabilities [p1, q1] and [p2, q2]
respectively.  If the intervals overlap—say, if
q1>p2—then the experts will not bet at all with each
other, and trivially their aggregated risk neutral
probabilities will be the intersection of the intervals,
namely [p1, q2].   In the more interesting case where
their intervals are initially disjoint—say, q1 < p2—
they will bet with each other and adjust their risk
neutral probabilities until some overlap is achieved.
Suppose, for example, that their initial intervals are
[0.2, 0.3] and [0.4, 0.5], respectively.  Then for any
betting rate between 0.3 and 0.4, expert 1 is initially
willing to bet against E while expert 2 is willing to
bet on E.  The actual rate at which betting occurs
may depend on which agent has more patience,
stubbornness, or power relative to the other.  A
canonical way to model the outcome of the betting
is to imagine that an arbitrageur bets with each
expert at the least favorable rate the expert is willing
to accept, so that the expert’s total expected utility
remains unchanged.  Thus, initially, the arbitrageur
will bet with expert 1 at the rate 0.3 (with the expert
betting against E) and with expert 2 at the rate 0.4
(with the expert betting on E).  As the stakes
accumulate, the betting rate of expert 1 will rise
while that of expert 2 falls, until they converge on a
common value that represents their aggregate
beliefs.  The arbitrageur will reap a positive profit
during this process, and the total arbitrage profit can
later be redistributed (or not) between the experts in
an arbitrary manner, which may (or may not) trigger
further rounds of betting.   If the arbitrage profits are
not redistributed, the solution is generally unique
(under suitable regularity conditions on the utility
functions) and can be found by solving a nonlinear
programming problem in which the arbitrageur’s
minimum profit across states is maximized while
holding the experts’ expected utilities constant.

To complete the analysis in this example, suppose
that the experts have exponential utility functions
with risk tolerances of $10,000 and $20,000
respectively.  A convenient property of exponential
utility functions is that they exhibit constant
absolute risk aversion, which implies that lump-sum
changes in wealth have no effects on risk neutral
probabilities.  Hence, if the experts have exponential
utility functions, they will converge on a unique risk



neutral distribution regardless of whether or how
they share the arbitrage profits.   In this case, with
respective risk tolerances of $10,000 and $20,000,
they will converge uniquely on an aggregate risk
neutral probability of 0.3652, which is closer to the
initial risk neutral probability of expert 2 than expert
1 because expert 2 has a higher risk tolerance.
(Under more general utility functions, such as log or
power functions, the solution would not be unique
and would depend on details of the betting sequence
and the sharing of profits.)   In this example it has
been assumed that no learning or strategic
maneuvering takes place, so that changes in the
experts’ risk neutral probabilities are due only to
changes in relative marginal utilities as betting
stakes accumulate.  If their true probabilities also
change because they learn from each other while
betting, the final solution will be hard (perhaps
impossible) to predict in advance.

The convergence of risk neutral probabilities among
agents who are free to bet with each other, leading
to the construction of a representative agent, is
discussed by Kadane and Winkler (1988) [11], Nau
and McCardle (1991) [18], and Nau (1995b) [17],
and it is also well known to be a necessary condition
for competitive equilibrium in a contingent claims
market (Drèze 1970). [4]  The risk-neutral
probabilities are otherwise known as “state prices.”
Of course, this market-based approach to
aggregating risk-neutral probabilities is widely
employed in practice, most notably in markets for
derivative securities (e.g., stock options and futures)
and for betting on sporting events (e.g., parimutuel
oddsmaking) and political races (e.g., the Iowa
political markets).  The efficiency and calibration of
such markets are well known.

We see once again that, in order to aggregate
subjective probabilities in a rational and non-
arbitrary fashion, it is necessary to begin with a
definition of probability which is intrinsically
intersubjective in nature and which allows for
varying degrees of precision in the assessed values.
In this case, the intersubjectivity resides in the fact
that the experts are given the opportunity to bet with
each other during the elicitation process, so that
their revealed (risk-neutral) probabilities are not
merely measures of private belief but rather are
measures of public willingness to bet against each
other.  The final risk-neutral probabilities to which
experts converge under these conditions are not
predictable a priori from their hypothetical true
prior probabilities and utilities, even in principle,

except under restrictive conditions (exponential
utility, no learning, etc.).  There may be many
possible final allocations of state-contingent wealth
that are mutually preferred to the initial allocation,
and correspondingly many possible systems of final
state prices.  The one to which the experts converge
may depend on the vagaries of the sequence of
trades, on their relative bargaining powers with
respect to each other, on the way they learn from
their interactions with each other, and on other
psychological factors or environmental
contingencies.  The final equilibrium therefore is not
uniquely determined by initial conditions that are
subject to independent measurement.  Rather, the
observation of the final equilibrium is a fundamental
measurement of aggregate belief.
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