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This theorem demonstrates that the algorithms that
are used to detect independence by graphical means
in a Bayesian network can also be used to detect in-
dependence relations (in Walley's sense) in type-1 ex-
tensions.

The popularity of type-1 extensions has led to several
algorithms for the calculation of posterior lower and
upper expectations. There are algorithms that calcu-
late expectations for all vertices of a type-1 extension
and maximize over these expectations [6, 11, 42], al-
gorithms that use optimization techniques to search
deterministically for upper expectations [1, 11, 49],
and algorithms that perform this search stochastically
[6, 7]. At the moment, there is little available expe-
rience regarding practical performance of algorithms
and no organized comparison among them.4

Much less attention has been paid to natural exten-
sions, even though it may be argued that they are, as
the name suggests, more intuitive than type-1 exten-
sions. Several natural extensions can be de�ned for
a given credal network, depending on the irrelevance
judgements assumed for the network. Given a credal
network, it is possible to create a natural extension
that enforces no irrelevance relation on the network
| in a sense, this is the \largest" joint credal set
that can be represented by the network, similar to the
credal sets that are considered in probabilistic logic.
Suppose that all variables Xi are categorical and all
conditional credal sets K(Xijpa(Xi)) are separately
speci�ed and are de�ned by �nitely many linear in-
equalities

P
j �jp(Xi = xijjpa(Xi)) � �. Then the

largest possible natural extension (no irrelevance re-
lations enforced) is only subject to linear constraints.
The computation of any posterior upper expectation
is then a linear fractional program.

Little is known about algorithms for handling irrel-
evance relations in natural extensions. Consider the
following situation [12].

Suppose that, for any variable Xi, the nondescen-
dants non-parents of Xi are irrelevant to Xi given
the parents of Xi. This is true for every standard
Bayesian network and it seems a reasonable require-
ment for credal networks. Suppose also that all credal
sets K(Xijpa(Xi)) are separately speci�ed. These as-
sumptions are equivalent to the requirement that, for
a bounded function f(Xi):

E[f(Xi)jnd(Xi)] = E[f(Xi)jpa(Xi)] ; (7)

where nd(Xi) denotes the nondescendants of Xi. As
E[f(Xi)jpa(Xi)] can be computed using information

4The JavaBayes system is currently the most appro-
priate tool to manipulate graphical models and type-1 ex-
tensions; the system is publicly available at the address
www.cs.cmu.edu/~javabayes.

in the network, the constraints indicated by Expres-
sion (7) can be read o� of the network in a relatively
simple manner.

If every credal set K(Xijpa(Xi)) is �nitely generated,
then there is a �nite collection of inequalities of the
form (7) that characterizes the natural extension of
the credal network. Consequently, posterior upper ex-
pectations can be computed by linear fractional pro-
gramming [12].

8 Conclusion

This paper concentrates on the practical problem of
generating posterior upper expectations given state-
ments of imprecise probabilities. The paper derives
an algorithm for the computation of posterior upper
expectations that can handle sequences of indepen-
dent measurements through the concepts of lower and
upper likelihoods.

In the theory of credal sets, the algorithmic impor-
tance of independence judgements has been obscured
by controversies regarding the de�nition of indepen-
dence. This paper adopts Walley's concepts of irrel-
evance and independence as a solution to this di�-
culty. An important application of these concepts is
the analysis of independence judgements in sequences
of measurements, including the surprising possibil-
ity of complete divergence of posteriors. A theory
of credal networks, as sketched in this paper, is an-
other important step in the understanding of impre-
cise probability and judgements of irrelevance. At this
point, little is known about simpli�cations due to ir-
relevance relations, or about the practical di�erences
among various extensions of a credal network.

In short, there are many available algorithms, but
much e�ort is still to be spent before a complete collec-
tion of algorithms for imprecise probability emerges.
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Figure 1: Example of a Bayesian network (all vari-
ables are binary; superscript c indicates negation).

others employ \type-1 extensions" (described later in
this section) to combine conditional credal sets [8, 42]
These di�culties with the de�nition of independence
can be eased with the adoption of Walley's concepts
of irrelevance and independence, as these concepts are
directly based on conditional beliefs, one of the basic
entities in the theory of credal sets.

Starting fromWalley's concepts of irrelevance and in-
dependence, a theory of credal networks can be built.
A credal network is a directed acyclic graph where
each node is associated with a variable Xi and a con-
ditional credal set K(Xijpa(Xi)) [49]. Given a credal
network, any joint credal set whose conditional credal
sets equal K(Xijpa(Xi)) is called an extension of the
network. Some important properties of credal net-
works and their extensions have received little atten-
tion, despite their potential e�ect on algorithms.

For example, take the \semi-graphoid" axioms. A
semi-graphoid is a ternary relation, denoted by X??Y j
Z, that is meant to capture the concept \Y is indepen-
dent from X given Z". Bayesian networks are prone
to several computational simpli�cations because prob-
abilistic independence satis�es the semi-graphoid ax-
ioms (g(Y ) represents a bounded function) [31]:

A1 If X??Y jZ, then Y??X jZ.

A2 X??Y jX.

A3 If X??Y jZ and W = g(Y ), then X??W jZ.

A4 If X??Y jZ and W = g(Y ), then X??Y j (W;Z).

A5 If X??Y jZ, X??W j (Y; Z), then X??(Y;W ) jZ.

Walley's concepts of irrelevance and independence do
not satisfy all the semi-graphoid axioms; the following
theorem is valid for discrete models:

Theorem 5 (Cozman [13]) Walley's irrelevance
satis�es A2 to A5 (it is an asymmetric semi-
graphoid); Walley's independence satis�es A1 to A4
(it is an incomplete semi-graphoid).

An open question is how to use the properties of asym-
metric and incomplete semi-graphoids in algorithms
that compute posterior quantities using credal net-
works.

7 Extensions of a credal network

Another example of challenging di�erences between
Bayesian and credal networks is the uniqueness of in-
ferences given a network. A Bayesian network rep-
resents the unique joint density speci�ed by Expres-
sion (6). What is the joint credal set represented by
a credal network? Is there a unique such credal set?
No satisfactory answer has been given to this ques-
tion yet. It seems appropriate to admit that a credal
network may have several extensions | the choice of
an extension is left to the decision-maker specifying
the network. Consider the following two extensions of
a credal network:

The type-1 extension is the joint credal set con-
taining all joint measures that satisfy Expres-
sion (6) when each density p(Xijpa(Xi)) is ar-
bitrarily chosen within the conditional credal set
K(Xijpa(Xi)).

The natural extension is the joint credal set con-
taining all joint measures (1) that have condi-
tional densities p(Xijpa(Xi)) in the correspond-
ing conditional credal sets K(Xijpa(Xi)); and (2)
that satisfy any additional irrelevance relations
in the network. Note that a credal network may
have several types of natural extensions, depend-
ing on the particular irrelevance relations that
are imposed on the network.

Type-1 extensions are the most common sets of prob-
ability measures associated with graphical models in
the literature [1, 8, 28, 42]. The apparent similarity
between type-1 extensions and Bayesian networks can
be formalized:

Theorem 6 (Cozman [12]) Every d-separation re-
lation in a directed acyclic graph corresponds to an in-
dependence relation in the type-1 extension of a credal
network de�ned through the graph.



fact that the e�ect of prior di�erences in probabilistic
models tends to vanish as more and more data are col-
lected through a single likelihood function [35]. This
\consensus of opinions" is not guaranteed to occur in
the context of credal sets.

Example 2 Consider a discrete variable � with N
possible values. A group of experts establishes a prior
credal set K(�) such that P (� = �j) > 0 for all �j .
Another group of experts establishes a separately spec-
i�ed collection of credal sets K(Xkj�) for a measure-
ment Xk with a �nite number of possible values. The
experts agree that all measurements are independent
and satisfy the same model K(Xkj�). Also, the ex-
perts note that P (Xkj�j) > P (Xkj�j) > 0 for all �j ,
and P (Xkj�i) > P (Xkj�j) for all j 6= i. A third group
of experts then collects a sequence of observations
Xk. To their dismay, they note that P (�ijX1; : : : ; Xn)
tends to one and P (�ijX1; : : : ; Xn) tends to zero as
more information is collected.

This is an extreme example, as the third group of ex-
perts loses whatever degree of consensus was attained
by the �rst two groups of experts:

Theorem 4 Under the conditions of Example 2,
limn!1 P (�ijX1; : : : ; Xn) = 1.

Proof. De�ne lijk =
�
P (Xkj�j) =P (Xkj�i)

�
(note

that lijk < 1 for all k, i 6= j). Take a mea-
sure in K(�) and de�ne �ji = P (� = �j) =P (� = �i)
and �i = maxj �ji. The independence of observa-
tions and the fact that likelihoods are de�ned sepa-
rately guarantees that the value of lijk is attained by
some joint density; consequently P (�ijX1; : : : ; Xn) ��
1 +

P
j 6=i �ji

Qn

k=1 lijk

��1
. Note that for any given

� > 0, there is m such that for all n > m the
value of

Qn

k=1 lijk is smaller than �=(�i(N � 1))
for all j, and, for these n, P (�ijX1; : : : ; Xn) >�
1 +

P
j 6=i �ji�=(�i(N � 1))

��1
> 1

1+� > 1 � �. Be-

cause P (�ijX1; : : : ; Xn) cannot be larger than 1, its
limit as n!1 is 1.

The theory of credal sets contains other examples with
similar properties. For example, conditioning may in-
crease probability bounds, a phenomenon called dila-
tion [37]. The results of Walley and Fine [45] on the
divergence of relative frequencies obtained from im-
precise likelihoods are also close in spirit to Example
2; the di�erence is that Walley and Fine are interested
in quite general situations where relative frequencies
are con�ned to the interval between lower and up-
per likelihoods. Example 2 employs much stronger
assumptions to illustrate a much stronger type of di-
vergence, one in which lower and upper probability
bounds become zero and one respectively.

6 Multivariate and graphical models

Sets of probability measures induced by linear con-
straints are the subject of probabilistic logic [2, 16, 18,
29]. Work on probabilistic logic starts from a collec-
tion of linear constraints on the probability of proposi-
tions, and produces probability bounds through linear
programming (conditional and posterior constraints
can be handled to a limited extent [16, 23]). De-
spite its apparent generality, probabilistic logic has
had great di�culty in handling judgements of inde-
pendence.

Many multivariatemodels in statistics, economics and
arti�cial intelligence are constructed by coupling col-
lections of conditional probabilities through consid-
erations of conditional independence [48]. The fore-
most example of this approach is the popular theory
of Bayesian networks [31]. Figure 1 depicts a Bayesian
network.

A Bayesian network is a directed acyclic graph where
each node is associated with a random variable Xi

and a conditional density p(Xijpa(Xi)) (the symbol
pa(Xi) indicates the parents of Xi in the graph). The
central assumption in a Bayesian network is that each
variable is independent of all its nondescendants non-
parents, given its parents. This assumption leads to
an important result: Every Bayesian network repre-
sents a unique joint probability distribution, de�ned
as:

p(X) =
Y
i

p(Xijpa(Xi)) : (6)

Given a Bayesian network such as the one in Fig-
ure 1, typically one is interested in posterior quanti-
ties. For example, in Figure 1 one may ask, What is
the probability of h being true given that f is true
and b is false? The independence assumptions sum-
marized by a Bayesian network make it amenable to
the computation of posterior quantities, as computa-
tion of expectations can be divided up into compu-
tations that involve sequences of conditional expecta-
tions [24]. In particular, computations can be reduced
because independence relations can be detected using
a polynomial-time algorithm based on the concept of
graphical d-separation [19].

It seems reasonable to seek some graphical structure
that can handle judgements of independence in mul-
tivariate models associated with credal sets. But how
does the theory of credal sets fare with respect to
graphical models and their related algorithms? An
immediate di�culty is the current lack of agreement
regarding the concept of independence. This has led
to graphical structures that cannot be easily inter-
preted in terms of conditional preferences or beliefs.
Some of these structures employ Dempster's rule [38],



A satisfactory method for the computation of poste-
rior upper expectations E[f(Y )jx], given separately
speci�ed, �nitely generated K(Y ) and K(XjY ), can
still be produced as follows.3 Consider the maximiza-
tion problem de�ned by Expression (4). First de�ne
two vectors, �0 and �00, each with the same length as
�. Now de�ne the following linear fractional program:

E[f(Y )jx] = max
�0;�00

"P
i (fiLx(yi)�

0
i + fiUx(yi)�00i )P

j

�
Lx(yj)�0j + Ux(yj)�00j

�
#
;

subject to:

C(�0 + �00) � 0;
X
i

(�0i + �00i ) = 1; �0i � 0; �00i � 0:

Now the Charnes-Cooper transformation can be ap-
plied and the upper expectation can be obtained
through a linear program. For each i, a maximizing�0

and a maximizing�00 have either �0i = 0 or �00i = 0 for
each i, automatically selecting the correct likelihood
values. Applying the Charnes-Cooper transform, the
linear program that must be solved is:

E[f(Y )jx] = max

0;
00

"X
i

fiLx(yi)

0
i + fiUx(yi)


00
i

#
;

subject to:

C(
0 + 
00) � 0; 
0i � 0; 
00i � 0;X
i

(Lx(yi)

0
i + Ux(yi)


00
i ) = 1;

where 
0 and 
00 are vectors with the same length as
�0 and �00.

Example 1 (White [47]) Consider a variable �
with four values f�1; �2; �3; �4g, and the following con-
straints on the marginal prior measure of �:

2:5p(�1) � p(�4) � 2p(�1) ;

10p(�3) � p(�2) � 9p(�3) ; p(�2) = 5p(�4) :

Suppose the following lower and upper likelihoods are
given for a measurement x:

L(xj�1) = 0:9, L(xj�2) = 0:1125,
L(xj�3) = 0:05625, L(xj�4) = 0:1125,
U (xj�1) = 0:95, U (xj�2) = 0:1357,
U (xj�3) = 0:1357, U (xj�4) = 0:1357.

Consider the calculation of the lower probability
P (� = �1jx) = min�0;�00 (0:9�01 + 0:95�001), where �0

and �00 are vectors with four elements, subject to
�0i � 0 and �00i � 0 and

3A number of computer programs for computation
of upper expectations through linear fractional program-
ming is publicly available in the Internet at the address
www.cs.cmu.edu/~qbayes/RobustInferences/Matlab/.

� C[�0 + �00] � 0 where the matrix C is:2
6666664

�5
2 0 0 1
2 0 0 �1
0 �1 0 5
0 1 0 �5
0 �1 9 0
0 1 �10 0

3
7777775
:

� F1�
0 + F2�

00 = 1, where
F1 = [0:9; 0:1125; 0:0562;0:1125] and
F2 = [0:95; 0:1357;0:1357;0:1357].

The lower probability P (� = �1jx) = 0:2881 is ob-
tained through linear fractional programming. The
minimizing �0 is [0:3201; 0; 0;0] and the minimizing
�00 is [0; 4:0013;0:4446;0:8003].

The bounds obtained through linear fractional pro-
gramming are only valid if the conditional and the
prior credal sets are separately speci�ed. White's
original example speci�ed the likelihoods through the
following linear inequalities:

p(xj�2) = p(xj�4) ; p(xj�3) � p(xj�2) � 2p(xj�3) ;

p(xj�3) � 0:01; 7p(xj�2) � p(xj�1) � 8p(xj�2) ;

0:9 � p(xj�1) � 0:95:

In this case the bounds produced by linear fractional
programming are not tight, because Theorem 2 does
not apply.

5 Sequences of independent
measurements

Suppose now that a sequence of measurements
X1; : : : ; Xn is given, and the measurements are all
taken to be independent and modeled by identical sets
K(Xkj�) of likelihood functions. Walley's de�nition
of independence leads to the following simple result:

Theorem 3 For a sequence of independent measure-
ments, the upper and lower likelihoods are respec-
tively given by UX1;:::;Xn

(�) =
Qn

k=1 UXk
(�) and

LX1;:::;Xn
(�) =

Qn

k=1LXk
(�).

This result, combined with the algorithm in the pre-
vious section, demonstrates how to perform the most
common types of statistical computations in the con-
text of credal sets: independent observations have
their upper and lower likelihoods multiplied, and pos-
terior quantities are computed through linear frac-
tional programming.

Limiting properties of sequences of observations are
of central importance in statistics. It is a well-known



�rst that Lavine's algorithm has linear convergence; if
bisection is used, then �n+1 = (1=2)�n. Consequently,
Walley's algorithm is a better choice when � < 1=2;
that is, when 3P (A) > P (A). One can use either
Lavine's or Walley's algorithm based on the value of
�.

Consider now that a credal set (for categorical vari-
ables) is speci�ed through �nitely many linear in-
equalities. Although Lavine's algorithm is quite
popular, the work of White III [47] and Snow
[39] has produced an algorithm for imprecise pri-
ors and precise likelihood function that depends on
a single, direct linear program. Suppose a prior
credal set K(Y ) is speci�ed by linear constraints
A[P (Y = y1) : : :P (Y = yn)]T � B, where A is a ma-
trix and B is a vector of appropriate dimensions. De-
�ne the vectors � by �i = P (Y = yi), � by �i =
P (X = xjyi), and f by fi = f(yi) and the matrix
C = A�B1 (where 1 is a row vector of ones). With
these de�nitions, the calculation of a posterior upper
expectation is:

E[f(Y )jx] = max
�

"P
i fi�i�iP
j �j�j

#
;

(4)

subject to C� � 0,
P

i �i = 1, �i � 0:

The White-Snow algorithm adopts a change of vari-
ables by de�ning 
i = (�i�i)=(

P
j �j�j). If �i = 0,

discard 
i from the equations and set it to zero. Now
de�ne the matrixD = C� diag

�
��11 ; : : : ; ��1n

�
; Snow

[39] has proved that posterior upper expectations are
obtained by a linear program of the form

E[f(Y )jx] = max



"X
i

fi
i

#
;

(5)

subject to D
 � 0,
P

i 
i = 1, 
i � 0:

4 Linear fractional programming for
prior and likelihood sets

Expression (4) is an example of a linear fractional
program [34]. Recent references point to linear frac-
tional programming techniques as suitable ones for
the computation of upper expectations [23, 28, 30, 49];
in this section, an algorithm that can handle impre-
cise priors and imprecise likelihoods is derived based
on linear fractional programming and on Snow's tech-
niques [40].

There are two well-known algorithms to solve a
linear fractional program such as Expression (4).

The �rst, called Dinkelbach or Jagannatham algo-
rithm, is to create a \parameterized" problem for
a parameter �, where a series of values M (�) =
max� [

P
i(fi � �)�i�i] is computed (subject to the

same constraints as the original problem) while
searching for the value of � such that the M (�) = 0.
Lavine's algorithm is just a bracketing scheme applied
to Dinkelbach's algorithm. The second method, called
the Charnes-Cooper method, is to transform the prob-
lem by a change of variables 
0i = �i=(

P
j �j�j),

which reduces the calculation of the posterior up-
per expectation to a linear program of the form
E[f(Y )jx] = max
0 [

P
i fi�i


0
i], subject to C
0 � 0,P

i �i

0
i = 1, 
0i � 0. The Charnes-Cooper method is

similar to the White-Snow algorithm as 
i = 
0i�i.

The preceding methods focus primarily on models
that have a prior credal set and a single likelihood
function. Only a few authors consider the possibility
that prior and likelihood sets be speci�ed [25, 32, 44].
To handle sets of likelihood functions, algorithms can
restrict calculations to the maxima and minima of
likelihood, as proved by the next theorem. The theo-
rem uses the concepts of lower and upper likelihoods.
For a given collection of credal sets K(XjY ), the lower
likelihood Lx(Y ) is a function de�ned as

Lx(y) = P (X = xjy) = min
p(Xjy)2K(Xjy)

P (X = xjy) ;

and the upper likelihood Ux(Y ) is a function de�ned
as

Ux(y) = P (X = xjy) = max
p(Xjy)2K(Xjy)

P (X = xjy) :

Theorem 2 (Walley [44, Section 8.5.3])
Consider a bounded function f(Y ) and suppose
that K(XjY ) and K(X) are separately speci�ed. If
P (X = x) > 0, then E[f(Y )jx] is the unique value of
� such that

E[(f(Y )� �) p�(xjY )] = 0;

where p�(xjy) =

�
Ux(y) if f(y) � �;
Lx(y) if f(y) < �:

:

The theorem indicates that E[f(Y )jx] =
max(Ep[f(Y )p�(xjY )] =Ep[p�(xjY )]) (for
P (X = x) > 0), where the maximization is with re-
spect to both (1) � 2 [inf f(Y )Ix(X); sup f(Y )Ix(X)],
and (2) p(Y ) 2 K(Y ). A possible approach is to
apply a bracketing scheme much like Lavine's
algorithm, using a \likelihood" p�(xjY ) that
varies at each iteration of the algorithm. Each
step of the algorithm involves computation of
M (�) = E[(f(Y )� �)p�(xjY )]. Unfortunately, these
operations do not yield a direct parametric linear
program.



tional" on any variable. The de�nitions can be ex-
tended to collections of variables in a natural way by
requiring equality of the conditional credal sets.

3 The generalized Bayes rule and
Lavine's, Walley's and
White-Snow's algorithms

Given a credal set K(X), a function f(X) and an
event A de�ned through X, such that P (A) > 0, the
value of E[f(X)jA] can be computed by the gener-
alized Bayes rule (�rst proposed by Walley [44, Sec-
tion 6.4.1]):

E[f(X)jA] is the unique value of � such that

E[(f(X) � �) IA(X)] = 0: (3)

Suppose �rst that the credal set K(X) is speci�ed
by a �nite list of vertices. Then the computation
of E[f(X)jA] requires only that Ep[f(X)jA] be com-
puted for each vertex p(X): the value of E[f(X)jA]
is the maximum of the various values of Ep[f(X)jA]
(Section 2).

There are two other problems that may be of interest:2

� The credal set K(X) is speci�ed by a �nite collec-
tion of linear inequalities of the form (2). In fact,
this type of speci�cation has a convenient inter-
pretation in terms of a �nite collection of lower
expectations.

� The credal set K(X) has some property that
yields simple algorithms for the computation of
upper expectations. For example, upper expecta-
tions can be easily computed for credal sets gen-
erated by 2-monotone capacities [44].

There are also some imprecise probability models for
which the generalized Bayes rule has closed-form so-
lutions; for example, credal sets represented by 2-
monotone capacities and bounded ratio families have
closed-form expressions for upper posterior envelopes
[9, 15, 43].

Lavine's algorithm is a bracketing scheme applied
to the generalized Bayes rule, whose objective is to
compute posterior upper expectations [25]. De�ne
�
0
= inf f(X)IA(X) and �0 = sup f(X)IA(X). De-

�ne M (�) = E[(f(X) � �)IA(X)]; note that M (�)
must be zero in the interval [�

0
; �0]. Now bracket

this interval by repeating (for i � 0):

2This classi�cation of problems, and the fact that
Lavine's algorithm can use f(X)IA(X), rather than f(X),
to compute its starting point, were suggested to me by Pe-
ter Walley.

1. Stop if j�i � �
i
j < � for some positive value �; or

2. Choose �i in [�
i
; �i] and, if M (�i) > 0, take

�
i+1

= �i and �i+1 = �i; if M (�i) < 0, take

�
i+1

= �
i
and �i+1 = �i.

The next theorem demonstrates that M (�i) can also
provide information on when to stop the bracketing
iteration.

Theorem 1 If P (A) > 0 and jM (�)j � �P (A), then���� E[f(X)jA]
�� � �.

Proof. Suppose ��P (A) � M (�) < 0. De�ne � =
E[f(X)jA]; then �P (A) � �E[(f(X) � �)IA(X)] �
E[�(� � �)IA(X)]. By the generalized Bayes
rule, � � � � 0 and E[(f(X) � �)IA(X)] = 0,
so � � � � �P (A) =(�E[�IA(X)]) = �.
Suppose now �P (A) � M (�) > 0. The
generalized Bayes rule guarantees that
E
�
(f(X) � �)IA(X) +E[f(X) � �jA] (�IA(X))

�
=

0; consequently, M (�) � E[f(X) � �jA]E[IA(X)] �
0. Then �P (A) � E[f(X) � �jA]E[IA(X)] and then
� � E[f(X)jA] � �.

Lavine's algorithm is straightforward either (1) when
a model has only categorical variables and credal sets
that are speci�ed by �nitely many linear inequalities,
or (2) when a model involves credal sets with sim-
ple expressions for upper expectations. In the �rst
case, upper expectations can be obtained either by
a sequence of linear programs (one for each value of
�i) [26] or a single parametric linear program with
parameter �.

Lavine's algorithm can be easily adapted to mod-
els with a prior credal set K(Y ) and a single like-
lihood function Lx(Y ) = p(xjY ), as the compu-
tation of E[f(Y )jx] involves the function M (�) =
E[(f(Y ) � �)Lx(Y )] in this case [44].

Another iteration scheme, also based on the
generalized Bayes rule, has been proposed
by Walley [44, Note 6.4.1]; in this scheme,
E[f(X)jA] is obtained by iterating �i+1 =
�i + 2E[(f(X) � �i)IA(X)] =(E[IA(X)] + E[IA(X)]).
Walley also proved that the error at step n, �n,
is bounded by c�n, where c is a constant and
� = (P (A) � P (A))=(P (A) + P (A)). This leads to
linear convergence where �n+1 = ��n.

Walley's algorithm is (like Lavine's) straightforward
when the upper expectation E[(f(X) � �i)IA(X)]
can be easily computed; the algorithm was in fact
designed for this particular problem [44, Note 6.4.1]
The rest of this paragraph compares Lavine's and
Walley's algorithms under the assumption that
E[(f(X) � �i)IA(X)] can be easily computed. Note



Following Levi [27], the term credal set refers to closed
convex sets of probability measures. To simplify ter-
minology, credal sets also refer to sets of probability
densities (de�ned whenever possible). A credal set
containing joint probability measures or densities is
called a joint credal set. A credal set with a �nite
number of vertices is termed �nitely generated [44].
There are several types of credal sets commonly em-
ployed in the literature of statistics and arti�cial in-
telligence; for example, density ratio families [15] or
2-monotone capacities (�-contaminated measures, to-
tal variation families, density bounded families, belief
functions) [46].

For random variables X and Y , p(X) denotes the
probability density of X, P (X = x) denotes the prob-
ability of the event fX = xg, p(Xjy) denotes the
conditional density of X given the event fY = yg,
P (X = xjy) denotes the conditional probability of the
event fX = xg given the event fY = yg, f(X) denotes
a measurable, bounded1 function of X, Ep[f(X)] de-
notes the expectation of f(X) taken with respect to
p(X) and Ep[f(X)jy] denotes the expectation of f(X)
taken with respect to p(Xjy). A credal set de�ned by
a collection of densities p(X) is denoted by K(X). A
credal set de�ned by a collection of conditional den-
sities p(Xjy) is denoted by K(Xjy).

Given a credal set K(X) and a function f(X), the
lower expectation and the upper expectation of f(X)
are de�ned respectively as:

E[f(X)] = min
p(X)2K(X)

Ep[f(X)] ;

(1)

E[f(X)] = max
p(X)2K(X)

Ep[f(X)] :

Lower expectations can be obtained from upper
expectations through the expression E[f(X)] =
�E[�f(X)].

A lower expectation de�nes a constraint on probabil-
ity values; for example, for a discrete variable X, the
lower expectation E[f(X)] = 
 is equivalent to the
linear inequality X

X

f(x)p(x) � 
: (2)

A collection of lower expectations de�nes a credal set;
conversely, a credal set de�nes unique lower expec-
tations for all bounded functions. There is also a
one-to-one correspondence between a credal set and
the collection of coherent lower expectations obtained
from the credal set (the de�nition of coherence for
lower expectations has been given by Walley [44]).

1Every function in this paper is assumed measurable
and bounded.

For any event A, the lower envelope P (A) is obtained
by taking the lower expectation of the indicator func-
tion IA(X), which is one ifX 2 A and zero otherwise:
P (A) = minp(X)2K(X) Ep[IA(X)]. Similarly, the upper

envelope P (A) is the upper expectation of IA(X).

Conditional probability measures are used to repre-
sent the beliefs held by a decision-maker given an
event. A conditional credal set K(Xjy) contains den-
sities p(Xjy) for random variables X and Y . If
P (Y = y) = 0, thenK(Xjy) is maximalby convention
(i.e., K(Xjy) contains every possible density p(Xjy)).

For two variables X and Y , the symbol K(XjY ) de-
notes the collection of credal sets de�ned for all values
of Y :

K(XjY ) =
n
K(Xjy) : y 2 Ŷ

o
;

where Ŷ is the collection of values allowed for Y . To
simplify terminology, the collection K(XjY ) is also
termed a conditional credal set.

A separately speci�ed conditional credal set K(XjY )
is one where densities can be selected from K(Xjy1)
without any connection with K(Xjy2) when y1 6=
y2 [44]. For example, this is obtained when K(Xjy1)
is de�ned through a collection of lower expectations
E[fi(X)jy1] and K(Xjy2) is de�ned through a collec-
tion of lower expectations E[fj(X)jy2].

Inference is performed by applying Bayes rule to each
measure in a credal set; the posterior credal set is the
union of all posterior probability measures. To obtain
a posterior credal set, one has to apply Bayes rule
only to the vertices of a joint credal set and then take
the convex hull of the resulting posterior probability
measures [20, 27].

The concept of independence, central to standard
probability theory, is somewhat controversial in the
theory of convex sets of probability measures [3, 10,
14]. This paper adopts the concepts of irrelevance and
independence proposed by Walley [44, Chapter 9], as
they can be based on the same concepts of preferences
and beliefs that were used by Giron and Rios to justify
quasi-Bayesian theory.

De�nition 1 Variable Y is irrelevant to X given Z
if K(Xjz) is equal to K(Xjy; z) for all values of Y
and Z. Equivalently, variable Y is irrelevant to X
given Z if E[f(X)jy; z] is equal to E[f(X)jz] for any
bounded function f(X) and for all values of Y and Z.

De�nition 2 Variables X and Y are independent
given Z if X is irrelevant to Y given Z and Y is
irrelevant to X given Z.

Note that Z may be omitted; in this case the irrel-
evance and independence concepts are not \condi-
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Abstract

This paper investigates the computation of posterior
upper expectations induced by imprecise probabili-
ties, with emphasis on the consequences of Walley's
concepts of irrelevance and independence. Algorithms
that simultaneously handle imprecise priors and im-
precise likelihoods are derived through linear frac-
tional programming; sequences of independent mea-
surements are then analyzed, and a result on the limit-
ing divergence of posterior upper probabilities is pre-
sented. Algorithms that handle irrelevance and in-
dependence relations in multivariate models are ana-
lyzed through graphical representations, inspired by
the popular Bayesian network model.

Keywords. Convex sets of probability measures,
linear and linear fractional programming, graphical
models and directed acyclic graphs.

1 Introduction

This paper focuses on practical algorithms for the cal-
culation of posterior upper expectations induced by
imprecise probabilities. Emphasis is placed on the
consequences of Walley's concepts of irrelevance and
independence. In this paper, imprecision in probabil-
ity assessments is modeled through closed convex sets
of probability measures (Section 2). From this per-
spective, posterior upper expectations are obtained
by maximization of linear fractional functionals over
convex sets, a problem that �nds rami�cations in op-
erations research and arti�cial intelligence.

Several special cases and existing algorithms for pos-
terior upper expectations are reviewed in Section 3.
When imprecise priors and precise likelihoods are
considered, Lavine's, Walley's and White-Snow's al-
gorithms reduce computation of posterior upper ex-
pectations to linear programs. A more general ap-
proach, that handles imprecise priors and imprecise
likelihoods simultaneously, is derived in Section 4. Se-

quences of independent measurements are then ana-
lyzed, and a surprising result on the limiting diver-
gence of posterior upper expectations is presented.

More sophisticated methods are necessary when
judgements of independence are applied to multivari-
ate models. Section 6 investigates graphical represen-
tations for multivariatemodels, similar to the popular
Bayesian network representation used in arti�cial in-
telligence. The challenges posed by such graphical
structures, and several inference algorithms for them,
are discussed in Section 6.

2 Credal sets, conditioning,
irrelevance and independence

Several theories of inference advocate closed convex
sets of probability measures as an accurate represen-
tation for imprecise beliefs. For example, the quasi-
Bayesian theory of Giron and Rios [20], Levi's con-
vex Bayesian theory [27], the theory of intervalism
described by Kyburg [22], and the somewhat difuse
collection of ideas adopted by researchers in robust
Bayesian methods [4]. Several other theories employ
special types of convex sets of probability measures;
for example, the theory of lower probability [5, 17] and
the theory of inner/outer measures [21, 33, 41]. The
theory of coherent lower previsions put forward by
Walley is an example of a complete theory of inference
that can be viewed as a theory of sets of probability
measures, even though it is entirely based on the con-
cept of lower previsions [44]. There are also theories of
inference that add imprecision in utility judgements
to the modeling process; for example, the very general
theory of Seidenfeld et al [36]. This article adopts the
theory of inference proposed by Walley, but empha-
sizes an interpretation of these concepts that is based
on convex sets of probability measures, much in the
spirit of the quasi-Bayesian theory of Giron and Rios.
This combination is felt to produce a complete theory
that has a relatively simple interpretation.


