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Abstract

The concept of interval-probability is motivated by
the goal to generalize classical probability so that it
can be used for describing uncertainty in general. The
foundations of the theory are based on a system of
three axioms | in addition to Kolmogorov's axioms
| and de�nitions of independence as well as of con-
ditional probability. The resulting theory does not
depend upon interpretations of the probability con-
cept. As an example of generalizing classical results
the Bayes' rule is described | other theorems are only
mentioned.

Keywords. Interval-probability, uncertainty, condi-
tional probability, Bayes' Rule.

1 The Scope of the Theory

The theory of interval-probability, as developed in
Munich over many years, is motivated by the follow-
ing goals:

1. Di�erent kinds of uncertainty should be treated
by the same concept.

This applies to

� imprecise probability and uncertain know-
ledge

� imprecise data

� the use of capacities

� the concept of ambiguity and its employ-
ment in decision theory

� belief functions and related concepts

� interpretation of interval-estimates in classi-
cal theory

� the study of experiments with possibly di-
verging relative frequencies

� non-additive measures (fuzzy measures)

2. As a special case, classical probability must �t
into this theory.

3. A simple system of axioms must describe the fun-
damentals of the theory.

4. All statements of the theory must be derivable
from the given axioms and appropriate de�ni-
tions.

5. The domain of application must neither be lim-
ited to purely formal aspects nor be bound by a
certain interpretation of probability.

In classical probability one system of axioms exists
not being restricted to a certain type of interpreta-
tion: Kolmogorov's axioms. Therefore, the concept
of interval-probability is directly related to this sys-
tem of axioms.

There is one obvious limitation for any theory of
interval-probability: Only those assessments assign-
ing intervals to random events qualify as genuine sub-
jects of the theory. The bene�ts and the power of the
theory are due to the duality between a set of interval-
limits and the corresponding set of classical proba-
bilities. These qualities distinguish the approach de-
scribed in the following chapters from those admit-
ting more general types of probability assignments,
e.g. Koer and Menges1or Peter Walley2.

Since the theory of interval-probability is independent
on the kind of interpretation it suits for �elds of appli-
cation, where probability is understood as means of
argumentation without relation either to betting or
to large series of random experiments.

Also it produces freedom in describing behaviour in
a very general way: Ellsberg's remark that everyone
will switch to a favourable event with probability [0; 1]
instead of an equally favourable with probability p,
provided that p is small enough, can be taken into
consideration adequately.

Altogether, theory of interval-probability comes
nearer to the classical understanding of probability

1[3].
2[4].



assignment than those approaches relying on more
general types of assessment.

2 Basic Concepts

2.1 The Axioms

In a slightly specialized version of the axioms all
closed intervals in [0;1] are admitted as components
of interval-probability. In this case the following def-
initions may be understood as describing the system
of axioms for interval-probability.

De�nition 2.1 Given a sample space 
 and a �-�eld
A of random events in 
, a set function p(�) de�ned
on A is named a K-function, if it obeys the axioms of
Kolmogorov (I{III).

Since K-functions have the same properties as clas-
sical probabilities, sometimes they are named K-

probabilities.

De�nition 2.2 An interval-valued set function P (�)
on A is called an R-probability if it obeys the following
two axioms.

IV. P (A) = [L(A);U(A)] ; 8A 2 A; (1)

with 0 � L(A) � U(A) � 1; 8A 2 A: (2)

V. The set M of K-functions p(�) on A with

L(A) � p(A) � U(A); 8A 2 A; (3)

is not empty.

The name \R-probability" may be related to the word
\reasonable". A quadruple consisting of a sample
space 
, a �-�eld A of random events and a certain R-
probability on (
; A) will be called an R-(probability)
�eld (
;A;L(�); U(�)). The set M of K-probabilities
being in accordance with (3) is named the structure

of the R-probability �eld. Therefore the existence of
a non-empty structure is the only condition for any
R-�eld. It is obvious that

L(;) = 0; U(
) = 1 (4)

are among the necessary conditions for R-probability.

De�nition 2.3 An R-probability obeying the follow-
ing axiom is named an F-probability.

VI. inf
p2M

p(A) = L(A)

sup
p2M

p(A) = U(A)

9=
;8A 2 A: (5)

The letter F may be connected with the word \feasi-
ble". In any F-probability �eld none of the limits L(�)

and U(�) are too wide, while this may be the case for
an R-�eld. Furthermore the property of F-probability
implies the validity of

U(A) = 1� L(:A); 8A 2 A; (6)

and of

U(;) = 0; L(
) = 1; (7)

which by use of the symbol

[a] := [a; a] (8)

together with (4) read as

P (;) = [0]; P (
) = [1]: (9)

A triple consisting of a sample-space 
, a �-�eld A
of random events and a given F-probability is under-
stood to be an F-(probability) �eld (
;A;L(�)).

The concept of structure is fundamental for the theory
of interval-probability. Most de�nitions and proofs
are directly or indirectly related to it. Another im-
portant concept is that of prestructure.

De�nition 2.4 Let (
; A; L(:)) be an F-probability
�eld. Then any set J of K-probabilities on (
; A) is
named a prestructure of F if the following relations
hold:

inf
p2J

p(A) = L(A); 8A 2 A: (10)

According to that, every subset of the structure
producing the same lower | and as a set of K-
probabilities also the same upper | limits constitutes
a prestructure. As long as it does not contain all K-
functions in accordance with (10), J is di�erent from
M.

The given system of axioms may be applied to �nite
sample spaces and to in�nite ones, but in the case of
F-probability it proves useful to distinguish continu-
ous F-probability, since Axioms I-VI do not guarantee
the continuity of the set functions L(�) and U(�).

De�nition 2.5 An F-probability is called continuous
if for any decreasing sequence of events of A:

A1 � A2 � : : : � An : : : ; (11)

for which
1\
i=1

Ai =: A (12)

is valid, the following equation holds:

lim
n!1

U(An) = U(A): (13)



2.2 R-Probability and F-Probability

R-probability may be interpreted as \not contradic-
tory, but not necessarily perfect", since on the one
hand it allows the existence of a structure, but on
the other hand some of the limits may be not narrow
enough with respect to this structure. The concept is
used by Huber3 and materially it is related to Walley's
concept of \avoiding sure loss"4. For R-probability
�elds which do not possess the F-property one may
use the expression \redundant R-probability �elds".

F-probability may be interpreted as a perfect gener-
alization of classical probability to an interval-valued
one. The structure and the set of interval-limits im-
ply each other. Huber5 calls probability of this nature
\representable", materially it corresponds to Walley's
\coherent probability"6.

Since the probabilist must expect to be confronted
with a redundant R-probability, he should be pre-
pared to \improve" such an assessment. There are
two possible standpoints concerning his attitude to-
wards a certain redundant R-probability �eld.

1. He may use the interval-limits to derive the struc-
ture of the R-probability �eld and pass over to
the limits of that F-probability �eld, which is in
accordance with this structure. In this way an
F-probability �eld can uniquely be derived from
every redundant R-probability without violating
any of the interval-limits. This is called the rigid
standpoint: It reduces the original interval-length
for every redundant R-probability �eld.

2. It may { at least in some cases { be argued that,
after adjustment to (9), any of the remaining lim-
its should necessarily describe the outcome of the
probability component p(A) for at least one ele-
ment p(�) of the structure. None of the values
contained in such an interval therefore must be
excluded: The structure has to be enlarged in or-
der to include at least one K-probability p(�) for
which p(A) = L(A) is true and one p0(�) for which
p0(A) = U(A) holds. There is no unique way
of enlarging the structure for this purpose, but
there exist criteria to distinguish \minimum en-
largements". If no information in favour of a cer-
tain kind of minimum enlargement is provided,
the union of all F-probability �elds produced in
this way may be used. It is an F-probability �eld
itself and is named the F-cover of the given re-
dundant R-probability �eld. The standpoint pro-

3[2], p. 257.
4[4], pp. 67-72, 135.
5[2], p. 255.
6[4], pp. 72-86, 135.

ducing this type of procedure may be called the
cautious standpoint, because it leads to larger in-
tervals and therefore weaker statements.

2.3 Partially Determinate Probability

De�nition 2.6 Let 
 be a sample space and A be
the �-�eld of random events. Let furthermore be

A0 = A n f
; ;g (14)

and

AL � A0; AU � A0: (15)

Then an assessment is called a partially determinate

R-probability if (9) holds, and for each A 2 AL a lower
limit L(A) is given, as well as for each A 2 AU an
upper limit U(A), so that there exists a non-empty
structureM of K-probabilities p(�), for which the fol-
lowing inequalities hold:

L(A) � p(A) ; 8A 2 AL

p(A) � U(A); 8A 2 AU

)
(16)

De�nition 2.7 If for a partially determinate R-
probability the conditions

inf
p2M

p(A) = L(A); 8A 2 AL; (17)

sup
p2M

p(A) = U(A); 8A 2 AU ; (18)

are ful�lled, it is called a partially determinate F-

probability.

For a partially determinate F-probability there exists
a rather simple way of constructing the complete F-
probability �eld: The use of (5) produces all originally
lacking limits. This procedure is called normal com-

pletion.

De�nition 2.8 Let F = (
;A;L(�)) be an F-
probability �eld. Then (AL;AU ) is named a sup-

port of F if there exists a partially determinate F-
probability according to (16) together with (17) and
(18) which produces F via normal completion.

Interpretation of this concept is obvious: Information
about limits L(A), 8A 2 AL, and U(A), 8A 2 AU , is
su�cient for constructing F .

3 Conditional Probability

3.1 General Remarks

Following Kolmogorov's procedure the system of ax-
ioms has to be completed by two de�nitions: the def-
inition of conditional probability and the de�nition



of independence. De�ning conditional probability af-
fords a series of considerations both on principle and
of a technical kind and can be referred to here only in
a highly abridged version.

The concepts of conditional probability are applied
to F-probability �elds only, since it may be assumed
that redundant R-probability �elds are transferred
into F-probability �elds by one of the ways described
in Chapter 2.

Generally conditional probability a�ords the existence
of a partition C of 
:

C = fC1; C2; : : : ; Crg

Ci 2 A0; Ci \ Ck = ;; i 6= k

r[
i=1

Ci = 


9>>>>=
>>>>;

(19)

It produces an assessment of conditional K-
probability:

pC(AjC); 8A 2 A; 8C 2 C: (20)

It should be stressed that (20) is applied to all con-
ditioning events in C, but not to conditioning events
which belong to the �eld produced by C and not to C
itself: With respect to K-probability this restriction
serves to avoid paradoxical results.

3.2 The Intuitive Concept

Concerning the transfer to F-probability there is one
�rst concept promising a simple solution. It is de-
scribed by the following de�nitions:

De�nition 3.1 Let M be the structure of the F-
probability �eld (
;A;L(�)) and C 2 A. Then

MC := fp(�)jp(�) 2 M : p(C) > 0g (21)

is called the C-docked structure.

De�nition 3.2 Under the requirements of De�nition
3.1

iLC(AjC) := inf
p2MC

p(A \ C)

p(C)
; 8A 2 A; 8C 2 C;

(22)
together with

iUC(AjC) := 1� iLC(:AjC) = 1� inf
p2MC

p(:A \ C)

p(C)

= sup
p2MC

p(A \ C)

p(C)
(23)

produces the intuitive concept of conditional probabil-
ity.

This concept has a considerable number of pleasant
properties. It is easy to understand and easy to use.
Nevertheless it is of limited interest, because it does
not allow the reconstruction of the F-probability �eld
from which it is gained.

This may be demonstrated by the following two ex-
amples.

Example 3.1 The following assessment produces an
F-probability �eld on the sample-space 
 = E1[E2[
E3:

P (E1) = [0:10; 0:25] P (E1 [ E2) = [0:40; 0:60]
P (E2) = [0:20; 0:40] P (E1 [ E3) = [0:60; 0:80]
P (E3) = [0:40; 0:60] P (E2 [ E3) = [0:75; 0:90]:

A partition C of 
 be given by

C = fC1; C2g; C1 = E1 [ E2; C2 = E3

) P (C1) = [0:40; 0:60] P (C2) = [0:40; 0:60]:

Application of (22) leads to:

iLC(E1jC1) = inf
p2M

p(E1)

p(C1)
=

0:10

0:10 + 0:40
= 0:20

iLC(E2jC1) = inf
p2M

p(E2)

p(C1)
=

0:20

0:20 + 0:25
= 0:4_4:

Therefore the intuitive concept generates the follow-
ing assessment:

iPC(E1jC1) = [0:20; 0:5_5] iPC(E1jC2) = [0]
iPC(E2jC1) = [0:4_4; 0:80] iPC(E2jC2) = [0]
iPC(E3jC1) = [0] iPC(E3jC2) = [1]:

Example 3.2 Another F-probability �eld:

P (E1) = [0:11; 0:225] P (E1 [ E2) = [0:40; 0:60]
P (E2) = [0:18; 0:44] P (E1 [ E3) = [0:56; 0:82]
P (E3) = [0:40; 0:60] P (E2 [ E3) = [0:775; 0:89]

with the same partition as in Example 3.1 and the
same marginal probability produces:

iLC(E1jC1) =
0:11

0:11 + 0:44
= 0:20

iLC(E2jC1) =
0:18

0:225+ 0:18
= 0:4_4

) iPC(E1jC1) = [0:20; 0:5_5] iPC(E1jC2) = [0]
iPC(E2jC1) = [0:4_4; 0:80] iPC(E2jC2) = [0]
iPC(E3jC1) = [0] iPC(E3jC2) = [1]:



As examples 3.1 and 3.2 demonstrate, it is possi-
ble that two di�erent F-probability �elds lead to the
same marginal probability and to the same condi-
tional probability, if the intuitive concept is used. For
that reason it is impossible to reconstruct the given
F-probability �eld from marginal probability together
with conditional probability. Therefore conditional
probability according to this concept can never con-
tain the type of information one wants to transfer
from one model to the other.

This failure rules out the use of the intuitive concept
as the only concept of conditional probability. Never-
theless it remains useful as a means of describing and
characterizing the phenomenon of conditional proba-
bility.

As far as analysis is concerned one is led to the canon-
ical concept.

3.3 The Canonical Concept

De�nition 3.3 The sub�elds with respect to ele-
ments of the partition C are denoted as A(C):

A(C) := fC \ A jA 2 Ag; C 2 C: (24)

De�nition 3.4 An F-probability �eld F =
(
;A;L(�)) together with a partition C of 
 is
called a laminar constellation (F ; C) if a support
(AL;AU ) exists such that for all A 2 AL [ AU the
following holds:

A 2
[
C2C

A(C): (25)

The de�nition of laminar constellation distinguishes
constellations in which all information about interval-
limits is given by the assessment P (A) for those ran-
dom events A which are contained in one single ele-
ment of the partition. The reason for this de�nition is
the following: Information with respect to a random
event which does not obey (25), can be contained nei-
ther in marginal probability nor in conditional prob-
ability.

In this article the construction of conditional proba-
bility for a laminar constellation is described for the
case only, that the conditions

L(C) > 0; 8C 2 C; (26)

are ful�lled. The concept then requires the calculation
of

LC(AjC) :=
L(A)

L(C)
; 8A 2 A(C); 8C 2 C; (27)

UC(AjC) :=
U(A)

U(C)
; 8A 2 A(C); 8C 2 C: (28)

Concerning this assessment a decisive distinction has
to be made.

De�nition 3.5 If for all C 2 C the assessment de-
scribed by (27) and (28) constitutes an F-probability
�eld7

FC := (C;A(C); LC(�jC)) ; (29)

then (F ; C) is called an F-laminar constellation. In
this situation each FC represents the conditional F-

probability with respect to the condition C.

Knowledge of conditional probability and of marginal
probability allows reconstruction of the given F-
probability �eld. (27) and (28) are converted to

L(A) = LC(AjC)�L(C); 8A 2 A(C); 8C 2 C; (30)

U(A) = UC(AjC)�U(C); 8A 2 A(C); 8C 2 C; (31)

and because of laminarity all the rest of the F-
probability �eld may be reconstructed by use of the
limits de�ned by (30) and (31). Furthermore it may
be shown that combination of conditional probabil-
ity according to (30) and (31) with any marginal F-
probability produces an F-probability �eld. Therefore
(30) together with (31) may be used in order to trans-
fer information to any comparable model.

Example 3.3 The following assessment produces an
F-probability �eld:

P (E1) = [0:10; 0:30] P (E1 [ E2) = [0:40; 0:60]
P (E2) = [0:20; 0:45] P (E1 [ E3) = [0:55; 0:80]
P (E3) = [0:40; 0:60] P (E2 [ E3) = [0:70; 0:90]:

With regard to the partition

C = fC1; C2g; C1 = E1 [ E2; C2 = E3

) P (C1) = [0:40; 0:60] P (C2) = [0:40; 0:60];

the e�ect of combining in a new model the conditional
probability with another marginal probability, namely

P 0(C1) = [0:60; 0:80] P 0(C2) = [0:20; 0:40]

is to be determined.

Conditional probability according to (27) and (28):

LC(E1jC1) =
L(E1)
L(C1)

= 0:10
0:40 = 0:25

LC(E2jC1) =
L(E2)
L(C1)

= 0:20
0:40 = 0:50

LC(E3jC2) =
L(E3)
L(C2)

= 0:40
0:40 = 1

7which means among others that (6) must hold for
LC(� jC) and UC(� jC).



UC(E1jC1) =
U(E1)
U(C1)

= 0:30
0:60 = 0:50

UC(E2jC1) =
U(E2)
U(C1)

= 0:45
0:60 = 0:75

UC(E3jC2) =
U(E3)
U(C2)

= 0:60
0:60 = 1

) PC(E1jC1) = [0:25; 0:50] PC(E1jC2) = [0]
PC(E2jC1) = [0:50; 0:75] PC(E2jC2) = [0]
PC(E3jC1) = [0] PC(E3jC2) = [1]

proves to constitute an F-probability �eld as well for
C1 as for C2; therefore both assessments represent
conditional F-probability. The transfer of PC(�jC1)
to the alternative marginal probability produces by
analogy to (30) and (31):

L0(E1) = 0:25 � 0:60 = 0:15
L0(E2) = 0:50 � 0:60 = 0:30

U 0(E1) = 0:50 � 0:80 = 0:40
U 0(E2) = 0:75 � 0:80 = 0:60

) P 0(E1) = [0:15; 0:40] P 0(E1 [ E2) = [0:60; 0:80]
P 0(E2) = [0:30; 0:60] P 0(E1 [ E3) = [0:40; 0:70]
P 0(E3) = [0:20; 0:40] P 0(E2 [ E3) = [0:60; 0:85]:

That this assessment represents an F-probability �eld,
is easily proven by the fact that p1(�) with

p1(E1) = 0:15; p1(E2) = 0:60; p1(E3) = 0:25

reaches L0(E1), U
0(E2), L

0(E1 [ E3), U
0(E2 [ E3),

p2(�) with

p2(E1) = 0:40; p2(E2) = 0:40; p2(E3) = 0:20

reaches U 0(E1), L
0(E3), U

0(E1[E2), L
0(E2[E3) and

p3(�) with

p3(E1) = 0:30; p3(E2) = 0:30; p3(E3) = 0:40

reaches L0(E2), U
0(E3), L

0(E1 [ E2), U
0(E1 [ E3).

Therefore Axioms I-VI are ful�lled.

De�nition 3.6 If there exists C 2 C, so that (27)
and (28) violate at least one of the Axioms IV and V,
then (F ; C) is called a 0-laminar constellation.

In this case application of the concept of conditional
probability according to the canonical concept is not
possible.

Example 3.4 For the F-probability �eld

P (E1) = [0:16; 0:21] P (E1 [ E2) = [0:40; 0:60]
P (E2) = [0:22; 0:42] P (E1 [ E3) = [0:58; 0:78]
P (E3) = [0:40; 0:60] P (E2 [ E3) = [0:79; 0:84]

and the partition

C = fC1; C2g; C1 = E1 [ E2; C2 = E3;

the result

LC(E1jC1) =
0:16
0:40 = 0:40

UC(E1jC1) =
0:21
0:60 = 0:35

violates Axiom IV: The relative length of the inter-
val P (E1) is too small compared with P (C1). Conse-
quently P (E1) can never be produced by a procedure
of the type de�ned by (30) and (31).

Between F-laminarity and 0-laminarity lies what is
called R-laminarity.

De�nition 3.7 If for all C 2 C the assessment
created by Equations (27) and (28) constitutes R-
probability, then (F ; C) is called an R-laminar con-

stellation.

R-laminar constellation which is not F-laminar may
be described as redundant R-laminar. While the re-
construction of the original F-probability �eld can be
achieved through (30) and (31) also in these situa-
tions, the proper way of transferring information con-
tained in (27) and (28) to another model requires a
bunch of considerations and decisions far above the
scope of this article.

Example 3.5 The constellation described in Exam-
ple 3.1 proves to be redundant R-laminar.

LC(E1jC1) =
0:10
0:40 = 0:25

LC(E2jC1) =
0:20
0:40 = 0:50

UC(E1jC1) =
0:25
0:60 = 0:41_6

UC(E2jC1) =
0:40
0:60 = 0:6_6

de�nes a redundant R-probability �eld: p(E1jC1) =
0:40; p(E2jC1) = 0:60 is an element of the struc-
ture, therefore P (�jC1) produces an R-�eld. Since
p(E1jC1) = LC(E1jC1) = 0:25 is not possible, this
R-probability �eld is redundant.

3.4 Bayes' Rule

If both concepts of conditional probability are em-
ployed in their speci�c roles, the Bayes' rule for
interval-probability can be derived. It is reported here
without proof.

Let F = (
; A; L(:)) be an F-Field and C a partition
of 
, so that (F ; C) is an F-laminar constellation.
Then the following information allows the reconstruc-
tion of F :



P (+ \D) = [0:12; 0:32] P (� \D) = [0:04; 0:16] P (D) = [0:2; 0:4]
P (+ \ S) = [0:12; 0:24] P (�\ S) = [0:42; 0:64] P (S) = [0:6; 0:8]

P (+) = [0:24; 0:54] P (�) = [0:46; 0:76] [1]

Table 1: The F-�eld of Example 3.6; components relevant for the intuitive conditional
probability with respect to the outcome of the test.

1. FC = (C; P(C); L(:)) is the marginal F-�eld with
respect to the partition C: the \prior probabil-
ity".

2. fFC = (C; A(C); LC(: jC)) jC 2 Cg is the set of
conditional F-probability �elds with respect to
the canonical concept.

One should remember that because of laminarity each
of the | originally not known | true interval-limits
L(:) und U(:) of the �eld F is produced either directly
via

P (A) = [L(A jC) � L(C); U(A jC) � U(C)] (32)

if A � C, or through normal completion and so is the
structure M. For each B 2 A the intuitive concept
of conditional probability creates an F-�eld

iP (A jB) =

�
inf
p2M

p(A jB); sup
p2M

p(A jB)

�
: (33)

By de�nition each component iP (A jB) represents
the set of all posterior K-probabilities calculated for
elements of the structure M. As a consequence
iP (A jB) as posterior F-probability given B possesses
the properties of classical posterior probability.

Example 3.6 The (prior) probability of having a
certain disease D is known to be between 0.2 and 0.4.
A test producing either positive or negative results
can be characterized by (D: disease, S: soundness)

P (+ jD) = [0:6; 0:8]

P (+ jS) = [0:2; 0:3]

P (� jD) = [0:2; 0:4]

P (� jS) = [0:7; 0:8]:

If this information is understood to be conditional
probability due to the canonical concept, applica-
tion of (30) and (31) and normal completion produce
the F-�eld F , the relevant components of which |
support and marginal probabilities | are given in
Table 1.

Intuitive conditional probabilities with respect to the
outcome of the test can be calculated as

iP (D j+) = [0:33; 0:73]

iP (S j+) = [0:27; 0:67]

iP (D j �) = [0:06; 0:28]

iP (S j �) = [0:72; 0:94]:

Dependent upon the outcome of the test, the poste-
rior F-probability may be used as prior probability for
another test.

4 Further Aspects

The second complement of the system of axioms is
produced by the de�nition of independence. It is re-
ported here in an abridged version, since it materially
produces the concept already used by P. Walley and
T. Fine in 1982.8 Let for a sample space of four ele-
ments,


 = E11 [ E12 [ E21 [ E22; (34)

two partitions consisting of dichotomies be given:

CA = fC1�; C2�g CB = fC�1; C�2g (35)

with

C1� = E11 [ E12 C2� = E21 [ E22

C�1 = E11 [ E21 C�2 = E12 [ E22:
(36)

This can be represented in a four-fold table:

E11 E12 C1�

E21 E22 C2�

C�1 C�2 


De�nition 4.1 A partially determinate F-pro-
bability on (
;P(
)) according to (34) is named
marginal probability on the four-fold table if

AL = AU = fC1�; C�1g : (37)

Let

P (C1�) := [L1;U1] P (C2�) = [1� U1; 1� L1]
P (C�1) := [L2;U2] P (C�2) = [1� U2; 1� L2]:

8[5], p. 745.



Normal completion produces the following lower
interval-limits:

L(E11) = Max(0; L1 + L2 � 1)
L(E12) = Max(0; L1 � U2)
L(E21) = Max(0; L2 � U1)
L(E22) = Max(0; 1� U1 � U2)

L(E11 [ E12) = L1

L(E11 [ E21) = L2

L(E11 [ E22) = Max(0; 1� U1 � U2; L1 + L2 � 1)
L(E12 [ E21) = Max(0; L2 � U1; L1 � U2)
L(E12 [ E22) = 1� U2

L(E21 [ E22) = 1� U1

L(E11 [ E12 [ E21) = Max(L1; L2)
L(E11 [ E12 [ E22) = Max(L1; 1� U2)
L(E11 [ E21 [ E22) = Max(1� U1; L2)
L(E12 [ E21 [ E22) = Max(1� U1; 1� U2)

(38)
and the set of conjugate upper interval-limits as de-
�ned by (6).

The structure of this F-probability �eld is denomi-
nated by MM .

Using the concept of prestructure one may de�ne in-
dependence of the two partitions as a property of a
certain F-probability �eld on (
;P(
)) conforming
to the marginal probability.

De�nition 4.2 If F = (
;A;L(�)) is an F-
probability on the sample-space (34) and MM is the
structure of the marginal F-probability according to
De�nition 4.1, then the partitions CA and CB are mu-
tually independent, provided that the set

MI := fp(:) 2MMjp(Eij) = p(Ci�)p(C�j); i; j = 1; 2g
(39)

serves as a prestructure of F .

This de�nition requires that for the F-�eld F with
independence of CA and CB all interval-limits have to
be just wide enough to include all K-functions which
qualify for MI by

1. as well being in accordance with the given
marginal probability (i.e. being elements ofMM )
as

2. obeying the classical rule of independence.

The lower interval-limits de�ned by this prestructure
are the following:

L(E11) = L1L2

L(E12) = L1(1� U2)
L(E21) = (1� U1)L2

L(E22) = (1� U1)(1� U2)

L(E11 [ E12) = L1

L(E11 [ E21) = L2

L(E11 [ E22) = Min[U1U2 + (1� U1)(1� U2);
U1L2 + (1� U1)(1� L2);
L1U2 + (1� L1)(1� U2);
L1L2 + (1� L1)(1� L2)]

L(E12 [ E21) = Min[L1(1� L2) + L2(1� L1);
L1(1� U2) + U2(1� L1);
U1(1� L2) + L2(1� U1);
U1(1� U2) + U2(1� U1)]

L(E12 [ E22) = 1� U2

L(E21 [ E22) = 1� U1

L(E11 [ E12 [ E21) = 1� (1� L1)(1� L2)
L(E11 [ E12 [ E22) = 1� (1� L1)U2

L(E11 [ E21 [ E22) = 1� U1(1� L2)
L(E12 [ E21 [ E22) = 1� U1U2:

(40)
Again the corresponding upper interval-limits are
given by equation (6).

It must be remembered that MI is a prestructure,
de�ning the interval-limits, but in most cases is not
the total structure M of the F-�eld F . If MI con-
tains more than one K-function, M n MI is not
empty. ThereforeM includes elements in accordance
with (40) but violating the classical multiplication
rule for independent K-probabilities: If F deviates
from classical probability the interval-limits tolerate
K-functions with slight dependence of CA and CB.

On the other hand all kinds of deviation from the
limits given by (40) would violate the concept of in-
dependence: either the interval-limits would exclude
elements of MI or they would include too many de-
pendent K-functions.

Example 4.1 Marginal probability on a four-fold-
table is determinate by the following assessment:

P (C1�) = [0:3; 0:5] P (C2�) = [0:5; 0:7]
P (C�1) = [0:2; 0:4] P (C�2) = [0:6; 0:8]

With normal completion the marginal F-probability



�eld is derived:

P (E11) = [0:0; 0:4]
P (E12) = [0:0; 0:5]
P (E21) = [0:0; 0:4]
P (E22) = [0:1; 0:7]

P (E11 [ E12) = [0:3; 0:5]
P (E11 [ E21) = [0:2; 0:4]
P (E11 [ E22) = [0:1; 1]
P (E12 [ E21) = [0:0; 0:9]
P (E12 [ E22) = [0:6; 0:8]
P (E21 [ E22) = [0:5; 0:7]

P (E11 [ E12 [ E21) = [0:3; 0:9]
P (E11 [ E12 [ E22) = [0:6; 1]
P (E11 [ E21 [ E22) = [0:5; 1]
P (E12 [ E21 [ E22) = [0:6; 1]:

According to (40) and (6) partitions CA and CB are
independent i�

P (E11) = [0:06; 0:20]
P (E12) = [0:18; 0:40]
P (E21) = [0:10; 0:28]
P (E22) = [0:30; 0:56]

P (E11 [ E12) = [0:30; 0:50]
P (E11 [ E21) = [0:20; 0:40]
P (E11 [ E22) = [0:50; 0:62]
P (E12 [ E21) = [0:38; 0:50]
P (E12 [ E22) = [0:60; 0:80]
P (E21 [ E22) = [0:50; 0:70]

P (E11 [ E12 [ E21) = [0:44; 0:70]
P (E11 [ E12 [ E22) = [0:72; 0:90]
P (E11 [ E21 [ E22) = [0:60; 0:82]
P (E12 [ E21 [ E22) = [0:80; 0:94]

holds.

The comparison of marginal probability and indepen-
dent probability shows that a remarkable sharpening
of the intervals is caused by independence.

For instance:

p1(:) with p1(E11) = 0:00; p1(E12) = 0:40;
p1(E21) = 0:30; p1(E22) = 0:30

is an element of MM , but not of M, while

p2(:) with p2(E11) = 0:12; p2(E12) = 0:28;
p2(E21) = 0:18; p2(E22) = 0:42

represents an independent K-probability in MM ,
therefore being an element of MI and consequently
of M. On the other hand

p3(:) with p3(E11) = 0:10; p3(E12) = 0:20;
p3(E21) = 0:20; p3(E22) = 0:50

shows no independence between lines and columns,
consequently being not an element of MI , but be-
longing to M, since p3(:) is in accordance with all of
the limits (40).

In the theory of interval-probability the concept of
mutually independent partitions in an F-�eld among
other aspects provides the fundamentals for a Weak

Law of Large Numbers.

At �rst it serves to de�ne independently identically F-
distributed (i.i.F-d.) samples. This is demonstrated
by means of a simple model su�cient for the purpose
of studying relative frequencies.

De�nition 4.3 Let Fn = (
n; P(
n); Ln(:)) be an
F-�eld with 
n = �n

i=1
i, 
i = Ei; 1 [ Ei; 2, i =
1; : : : ; n. Partitions Ci are given by Ci = fCi; 1; Ci; 2g,
i = 1; : : : ; n, with

Ci; r = 
1� : : :�
i�1�Ei; r�
i+1� : : :�
n; (41)

r = 1; 2.

Then Fn describes an i.i.F-d. sample of size n, pro-
vided that the marginal probabilities are:

1: P (Ci; 1) = [L; U ]
P (Ci; 2) = [1� U ; 1� L]

�
i = 1; : : : ; n; (42)

2: Ci and Ci0 are mutually independent;
i; i0 = 1; : : : ; n; i 6= i0:

The relative frequency of E:1 is de�ned by the Fn-
random variable

T (n) =
1

n

nX
i=1

Ti; where Ti(Ei; 1) = 1; Ti(Ei; 2) = 0:

(43)
In order to arrive at a Weak Law of Large Numbers
the concept of convergence in F-probability has to be
introduced.

De�nition 4.4 With respect to (Fn)n2IN let
(Xn)n2IN be Fn-random variables in IR1. For
�1 < � � � < +1 the random event An(�) is
de�ned by:

An(�) =
[
fE � 
n j�� � � Xn(E) � � + �g: (44)

Then (Xn)n2IN is convergent in F-probability into

[�; �] i� for every (�; �), � > 0, 0 < � < 1, there
exists a N(�; �), such that for all n � N(�; s)

Ln(AN (�)) � 1� � (45)

holds.

Using the concepts of De�nitions 4.3 and 4.4 the fol-
lowing statement can be proven:



If for all n 2 IN the F-�eld Fn describes an i.i.F-
d. sample of size n with marginal probabilities given
by (42), the Fn-random variable T (n) de�ned by (43)
is convergent in F-probability into [L; U ].

One proof can be derived from [5]9.

This generalization of Bernoulli's theorem allows a
frequency interpretation of interval-probability: For
a long i.i.F-d. sample with marginal F-probability
P (\success") = [L; U ] the relative frequency of suc-
cesses at last almost surely will be found in [L; U ].
If L < U it is not possible to know in which part
of [L; U ] the relative frequency will be found and
whether the sequence will be convergent in the classi-
cal sense.

Despite all di�erences between the schools concerning
the meaning of probability assessments, it might be
useful for everybody to consider these logical implica-
tions of an assignment containing interval-probability.

A comprehensive study of the theory is in progress,
the �rst volume will be published in 1999 [10].

An important aspect of the theory not mentioned in
the present article is the use of Linear Optimization to
solve fundamental problems on �nite sample spaces.
Some results of this type are already reported in [8].
The concept of uniform F-probability and its use in
describing sampling is briey described in [7] | to-
gether with consequences concerning an improvement
of the principle of insu�cient reason.

Among those aspects not mentioned in the foregoing
sections is that of decision theory. A general approach
to decision problems with respect to behavioural view-
points is made possible by the theory. Ellsberg's re-
sults and their consequences can be respected. Be-
haviour under ambiguity can be analyzed and clas-
si�ed. A preliminary report is found in [9]. One of
the many problems concerning statistical methodol-
ogy under interval-probability has yet been studied
thoroughly: testing statistical hypotheses. Funda-
mental results are given in [1].

Altogether the unifying concept for uncertainty con-
tained in the theory of interval-probability produces
a great number of aspects which deserve intensive re-
search and will create many chances for methodolog-
ical improvements.
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