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Abstract

This paper is a first step towards generalizing the con-
cept of Markov decision process to imprecise prob-
abilities. A concept of generalized Markov decision
process is defined and a solution procedure for it pre-
sented.
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1 Introduction

Every day we are faced with the need to make deci-
sions that depend on our past actions and that will
influence our well-being and options available to us
in the future. We have to decide whether to drive to
work or to use public transportation; a doctor has to
decide about a treatment plan for a patient; and so
on. If we want to make good decisions in situations
like these, we cannot think about them individually
in isolation, but rather in the context of previous and
future decisions. For example, if I spend all my money
today, I will loose the option to buy any food tomor-
TOW.

The concept of Markov decision process has been very
useful in helping to rigorously approach and solve
this type of problem [7]. There are, however, two
major obstacles in applying Markov decision process
methodology in practical situations. The first prob-
lem is, that a large number of precise probability es-
timates is necessary to fully specify a model. This
is a general problem of probabilistic modeling, but it
is much more pronounced in a dynamical situation.
Second problem is that the time it takes to solve a
model of realistic size is, generally, quite large. It
seems that if the concept of Markov decision process
was generalized to allow imprecise probability and

utility specifications both of these problems might be
helped, at least in some situations. Imprecise prob-
abilities framework allows one to use as little or as
many probability judgements as desired or available.
Of course, the conclusions drawn on the basis of less
information will be less precise. To reduce compu-
tational complexity, one can try to abstract less im-
portant details away from a given model. The re-
sulting model is smaller and, hence, easier to solve.
Even if the original model was formulated in terms
of precise probabilities, the abstraction, in general,
imposes only constraints on probabilities in the ab-
stract model. A generalization to imprecise probabil-
ities overcomes this obstacle. One needs to be careful,
however, to abstract in a “sensible” way as too much
imprecision makes many actions/policies incompara-
ble. In this way what is gained on model details is lost
on the need to keep track of incomparable options.

This paper is a first step towards a generalization of
Markov decision process theory to imprecise proba-
bilities. It develops a formalism and interpretation
of generalized Markov decision process and a solution
method that is a generalization of backward induction
method from the classical case.

2 Notation and terminology

I assume the reader to be familiar with the theory of
imprecise probabilities (see, e.g., [9]), some knowledge
of the theory of Markov decision processes (see, e.g.,
[7, 10]) is also useful. This section serves only as an
overview of the notation and terminology I use in the
rest of the paper. It is mostly derived from [9].

S denotes a finite set representing all possible and mu-
tually exclusive states of a system of interest (world,
etc.) at a particular time. In this paper I assume that
S is constant over time. A gamble g is a mapping from



S to the set of real numbers:
g:S—R

The gamble represents a reward (utility) a decision
maker will receive at state s € S if the state s is the
actual state of the system. For any subset A C S, I
use A to denote both the subset and its characteristic
function interpreted as a gamble. For any real number
A, T use A to denote both the real number and the con-
stant gamble assigning A to each state. In both cases
it is clear from the context which is which. The addi-
tion and multiplication by a scalar value of gambles is
defined point wise (e.g., (g + h) (s) = g (s) + h(s) for
all states s). The set of all gambles on S is denoted
L(S).

Let K denote a set of gambles on S. A lower (upper)
prevision P (P) on K is a mapping from K to the set
of real numbers:

P:K—RP:K—R

It represents the decision maker’s lower (upper) ex-
pected reward for each gamble from K (and, conse-
quently, supremum (infimum) buying (selling) price
for the gamble). Assume that a lower prevision P on
K is given, a mapping

P:—-K—R
defined as

P(g) =-P(-g)

for all gambles in /C, is called a conjugate upper previ-
sion. A lower prevision P is coherent if the following
three conditions hold

P(g) >inf{g(s) | s€ S} forall g € K,
P(\g) =AP(g) forall g e K, >0,
P(g+h)>P(g)+P(h) forall g,h€K.

An upper prevision P is coherent if its conjugate lower
prevision is coherent. A natural extension of a coher-
ent lower prevision P to a gamble o ¢ K is defined by
the formula

. (0—p) >
> Ei:l i (9i — P (94)),
Ai>0,k>1,9,€K

P (o) =supq p

The natural extension is the smallest coherent exten-
sion of P to K U {o}. Basically, it expresses what the
current belief implies about the belief for o.

A lower (upper) probability is a (coherent) lower (up-
per) prevision defined on all subsets of S. A lower
probability is 2-monotone if it holds that

P(4)+P(B)<P(AUB)+P(ANB).

2-monotone lower probability is coherent, but the in-
verse does not hold in general. If a lower probability
is 2-monotone its natural extension to any gamble g
on S can be computed by Choquet integral [1]:

P(g) = (0 /5 gdP
0
:/ [P({s€5S|g(s)>t}) —1]dt

—00

+/0°°£({seS|g<s>zt}>dt
:)\1

+ Z (A= X)) P({s€S|g(s) >N},

where \;’s are such that A; = ¢ (s;),\; < A4 for an
appropriate ordering (s1, 82, ..,sy,) of S.

T (R) denotes the set of all closed bounded intervals
of real numbers. For any i € Z (R), i; and 4, denote,
respectively, the lower and upper bound of ¢, i.e., ¢ =

~

Pl,iu]. For Z} € Z(R) and A > 0 we define ;4-; =
[?, 50,7 +3u] and Xi = [A?,,A?u].

3 Generalized Markov decision
problem

This section introduces a subclass of the class of dy-
namical decision problems I am attempting to provide
tools for in this work. A general outline of the prob-
lem of interest is illustrated in Figure 1. A decision

action action action

State State e o o State

reward reward reward
t= 0 1 T

Figure 1: Dynamic Decision Problem

maker is facing a dynamical system that develops over
time. The system can be in one and only one of the
states from S at a particular point in time.! The deci-
sion maker can choose an action from a predefined set
of options A at each of finitely many decision epochs.

!The assumption that the state space S is constant
helps to simplify (already complex) notation. Both the
definitions and the algorithm generalize in a straightfor-
ward manner to the case when the state space is dynamic.



The number of decision epochs is denoted T'. If the
system is in state s at the beginning of a decision
epoch ¢, the state s’ into which it transits at the be-
ginning of the next decision epoch is influenced by the
action a the decision maker executes at stage t. The
process is called Markov because its development de-
pends only on the current state and action and not
on the rest of its history. The transitions during one
period for a particular action are illustrated in Fig-
ure 2. The dashed arcs signify the fact that the deci-
sion maker may have stronger information for sets of
destinations than for a single state. Depending on the

Figure 2: Time slice of a generalized Markov decision
process for a particular action

action a taken, current decision epoch ¢, and the cur-
rent state s the decision maker receives a reward from
7 (s,a,t) (in general, the decision maker has only im-
precise information about the actual reward received
in a particular situation). At the last stage no action
is taken so the reward depends only on state. The goal
is to find an “optimal” policy , i.e., mapping from
state-time pairs into actions that maximizes the ex-
pected cumulative reward over all decision epochs. In
the classical case the uncertainty regarding the next
state given current state and action is expressed as a
(conditional) probability distribution over states. In
the generalized case, we express our beliefs regarding
the next state as a coherent lower prevision on the set
L (S) of all gambles on S. Formally:

Definition 1 A tuple (T,S, A, P,7,7r) where T is
a positive natural number, S and A are finite non-
empty sets, P is a mapping from L(S) x S x A x
{0,1,...,T — 1} to the set of real numbers such that
P (-, s,a,t) is a coherent lower prevision on L (S) for
any s € S, a € A, and any t € {0,1,...,.T -1}, 7
is a mapping from S x A x {0,1,...,T — 1} to the
set of bounded intervals of real numbers, and T is
a mapping from S to the set of bounded intervals of

real numbers, is called a generalized Markov decision
problem.

In practical situation the lower previsions will not be
defined for all gambles explicitly, but extended from a
class of gambles (in many situations just the subsets
of S) using natural extension or Choquet integral.

Example 1 Consider the following simple general-
ized Markov decision problem

M = (1, {81,82} 5 {041,012} ,Bvac’ [0, 1] 5 [0, 1]> -

As T' = 1 the problem has only one decision stage
and, hence, is only a degenerate case of sequential de-
cision problem. The system modeled by M can either
be in state sy or so. The (imaginary) decision maker
can choose between the act oy and the act as, and
has no idea what will be the next state in either case,
i.e., P'*(-,s,a,0) is a vacuous lower prevision for
any s and a.> Both 7 and 7, are constant intervals
[0,1]. This means that no matter in which state the
system will be or which action is carried out the deci-
sion maker expects to receive one time reward between
0 and 1 in both states and at both time points.

Definition 2 Let M = (T,S,A,P,7,7r) denote a
generalized Markov decision problem. A policy 7 for
M is a mapping from S x {0,1,...,T — 1} to A.

A policy 7 for M is a prescription how to act in all pos-
sible situations modelled by M. If a decision maker
follows 7 and finds herself/himself in state s at time
t, then s/he executes action 7 (s, ).

To evaluate a policy we need to know how much re-
ward is the policy likely to produce over the time
horizon. This is the purpose of the expected cu-
mulative reward Enp r (s,t) defined iteratively as the
lower /upper prevision of a gamble assigning s the cur-
rent reward plus the expected cumulative reward in
the remaining stages.

Definition 3 Let M = (T,S,A,P,7,rr) denote a
generalized Markov decision problem and 7 a policy
for M. The expected cumulative reward of M under
m is denoted by En . and defined as

(EMJ (s,t))l = (F (s, (5,1) 1)),

n ((EM,W(-,t+1))l,s,w(s,t),t)

lav]

and
(EMJ (s,t))u = (7 (s,7 (5,) 1)),
+P ((EM,,F (-t + 1))u,s,7r(s,t) ,t)

2 A lower prevision P is called vacuous if it assigns inf g
to any gamble g.



forse S andt e {0,1,...,T — 1}, and
Esx (5,T) = 7r (s)
for s € S.

Next we need a way to compare policies. This is not
as straightforward in the generalized case as in the
classical one because the generalization opens a pos-
sibility of incomparability.

Definition 4 Let M = (T,S,A,P,7,7r) denote a
generalized Markov decision problem and m and m
two policies for M. We say that 7 is preferred over
72 at (s,t) (fors€ S and t € {0,1,...,T}) if

(B, (5,0), > (Br, (51))
A policy © for M is called maximal if there is no
policy " and s € S, t € {0,1,...,T} such that 7' is
preferred over w at (s, t).

The above definition of preference and maximality are
certainly open to debate. An alternative to the notion
of preference as defined above worth further investi-
gation is the Walley’s definition of strict preference
[9, Sections 3.7-3.9]. I did not adopt it here, be-
cause it would require to compute the value of the
corresponding lower prevision for the differences of
gambles corresponding to all pairs of actions, while
currently I need to compute only the lower and up-
per prevision of gambles corresponding to individual
actions. This might be a big computational burden.
The advantage of the Walley’s definition is that it is
stronger so it might help to reduce the frequency of
occurrence of indecision. I am also not entirely con-
vinced that the Walley’s definition is intuitively more
appropriate for the current decision making situation
as it looks at the problem in terms of “willingness to
exchange one gamble for another” while the question
addressed here seems to be “Which gamble is likely
to produce more utility?” The modification of the
algorithm for Walley’s strict preference is otherwise
straightforward. Other alternatives I could think of
(such as max-min rule, etc.) appear to be inferior.

Requiring dominance over all (s,t) pairs or looking
at the expected cumulative reward only at the first
decision stage seem unsatisfactory as possible alter-
natives to the above definition of maximality. In the
first case, there might be no such policy, in the sec-
ond case, some intuitively inferior policies could be
maximal.

The task now is to find all maximal policies for a given
generalized Markov decision problem. It is the topic
of the next section.

4 Solving generalized Markov
decision problems

This section presents an algorithm for finding all the
maximal policies of a given generalized Markov deci-
sion problem. It is a generalization of a dynamic pro-
gramming solution method for finite-horizon Markov
decision problems. The main difference from the clas-
sical case is the possibility of incomparability of two
policies. The procedure is described in Algorithm 1.

The algorithm works by solving the problem back-
wards. First, it finds all the undominated actions
in the last stage. Then it iteratively finds all max-
imal extensions to the last unsolved decision stage of
all partial policies found so far. This is done in two
steps. In the first step, adding individual actions to
a particular policy is considered. In the second step
the extended policies are checked whether they are
dominated by an extension of another partial policy
and only the undominated are kept into the next iter-
ation. With each policy extension the corresponding
expected cumulative reward is also extended. Due to
the backward iteration and coupling of computation
of expected cumulative reward with policy computa-
tion all the information necessary for computation is
available at each step.

The description of the algorithm takes advantage of
the representation of a mapping as a set of tuples
from the Cartesian product of its domain and range.
The correctness of the algorithm is proven in the next
theorem.

Theorem 1 Let M = (T,S,A,P,7,rr) denote a
generalized Markov decision problem. The set II re-
turned by Algorithm 1 is the set of pairs of all mazimal
policies and their corresponding expected cumulative
rewards.

Proof: (Informal) We prove by (bounded) induction
on the number of steps remaining to the end of de-
cision horizon T that at time t it holds for any

<7r,E> € II at the end of the corresponding itera-

tion of the main outer loop of the Algorithm 1 that
there is no policy ' for M such that 7' is preferred
to m at (s',t') and E (s',t') = Em,x (s, 1) for s' € S
and ¢’ € {t,t +1,...,T}. The theorem then follows.

First assume that t = T'. Strictly speaking, there is
no “corresponding iteration” of the main loop as this
case is taken care of before the main loop. There are
no policy points and the expected cumulative reward
equals just the scrap value at T' (77) by definition, so
the statement holds trivially.

Assume that the statement holds at ¢ + 1. We want



Algorithm 1 Solve generalized Markov decision
problem

Input: M= (T,S,A,P,7,7r) a generalized
Markov decision process

Output: II = {<7r,E>
policies for M and their corresponding expected
cummulative rewards

} set of pairs of all maximal

E=0
for s € S do
B=EBU{(sT,7r ()}
end for
= {(0.5)}
fort=T-1,T-2,...,0do
for s € S do
=0
for {<7T,E'>} €Il do
for a € A do
@) =
(7(s,a,t)), + P ((E(-,t + 1))l ,s,a,t)
(€a), =
(7 (s,0,1), + P (
end for
for a € A such that (e,), > (&), for all
be Ado
I =
H’U{<7rU{(s,t,a)},EU{(s,t,€a>}>}

end for

(E(-,t-{— 1))u,s,a,t)

end for
H/I

for {<7T, E } e II' do
leave =1
for {<7r’,E’>} €Tl do
if (E (s,t)) < (/E\’ (s,t))l then
leave =0
end if
end for
if leave = 1 then R
" = 11" u {<7rE>}
end if
end for
H — HII
end for
end for
return II

to prove that it holds at ¢. From the assumption it
follows that E (s',t) = Em,x (s',t) for ' € S by defi-
nition. Assume by contradiction that there is a policy
m' for M such that 7' is preferred to 7 at (s',t') for
some s’ € Sandt’ € {t,t+1,...,T}. By the assump-
tion ¢’ cannot be from {t + 1,t +2,...,T} sot = t'.
There are two possibilities:

1. m(s,u) = @' (s,u) for s € S and u €

{t+1,t+2,...,T}

2. w(s,u) # 7' (s,u) for some s € S and u €
{t+1,t+2,...,T}

In the first case m would not be added to II in the
for-loop over all “a € A such that (e,), > (ep), for
all b € B” because for b = w(s',t) it holds that
(ea), < (es);- In the second case, it follows from
the monotonicity of coherent lower/upper previsions
that either 7' is maximal or there is 7" maximal such
that 7' is preferred to 7 at (s',t'). This means that
the restriction of 7' to {t,t+1,...,T — 1} must be
in IT and hence m would have been eliminated in the
for-loop over all “<7r, E) €I1.” So the assumption of

existence of preferred policy leads to contradiction. m

5 An example

Let me go through an example to illustrate the al-
gorithm. Assume that S = {a,b}, A = {actl, act2},
T=272(a)=1,72(b) =0,

0.1 fors=aandt=1,
011 for s = a, act = actl,

N _ and t =0,
r (37a0t7t) - 0.05 for s = b, act = actl,
’ and t =0,
0 otherwise,

and P (-, s,act,t) is a lower prevision on L (S) ob-
tained by the natural extension (Choquet integral in
this case) from the following lower probabilities

(0.4,0.2) for s = a, act = actl, and t = 0,
(0.05,0.85) for s = a, act = actl, and t =1,
(0.9, 0) for s = a, act = act2, and t = 0,
(0,0.9) for s = a, act = act2, and t = 1,
(0.4,0.5) for s = b, act = actl, and t = 0,
(0.2,0.45)  for s =b, act = actl, and t =1,
(0.6,0.3) for s = b, act = act2, and t = 0,
(0.5,0.4) for s = b, act = act2, and t = 1,

where (x,y) represents the pair of lower probability
value for a and b in the corresponding situation. (This
uniquely determines the whole lower probability in
this case.) We want to find the solution (i.e., the



t=20 t=1

policy # | s=a s=b s=a s=5b

1 actl, [0.27,0.54] | actl, [0.225,0.48] | actl, [0.15,0.25] | actl, [0.2,0.55]
2 actl, [0.33,0.57] | actl, [0.375,0.51] | actl, [0.15,0.25] | act2, [0.5,0.6]

3 actl, [0.23,0.52] | actl, [0.2,0.46] act2, [0.1,0.2] actl, [0.2,0.55]
4 actl, [0.29,0.55] | actl, [0.35,0.49] | act2, [0.1,0.2] act2, [0.5,0.6]

5 actl, [0.27,0.54] | act2, [0.165,0.37] | actl, [0.15,0.25] | actl, [0.2,0.55]
6 actl, [0.33,0.57] | act2, [0.255,0.39] | actl, [0.15,0.25] | act2, [0.5,0.6]

7 actl, [0.23,0.52] | act2, [0.13,0.34] | act2, [0.1,0.2] actl, [0.2,0.55]
8 actl, [0.29,0.55] | act2, [0.22,0.36] | act2, [0.1,0.2] act2, [0.5,0.6]

9 act2, [0.15,0.28] | actl, [0.225,0.48] | actl, [0.15,0.25] | actl, [0.2,0.55]
10 act2, [0.15,0.285] | actl, [0.375,0.51] | actl, [0.15,0.25] | act2, [0.5,0.6]

11 act2, [0.1,0.235] | actl, [0.2,0.46] act2, [0.1,0.2] actl, [0.2,0.55]
12 act2, [0.1,0.24] actl, [0.35,0.49] | act2, [0.1,0.2] act2, [0.5,0.6]

13 act2, [0.15,0.28] | act2, [0.165,0.37] | actl, [0.15,0.25] | actl, [0.2,0.55]
14 act2, [0.15,0.285] | act2, [0.255,0.39] | actl, [0.15,0.25] | act2, [0.5,0.6]

15 act2, [0.1,0.235] | act2, [0.13,0.34] | act2, [0.1,0.2] actl, [0.2,0.55]
16 act2, [0.1,0.24] act2, [0.22,0.36] | act2, [0.1,0.2] act2, [0.5,0.6]

Table 1: All policies and their corresponding expected cumulative rewards

set of all maximal policies) of generalized Markov de-
cision process M = (T,S, A, P,7,7r). All possible
policies with their corresponding expected cumulative
rewards are listed in Table 1. The algorithm starts by
setting the expected cumulative reward at t = 2 equal
to 7 (this is omitted from Table 1). Next, the algo-
rithm enters the main loops with t = 1, s = a, and
act = actl. The expected cumulative reward for these
values is computed as

Buctr), = (7 (a,act1, 1)), + B ((E(-2)) a,act1,1)
=0.1+P((1,0),a,actl, 1)
=014005x14+095x%x0
= 0.15,

and

= (r (a, actl, 1)),

((E( ,2))u,a,act1, 1)

(/e\actl) (
+P
0.1+ P((1,0),a,actl, 1)
0.
=0.

14+0.15x1+085x%x0
25.

Similarly for act = act2, we obtain €42 = [0.1,0.2].
As both (/e\actl)u > (é\act2)l and (/e\actQ)u > (/e\actl)la
IT' now contains two partial policy—cumulative reward
pairs:  ({{(a,1,actl)},...) and ({(a,1,act2)},...).
None of these is eliminated in the for-loop over par-
tial policies in II' and II is the same as II'. That
concludes the first iteration through the for-loop over
states and s is changed to b. Now, €,.:1 = [0.2,0.55]
and €442 = [0.5,0.6] for both partial policies in II.

Again, neither act is preferred here and we end up
with four partial policy—cumulative reward pairs in
II, i.e.,

(a1, act1), (b, 1,act1)} ...},
M= ({{a,1,actl), (b,1,act2)},...},
({{a,1,act2), (b,1,actl)},...),
({{a,1,act2), (b,1,act2)},...)

This concludes the first iteration of the main for-loop
over ¢t and t is now decremented to 0, s = a, and
m = {{a,1,actl), (b,1,actl)}. For this partial policy
we have

€act1 = [0.27,0.54]
€act2 = [0.15,0.28]. (+)

Again, no act is preferred, hence, II' =
{{{{(a,0,actl),{(a,1,actl), (b,1,actl)},...),
({{a,0,act2),(a,1,actl), (b,1,actl)},...)}. Next w
is {{(a,1,actl), (b,1,act2)}. For this partial policy
we have

Cactr = [0.33,0.57] (%)
/e\ath = [015,0285] .

As 0.285 < 0.33 only 7 U {{a,0,actl)} is added
to II".  Also for the remaining two partial poli-
cies in II only (a,0,actl) is undominated exten-
sion. Now II' contains five policies.  However,
as can be seen from (+) and (x) the partial pol-
icy {{(a,0,act2),(a,1,actl), (b,1,actl)} is dominated
and will not be added to II"”. (This shows that this
check in Algorithm 1 is really necessary.) The reader
can verify that the four remaining partial policies are



undominated. The final loop with s = b is also left as
an exercise to the reader. It is easy to see from Ta-
ble 1 that the maximal policies for M are the policies
with numbers 1, 2, 3, 4, and 6.

6 Discussion and related work

This paper is a first step toward a generalization of
the theory of Markov decision processes to impre-
cise probabilities. It presents a definition of gener-
alized Markov decision process in terms of interval
value functions and lower/upper previsions together
with the related notions of expected cumulative re-
ward and maximal policy. A solution method gener-
alizing classical backward induction is also presented.
Obviously, much remains to be done. For exam-
ple, results from the classical theory of Markov de-
cision processes regarding sufficiency of Markov poli-
cies (for certain types of models) should be verified or
generalized, generalizations of infinite-horizon mod-
els and semi-Markov models would be useful, etc.
The generalization to imprecise probabilities also cre-
ates new problems. Due to possible incomparability
of actions/policies we need to keep track of poten-
tially many partial policies during the solution pro-
cess. This may become computationally intractable.
Important question for future research is how to deal
with this problem, e.g., what type(s) of models allow
us to avoid or minimize this difficulty, how to effi-
ciently store the sets of undominated policies, etc.

Givan et al [4, 2] investigate what they call Bounded
Parameter Markov Decision Process. A Bounded Pa-
rameter Markov Decision Process is a generalization
of a class of Markov Decision Processes with infinite
number of decision epochs. The generalization re-
places both point transition probabilities and point
rewards with closed intervals. Besides the differ-
ences in time horizon and representation of transi-
tions, there are two major differences between their
approach and approach taken in this paper. First,
they interpret their model as representing all clas-
sical (precise) models consistent with the bounds of
the generalized model and not as a notion of its own.
This is similar to the convex sets of probabilities and
lower prevision interpretations of imprecise probabil-
ity models. Second, and more important, difference is
the “optimality” criterion used. They consider opti-
mistic and pessimistic “optimal” policies that would
be optimal if the imprecision in the model was re-
solved in the best and worst possible way, respectively.
This is essentially a variation of max-min and max-
max rules. They do not consider possibility of indeci-
sion.

Another related work is the work of Haddawy’s group,

e.g., [3, 5]. Their motivation is mainly abstraction for
efficient solution of planning problems. They consider
more general setting for sequential decision making
(they do not assume the Markov property), but re-
strict the uncertainty representation to lower/upper
probabilities on a subclass of P (S) (in my nota-
tion). Also, the computation of the expected reward
of a particular policy is done using only approximate
methods.

The term “Generalized Markov Decision Process” was
used earlier [8, 6] for a concept that is unrelated to
the use of the term in this paper.
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