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Abstract


Treatment of imprecise probabilities within the prob-
abilistic satis�ability approach to uncertainty in
knowledge-based systems is surveyed and discussed.
Both probability intervals and qualitative probabili-
ties are considered. Analytical and numerical meth-
ods to test coherence and bound the probability of a
conclusion are reviewed. They use polyhedral com-
binatorics and advanced methods of linear program-
ming.


Keywords. Satis�ability, Probability intervals,
Qualitative probabilities, Polyhedra, Linear program-
ming, Column generation, Nonlinear 0{1 program-
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1 Introduction


Probabilistic satis�ability and its extensions is a well
developed approach to the treatment of uncertainty
in knowledge-based systems. Given logical sentences
and their probabilities of being true, it studies coher-
ence of these probabilities (or, in Boole's words, if
they satisfy the \conditions of possible experience")
and provides analytical or numerical bounds on the
probability of being true for an additional sentence.


Probabilistic satis�ability has the following six char-
acteristics: (i) it is the oldest approach, its roots going
back to Boole's famous book of 1854 on "The Laws
of Thought" [3]; (ii) it agrees with the classical theo-
ries of logic and probability; (iii) it requires moderate
information from the decision-maker or modeler, i.e.,
only point or interval probability estimates for the
truth of a set of relevant logical sentences; (iv) it is
powerful, i.e., available algorithms allow solution of
problems with several hundred logical sentences; (v)
it is versatile, as conditional probabilities, additional
linear constraints, operations on logical sentences and
ways to restore coherence can be addressed in simple
extensions of the basic model; (vi) it is applicable in
many �elds such as expert systems, automated theo-
rem proving, testing of combinational circuits, relia-
bility and physics. Some main papers and books on
this approach are [3], [27], [28], [40], [30], [21], [38],
[36], [35]. A recent survey is given in [31].


While interpretations may be di�erent, the mathe-
matics of probabilistic satis�ability and of the subjec-
tive probability theory of de Finetti [13, 14, 15] and
his school are close.


In this paper, we present a survey, with some new
results, on the treatment of imprecise probabilities
within the probabilistic satis�ability approach. This







can be done in two ways. First, one may consider
probability intervals instead of point values as in
the work of Boole [3], a proposal already made by
Hailperin [27]. Analytical solution is possible, based
on Boole's version of Fourier-Motzkin elimination or
on enumeration of extreme points and rays of poly-
hedra [27][35]. Numerical solution of large instances
is obtained through the column generation technique
of linear programming and nonlinear 0-1 program-
ming. Problems with conditional probabilities can
be treated in a similar way [38]. In that case, co-
herence conditions according to de Finetti and his
school [15], [9], [11], [25] are more stringent than those
of probabilistic satis�ability. Ways to extend the pre-
vious approach to address them are briey discussed.
Second, one may consider qualitative probabilities,
i.e., inequalities between probabilities whose values
are unknown. Coherence and inequalities between an
additional sentence and the initial ones can again be
studied, this time by parametric linear programming.


2 Problems Statement


The probabilistic satis�ability problem in decision
form may be de�ned as follows: Consider m logi-
cal sentences S1; S2; : : : ; Sm de�ned on n logical vari-
ables x1; x2; : : : ; xn with the usual Boolean operators
_ (logical sum), ^ (logical product) and (nega-
tion, or complementation). Assume probabilities
�1; �2; : : : ; �m for these sentences to be true (or, which
is equivalent, for the events they de�ne to occur) are
given. Are these probabilities consistent?


There are 2n complete products wj , for j =
1; 2; : : : ; 2n, of the variables x1; x2; : : : ; xn in direct or
complemented form. These products may be called,
following Leibniz, possible worlds. In each possible
world wj any sentence Si is true or false. The prob-
abilistic satis�ability problem may then be reformu-
lated as follows: is there a probability distribution
p1; p2; : : : ; p2n on the set of possible worlds such that
the sum of the probabilities of the possible worlds in
which sentence Si is true is equal to its probability �i
of being true, for i = 1; 2; : : : ;m. De�ning the m�2n


matrix A = (aij) by


aij =


(
1 if Si is true in possible world wj


0 otherwise


the decision form of probabilistic satis�ability may be
written:


11p = 1
Ap = �
p � 0


(1)


where 11 is a 2n unit row vector, p and � are the col-
umn vectors (p1; p2; : : : ; p2n)


T and (�1; �2; : : : ; �m)
T


respectively. The answer is yes if there is a vector
p satisfying (1) and no otherwise. Note that not all
columns of A need be di�erent. Without loss of gen-
erality, identical columns may be merged. Moreover,
not all 2m possible di�erent column vectors of A need,
or in most cases will, be present. This is due to the
fact that some subset of sentences being true will force
other sentences to be true or prohibit them from being
so.


If (1) is to be written explicitly, the columns of A
can be constructed in several ways: if n is small,
one can generate all vectors of Boolean values for
x1; x2; : : : ; xn and determine the corresponding val-
ues for S1; S2; : : : ; Sm. If m is small, one can con-
sider in turn all vectors of true/false values for
S1; S2; : : : ; Sm and check if there are Boolean val-
ues for the x1; x2; : : : ; xn which give these values to
S1; S2; : : : ; Sm. This last task means solving for each
column a standard satis�ability problem which is NP-
complete [20]. These two procedures may be very
time-consuming when both n and m are large. Then,
as argued below, it is necessary to keep the descrip-
tion of (1) implicit, which does not prohibit comput-
ing with it.


Taking imprecision on the sentences' probabilities into
account implies a slight change in the above model.
It amounts to allow probabilities �i to belong to
intervals, say [�i; �i]. This was �rst suggested by
Hailperin [27] and adds marginal complexity to the
original problem. The problem can be rewritten as:


11p = 1
� � Ap � �


p � 0:
(2)


Considering one more sentence Sm+1, with an un-
known probability �m+1 leads to the optimization
form of probabilistic satis�ability. Usually the con-
straints (1) or (2) do not impose a unique value for
the probability �m+1 of Sm+1, but some bounds. The
satis�ability problem in optimization form is to �nd
the best possible such bounds. It can be written


min / max Am+1p
subject to: 11p = 1


� � Ap � �
p � 0:


(3)


This linear programming formulation is due to
Hailperin [27]. It was also obtained by Adams and
Levine [1], Bruno and Gilio [4], Nilsson [40] and oth-
ers.


If some of the �i are not �xed they may be subject
to further linear equalities or inequalities [18]. This







leads to another extension:


min =max Am+1p
subject to: 11p = 1


Ap = �
� � � � �


b � B� � b
p � 0


(4)


where B, b and b are a (v � m)-matrix and two v-
column vectors of real numbers. This includes, after
addition of slack or surplus variables, problem (3) and
the problem of coherence of qualitative probabilities
studied by, among others, Coletti [7], where only or-
der relations between probabilities are given (with an
arbitrarily small approximation if some or all of the
inequalities are strict), i.e., b � B� � b can be writ-
ten �i � �j (i; j) 2 Q, where Q denotes a given set of
pairs of indices. This last problem is further discussed
in section 6.


Another important extension is to consider condi-
tional probabilities instead of, or in addition to, un-
conditional ones. This was already discussed by
Boole [3], for particular examples, and much later by
various authors [27][38][7]. Three cases arise: con-
ditionals may be in the constraints of (4), in the
objective function or in both. Several ways of rep-
resenting the conditional probability prob(SkjS`) =
prob(Sk^S`)
prob(S`)


= �kj` in (1) have been proposed. In-


troducing a variable �` for the unknown probability
prob(S`) leads to the two constraints [38]:


Ak^`p � �kj`�` = 0
A`p � �` = 0


(5)


where Ak^` = (ak^`;j) with ak^`;j = 1 if both S`
and Sk are true in possible world wj and 0 otherwise.
This way to express conditional probabilities is close
to that of Boole [3] who also introduces an unknown
parameter. A more compact expression is obtained
by eliminating �` [28]:


A0
k^`p = (Ak^` � �kj`A`)p = 0 (6)


i.e., A0
k^` = (a0k^`;j) where a


0
k^`;j = 1� �kj` if Sk and


S` are true, ��kj` if Sk is false and S` true and 0 if
S` is false in possible world wj . Adding �kj` 11 to both
sides of (6) gives the equation


A00
k^`p = �kj` (7)


where A00
k^` = (a00k^`;j) is such that a00k^`;j = 1 if Sk


and S` are true, 0 if Sk is false and S` true and �kj`
if S` is false. Observe that these three values coincide
with those given by de Finetti [14] in his de�nition
of the probability of a conditional event in terms of


a bet won, lost or cancelled. As columns of A in (1)
are associated with atoms (or vectors of truth values
for events or propositions S1; S2; : : : ; Sm), columns of
A00 in (7) are associated with generalized atoms [22,
23, 24] (or vectors of values for the conditional events
SkjS`).


Observe that (6) or (7) does not imply that the proba-
bilities of the conditioning events S` be positive in the
probability distribution sought for. So, if two condi-
tions such as prob(S1jS2)=1/3, prob(S1jS2)=1/3 (an
example of [11, 43]) are jointly considered, this will
impose prob(S2)=0 and there may still be a solution
of (6) and (7). A di�erent and more stringent concept
of coherence [15], [8]-[11], [22]-[25], based on the work
of de Finetti [14], is discussed in section 5.


Imprecise conditional probabilities can be treated
similarly to imprecise probabilities. If �kj` � �kj` �
�kj` the corresponding lines in the linear program are


Ak^`p� �kj`A`p � 0


Ak^`p� �kj`A`p � 0:
(8)


The model with unconditional (�i) and conditional
(�kj`) probabilities, can then be written as follows:


11p = 1
�i � Aip � �i 8i


(Ak^` � �kj`A`)p � 0 8(k; `) 2 (K;L)


(Ak^` � �kj`A`)p � 0 8(k; `) 2 (K;L)
p � 0


(9)


where (K;L) denotes the set of index pairs (k; `) for
conditional events SkjS`.


When bounds on a conditional probability
prob(SkjS`) are sought, it appears in the objec-
tive function, and the problem becomes one of
hyperbolic (or fractional) programming:


min =max Ak^`p
A`p


subject to: (9):
(10)


Problem (10) can be reduced to a linear program with
one more variable by a change of variables �rst sug-
gested by Charnes and Cooper [5], [29]:


min =max Ak^`p
0


subject to: A`p
0 = 1


11p0 = t
�it � Aip


0 � �it 8i
(Ak^` � �kj`A`)p


0 � 0 8(k; `) 2 (K;L)


(Ak^` � �kj`A`)p
0 � 0 8(k; `) 2 (K;L)


p0 � 0; t � 0:
(11)


The optimal solution of (10) is obtained by dividing
the optimal values p0� of p0 by the optimal value t� of
t in (11).







An alternate approach to resolution of (10) is suc-
cessive approximation through a sequence of linear
programs in the original variables [16], [38].


The model (10) handles all cases discussed above and
can be numerically solved for a few hundred uncondi-
tional and/or conditional sentences.


If model (2) admits no solution (a situation not un-
common in the building of expert systems where dif-
ferent experts contribute their own probability esti-
mates for parts of the model) one may wish to re-
store satis�ability with minimal changes. A �rst ap-
proach [38] is to enlarge probability intervals just
enough for coherence to hold. This is again a linear
program:


min `+ u
subject to: 11p = 1


� � ` � Ap � � + u
`; u; p � 0:


(12)


If con�dence in some probability estimates is larger
than in others, this can be expressed by weighting
the corresponding changes li or ui in the bounds �i
and �i.


A second approach is to eliminate a smallest pos-
sible subset of propositions to restore satis�ability.
Mixed-integer programming can be used for that pur-
pose [36]. This gives the program:


min jyj


�
=


mP
i=1


yi


�
subject to:


11p = 1
� � �y � Ap � � + (1� �)y
p � 0
y 2 f0; 1gm:


(13)


The variables yi for i = 1; : : : ;m are equal to 1 if
sentence Si is deleted and to 0 otherwise.


3 Analytical Solution


Finding analytical solution for problems (1) or (2)
amounts to providing all of Boole's \conditions of
possible experience" for a given set of sentences, i.e.,
necessary and su�cient conditions for the coherence
of the probabilities associated to them. If imprecise
probabilities are considered, the conditions refer to
lower and upper bounds on these probabilities. When
an additional objective function sentence is given, as
in (3), the analytical solution determines bounds for
the probability of this sentence being true as a func-
tion of the point values for the probabilities associated
to the sentences or of the bounds of the intervals con-
taining them.


The case where there are unconditional sentences only
was already solved by Boole [3] who proposes a suc-
cessive elimination algorithm close to that of Fourier-
Motzkin (note however that if all conditions are to
be found one must replace equalities by pairs of in-
equalities). Hailperin [27] [29] observes that, as the
equations or inequalities are linear in p, this proce-
dure extends to the case where there are conditional
sentences too. Then conditions of possible experience
and bounds need not be linear in the �i and �ijj any-
more.


Example 1. (Generalization of an example of Sup-
pes [44] and Hailperin [27][29]) Given prob(x1) 2
[�1; �1], prob(x2jx1) 2 [�2j1; �2j1], let p1 =
prob(x1x2), p2 = prob(x1x2), p3 = prob(x1x2) and
p4 = prob(x1x2). Find best possible bounds on
prob(x2) and conditions of possible experience. This
problem can be expressed as:


min =max � = p1 + p3


subject to: �1 � p1 + p2 � �1


(1� �2j1)p1 � �2j1p2 � 0


(1� �2j1)p1 � �2j1p2 � 0


p1 + p2 + p3 + p4 = 1


p1; p2; p3; p4 � 0:


Eliminating successively p4; p3; p2 and p1 yields the
bounds


�2j1�1 � � � 1� �1(1� �2j1):


and the trivial conditions


0 � �1 � �1 � 1; 0 � �2j1 � �2j1 � 1:


The more general case: prob(x1jx3) 2 [�1j3; �1j3],
prob(x2jx1x3) 2 [�2j13; �2j13], �nd best possi-
ble bounds on prob(x2jx3) (suggested by a ref-
eree) can be solved in a similar way after us-
ing the Charnes-Cooper reformulation discussed
above. In this particular case after elimination
of t the problem reduces formally to the previ-
ous one. This is due to the fact that the latter
problem is obtained from the former by condition-
ing on x3 in both the objective and constraints.
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Other methods than Fourier-Motzkin elimination
have been devised for obtaining an analytical solu-
tion of probabilistic satis�ability. They are based on
the study of the dual polyhedra for (3). Let the dual
of (3) be written:


max y0 + �ty + �ty0


11y0 +Aty +Aty0 � At
m+1


y � 0; y0 � 0
(14)







0
@ min y0 + �ty + �ty0


11y0 +Aty +Aty0 � At
m+1


y � 0; y0 � 0


1
A :


Observe that the constraints of (14) are satis�ed by


the vector (0; 0; 0)
�
(1; 0; 0)


�
, so the corresponding


polyhedra are non-empty. Then, the duality theorem
of linear programming leads to:


Theorem 1 (Slight generalization of Hailperin, [27])
The best lower (upper) bound for �m+1 (�m+1) is
given by the following convex (concave) piecewise lin-
ear function of the probability assignment:


�m+1(�; �) = max
j=1;2;:::;kmax


(1; �t; �t)yjmax�
�m+1(�; �) = min


j=1;2;:::;kmin


(1; �t; �t)yjmin


�
(15)


where yjmax (yjmin) for all j represent the kmax (kmin)
extreme points of (14).


This result gives bounds on �m+1 and �m+1 but
not the conditions of possible experience. To obtain
these, consider the dual of the probabilistic satis�a-
bility problem in decision form (2), with a dummy
objective function, 0p, to be minimized:


max y0 + �ty + �ty0


subject to: 11y0 +Aty +Aty0 � 0:
y � 0; y0 � 0


(16)


Then using the fact that any point in a polyhedron
can be expressed as a convex linear combination of
its extreme points plus a linear combination of its ex-
treme rays, and once again the duality theorem, gives
the following result:


Theorem 2 (Slight generalization of Hansen, Jau-
mard and Poggi de Arag~ao, [35])
The probabilistic satis�ability problem (1) is consis-
tent if and only if


(1; �t; �t)r � 0 (17)


for all extreme rays r of (16).


Therefore, (17) yields all conditions of possible expe-
rience for problem (2).


Example 2. (Extension of Boole's challenge problem
of 1851 [2]) Let prob(S1 � x1) 2 [�1; �1], prob(S2 �
x2) 2 [�2; �2], prob(S3 � x1x3) 2 [�3; �3], prob(S4 �
x2x3) 2 [�4; �4] and prob(S5 � x1x2x3) 2 [�5; �5].
Find best possible bounds on the probability of S6 =
x3 and conditions of possible experience.


Enumeration of the extreme points and rays [35] leads
to:


Conditions of possible experience


�i � �i i = 1; 2; : : : ; 5
0 � �i i = 1; 2; : : : ; 5
�i � 1 i = 1; 2; : : : ; 5
�3 � �1
�4 � �2
�1 + �5 � 1
�2 + �5 � 1
�3 + �5 � 1
�4 + �5 � 1
�1 + �4 + �5 � �3 + 1
�2 + �3 + �5 � �4 + 1


Lower bounds Upper bounds


�3 + �5 1� �1 + �3


�4 + �5 1� �2 + �4


�3 + �4 + �5


�1 + �4 + �5


�2 + �3 + �5


�1 + �2 + �5


Lower and upper bounds are thus maxima and min-
ima of several linear expressions, i.e., piecewise lin-
ear convex and concave functions, respectively, of
the �i, �i. For any given numerical values of these
last bounds a best possible interval [�6; �6] is ob-
tained for the value of the objective function �6.
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As this example illustrates, probabilistic satis�ability
can be viewed as a technique for automated theorem-
proving in the theory of probabilities.


The extreme points and rays enumeration technique
does not extend to the case of conditional probabili-
ties. The reason is that the �kj` then appear in the
matrix of the dual of (9) and not only in the objective
function. Parameterization of even a single coe�cient
in the matrix of a linear program leads to very com-
plicated formulae [19]. However, as mentioned above,
Fourier-Motzkin elimination of variables still applies.


4 Numerical Solution


Numerical methods are needed to assess whether a
large given set of precise or imprecise probabilities de-
�nes or not a coherent knowledge-base when assigned
to the corresponding set of sentences, or to bound the
probability of being true of an additional sentence.
The methods next described are aimed at solving (3).
Solution of (9) or (10), which comprise unconditional







and conditional sentences, is similar, possibly after re-
placing a fractional objective function by a linear one
through the change of variables described above.


Solving the linear program (3) by a simplex-based al-
gorithm presents two major di�culties: (i) the enor-
mous number of columns; (ii) the fact that at each
iteration, deciding whether the algorithm should stop
isNP -hard. The number of columns of (3) is bounded
by minf2n; 2mg, and unless n or m is small is much
too large just to write them down explicitly. How-
ever, the linear program (3) can be solved exactly by
the column generation technique of linear program-
ming [6], [21], [39], [38]. Then two programs are asso-
ciated to the linear program (3): on the one hand, the
master problem which is identical to problem (3) it-
self but with only a small number of explicit columns
(say, up to 5 m), and on the other hand the subprob-
lem, whose role is to determine the entering column,
as in the simplex or revised simplex algorithm [6]. A
speci�c combinatorial optimization problem must be
solved for that purpose. Once the entering column is
determined, its expression in the current master prob-
lem is calculated and a simplex iteration takes place.


The subproblem, when minimizing, is to compute the
smallest reduced cost, i.e., solve


min
j2N


am+1j � y0 � ytAj � y0
t
Aj (18)


where N is the index set of nonbasic columns of A, Aj


the jth such column and y0; y; y
0 the current dual vari-


ables. This must be done without considering nonba-
sic columns one at a time. Therefore one uses a spe-
ci�c algorithm in which the coe�cients in the columns
Aj are the variables.


Observe that


min
j2N


am+1j � y0 � ytAj � y0
t
Aj (19)


= min
j2N


Sm+1 � y0 �


mX
i=1


yiSi �


mX
i=1


y0iSi (20)


where the values True and False for the Si; i =
1; : : : ;m+ 1 are identi�ed with the numbers 1 and 0.
Then (20) is transformed into an algebraic expression
involving the logical variables x1; : : : ; xn appearing in
the Si, with values true and false also associated with
1 and 0. This is done by eliminating the usual boolean
connectives _;^ and using relations


xi _ xj � xi + xj � xi � xj
xi ^ xj � xi � xj


xi � 1� xi:
(21)


The resulting expression is a nonlinear (or multilin-
ear) real-valued function in 0{1 variables, or nonlinear
0{1 function, or pseudo-boolean function.


There are various techniques to minimize (or maxi-
mize) such a function, which are reviewed in [33]. The
four main approaches are algebraic methods, cutting-
plane algorithms, enumerative (or branch-and-bound)
algorithms and linearization methods. An algebraic
method, the basic algorithm revisited [12] gave good
results for problems of types (1) to (12) [38]. Lin-
earization and use of a mixed integer package such as
CPLEX MIP is an e�cient alternative [34]. A quicker
way is to use a heuristic, e.g. of Tabu Search [26] or
Variable Neighborhood Search type [37], which may
be applied as long as it gives a reduced cost of the
desired sign. Use of such a heuristic is important
in the solution of large instances. For optimization
problem and for infeasible decision problems an exact
algorithm must be applied to the subproblem at least
once. It turns out not to be too time consuming as
in practice most dual variables are equal to 0 at the
optimum and hence the nonlinear 0{1 function to be
optimized contains very few terms.


Example 3. Consider the problem: given S1 �
x1 _ x2, S2 � x1 ^ x3, S3 � x1 ^ x2 and prob(S1) 2
[0:3; 0:4], prob(S2) 2 [0:25; 0:3], �nd best bounds on
prob(S3). Adding slack and surplus variables and con-
sidering possible worlds in inverse lexicographic order
this problem can be expressed as the following linear
program:
min =max p7 + p8
subject to:


p1 +p2+p3+p4+p5+p6+p7+p8 =1
p1 +p2+p3+p4+p5+p6 +e1 =0:4


p5 +p7 +e2 =0:3
p1 +p2+p3+p4+p5+p6 �e3 =0:3


p5 +p7 �e4=0:25
p1;p2; : : : ; p8; e1;e2; e3; e4 � 0


(22)
For illustrative purposes we describe an it-
eration of the column generation method
applied to minimization. After phase 1
is completed, the feasible basic solution
xB = (p8; e1; p5; e3; e4)


T = (0:7; 0:1; 0:3; 0; 0:05)T and
dual vector y = (y0; y1; y2; y3; y4) = (1; 0;�1; 0; 0) are
obtained.


The subproblem is


min (x1 ^ x2)� y0 � y1(x1 _ x2)� y2(x1 ^ x3)
�y3(x1 _ x2)� y4(x1 ^ x3)


= (1� x1)(1� x2)� y0
�(y1 + y3)(x1 + x2 � x1x2)
�(y2 + y4)(1� x1)x3


= �x1 � x2 + x3 + x1x2 � x1x3
x1; x2; x3 2 f0; 1g


One optimal solution of this subproblem is
x1 = x2 = x3 = 1 with a value of -1. So p1







enters the basis. To this e�ect the �rst vector of (22)
is premultiplied by the inverse of the current basic
matrix, the variable leaving the basis (here e1) is
determined and a change of basis is performed, which
leads to the optimal solution (p�1 = 0:1; p�5 = 0:3; p�8 =
0:6; p�2 = p�3 = p�4 = p�6 = p�7 = 0) with a value of 0.6.
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In early experiments [38], problems with 200 sen-
tences, 20 of which are conditional ones were solved
in reasonable time (30 min of CPU time on a SUN
Sparc 4), using XMP as linear programming solver.


Computational experience on a SUN ULTRA 2 com-
puter, using CPLEX as the linear programming
solver, shows that problems with up to 500 uncondi-
tional sentences can be solved [32]. Even larger prob-
lems can be tackled through decomposition [17], [32],
[34].


5 de Finetti Coherence


The theory of subjective probabilities of Ramsey [42]
and de Finetti [13, 14, 15] is based on the principle
of coherence and the fundamental theorem of proba-
bility. The principle of coherence can be expressed in
terms of a betting scheme or, equivalently, a penalty
criterion. To be coherent, probabilities and previsions
should avoid a situation of sure loss. In other words,
if a bettor could wager for or against the occurrence of
events from a given set, at odds corresponding to their
subjective probabilities, he should not be able to win a
positive amount in all cases. It is well known that this
implies that the probabilities must satisfy the axioms
of �nitely additive probability. This is tantamount to
stating that problem (1) must have a solution. Then
considering an additional event the fundamental the-
orem of probability states that its probability is �xed
if its depends linearly on the given set of events and
otherwise that the probabilities it may take while the
system remains coherent form an interval, i.e. they
are bounded by the values of optimal solutions of (3)
(with equalities). These results extend to the case
of probability intervals (e.g. Walley [45]). However,
when conditional events (or propositions) are consid-
ered matters are more complex, due to possible values
of 0 for the probabilities of conditioning events (or un-
de�ned values for conditional events).


A full study of this topic is out of the scope of this
paper. We limit ourselves to a brief discussion on how
to check some su�cient, or necessary and su�cient,
conditions of coherence.


Let prob(SkjS`) = �kj`, 8(k; `) 2 (K;L) denote a set
of conditional probabilities. Checking that the corre-


sponding system


11p = 1
(Ak^` � �kj`A`)p = 0 8(k; `) 2 (K;L)


p � 0
(23)


is coherent is not informative when H0 =
[
`2L


S` 6= 
,


the sure event. Indeed, giving a probability 1 to a
possible world of H0 would always satisfy (23). So
one should add the condition


H0p = 1 (24)


whereH0j is equal to 1 if H0 is true in the j
th possible


world and 0 otherwise.


In order to be de Finetti coherent, the system (23)(24)
should have a solution, as well as the corresponding
systems for all subsets of the given set of events [22],
[23], [8].


A �rst su�cient condition for this to hold [22] is that
the system


11p = 1
(Ak^` � �kj`A`)p = 0 8(k; `) 2 (K;L)


H0p = 1
p > 0


(25)


have a solution. This is linear program, with the addi-
tional requirement that all variables take strictly pos-
itive values. The simplex algorithm cannot be used to
solve it, as it works with basic solutions in which at
most as many variables than constraints are strictly
positive. Interior point methods appear to be more
promising. Another su�cient condition is that there
be a probability distribution for which probabilities of
all conditioning events be strictly positive. This may
be checked by solving the linear program


max t
subject to: 11p = 1


(Ak^` � �kj`A`)p = 0 8(k; `) 2 (K;L)
S`p� t � 0 8` 2 L
p � 0:


(26)
The necessary and su�cient condition can be checked
by solving a sequence of linear programs of the
form (23) (24) [8]. One �rst solves (26) then checks
which conditioning events have a 0 probability in the
optimal solution, deletes all others and iterates, at
most jKj = jLj times. Several variants of this scheme
have been proposed [24]. They extend to the case of
probability intervals [8], [24]. As in the solution of
problems (1) to (12), large instances could be solved
by using column generation, for each linear program
in the sequence.







6 Qualitative Probabilities


Coletti [7, 10] and others members of the Italian
school of subjective probability, have extensively stud-
ied qualitative probabilistic satis�ability from a theo-
retical point of view. The coherence problem is then
to check if a set of weak or strict inequalities between
probabilities of a set of events is consistent. They
provide formulations for the case of unconditional sen-
tences equivalent to linear programming and for the
case of conditional sentences also equivalent to linear
programming if the conditioning sentence is the same
for both conditionals and to quadratic programming
otherwise (this last case is out of the scope of the
present paper). Coherence conditions, in terms of bets
are provided. We briey discuss such problems, with
in addition bounds on the probabilities. Inequalities
between sentences may be weak or strict. The later
case does require introduction of an additional vari-
able to �t into the linear programming framework [41]:


max t
subject to: 11p = 1


Ap = �
�i � �j � 0 8(i; j) 2 Q1


�i � �j + t � 0 8(i; j) 2 Q2


� � � � �
p � 0


(27)


where Q1(resp. Q2) denotes the set of index pairs for
weak inequalities (resp. strict inequalities) between
pairs of sentences. The sentences and constraints be-
tween probabilities are coherent if and only if t� > 0
in the optimal solution of (27).


Example 4. Consider the problem: given S1 � x1,
S2 � x1 _ x2, S3 � x2, prob(S1) 2 [0; 1],
prob(S2) 2 [0; 1], prob(S3) 2 [0:1; 0:3];
prob(S3) � prob(S1) and prob(S2) < prob(S1),
check coherence. Problem (27) is then:


max t
subject to:


p1 +p2 +p3 +p4 = 1
p1 +p2 ��1 = 0
p1 +p3 +p4 ��2 = 0


p2 +p4 ��3 = 0
��1 +�3 � 0
��1 +�2 +t � 0


0:1 � �3 � 0:3
p1; p2; p3; p4; t � 0


(28)


The optimal solution of (28) has a value t� =
0:3. So the system is coherent. Note that
computation may be stopped as soon as a
possible solution with a positive t is found.
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If an additional sentence is considered, a di�culty
arises due to the two objectives Am+1p and t to be
optimized. The solution is recourse to parametric lin-
ear programming [6]. Consider the program:


min =max Am+1p
subject to: 11p = 1


Ap = �
�i � �j � 0 8(i; j) 2 Q1


�i � �j + t � 0 8(i; j) 2 Q2


t � b
� � � � �
p � 0


(29)


where b is a parameter. Then, solve �rst problem
(27) to �nd if the problem is coherent and what is the
maximum value of t. Taking t = b = 0 in (29) pro-
vides another solution, possibly not satisfying all the
inequalities �i < �j 8(i; j) 2 Q2. If both solutions
give the same value to Am+1p, stop, as t does not
inuence the value of the solution. Otherwise solve
(29) parametrically, i.e., reduce progressively b from
the largest value of t, checking if the values of the so-
lution at t = 0 and of the current one agree, each time
a new basis is considered. Considering the objective


min =maxAm+1p�Aip (30)


this method can be extended to �nd all inequalities
which hold between prob(Sm+1) and the prob(Si)
for i = 1; 2; : : : ;m instead of numerical bounds on
prob(Sm+1).


Example 4. (continued) Add the objective S4 �
x2 to the previous example. Then solution of (29)


is �4 = 0:7, �4 =


�
0:9 if t 2 [0; 0:1]
1:0�t if t 2 [0:1; 0:3]


:


Moreover, minimizing and maximizing �4 � �1,
�4 � �2 and �4 � �3 shows that the relations
�4 < �1, �4 � �2 and �4 > �3 hold.
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Computational results [41] show that problems with
up to 100 logical variables, 200 sentences and 200 re-
lations can be solved in reasonable time (i.e., about
1000 seconds of CPU time on a SUN-Ultra 2 with
300 Mhz and 384 Mb of RAM, linear programming
computations being done with CPLEX).


7 Summary and Conclusions


The probabilistic satis�ability approach to the treat-
ment of uncertainty in knowledge-based systems has
been reviewed, with particular emphasis on ways to
address imprecise probabilities. A �rst way is through
the use of probability intervals instead of point es-
timations. Complete analytical solutions for basic
problems may be obtained through Fourier-Motzkin







elimination or enumeration of extreme points and rays
of polyhedra. Numerical solution of large instances is
done with the column generation technique of linear
programming, both for unconditional and conditional
events and for Boole or de Finetti's concepts of coher-
ence. Computational results are reported: problems
with several hundred events can be solved in reason-
able time. A second way to address imprecision is
through qualitative probabilities, and the column gen-
eration approach can again be used.
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