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Abstract

The aim of this paper is to survey and brie
y dis-
cuss various rules of conditioning proposed in the
framework of possibility theory as well as various con-
ditional independence relations suggested for these
rules. These conditioning rules and conditional inde-
pendence relations are confronted with formal prop-
erties of conditional independence. Special attention
is paid to the conditioning rule based on measure-
theoretical approach [3]. It is argued that this way
of conditioning and the related conditional indepen-
dence notion [12] not only generalize some of pre-
sented rules and conditional independence relations,
but also their properties correspond to those pos-
sessed by stochastic conditional independence.

Keywords. Possibility measure, possibility distribu-
tion, conditioning rule, natural extension, conditional
possibility distribution, possibilistic conditional inde-
pendence, formal properties of conditional indepen-
dence.

1 Introduction

Probability theory had been the only mathematical
tool at our disposal for uncertainty quanti�cation and
processing for three centuries, and therefore many im-
portant theoretical as well as practical achievements
have been obtained in this �eld. However, during the
last thirty years some new mathematical tools alter-
native to probability theory have emerged. Their aims
are to treat either the cases, when the nature of un-
certainty in question does not meet the demands re-
quested by probability theory, or the cases in which
probabilistic approaches are based on too strong and
hardly assurable (or even veri�able) conditions. Nev-
ertheless, probability theory has always served as a
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source of inspiration for the development of these non-
probabilistic calculi and they have been continually
confronted with probability theory and mathematical
statistics from various points of view. The topic of
this paper is a good example of this fact.

Conditioning belongs to the most important features
of any model of uncertainty and therefore it has been
studied within possibility theory from its very begin-
ning. In possibility theory, in contrary to the prob-
abilistic framework, various rules were proposed to
de�ne conditional possibility measures (or distribu-
tions) from joint ones. But there exist no criteria
along which these rules can be compared.

Conditional independence notion, on the other hand,
is connected mainly with the application of uncer-
tainty theories (namely probability theory) to arti-
�cial intelligence. Complexity of practical problems
that are in the center of interest of arti�cial intelli-
gence results usually in necessity to model the �eld of
application with the help of a great number of vari-
ables, more precisely hundreds or thousands rather
than tens. Processing distributions of such dimension-
ality would not be possible without some tools allow-
ing to reduce demands on computer memory. Condi-
tional independence, which belongs to such tools, al-
lows to express these multidimensional distributions
by means of lowdimensional ones and therefore to de-
crease substantially demands on the computer mem-
ory.

We will start with the notion of stochastic conditional
independence. Supposing X;Y and Z are random
variables with a joint probability distribution P we
say that X is conditionally independent of Y given Z

with respect to P and write IP (X;Y jZ) if the equality

P (x; y; z) � PZ(z) = PXZ(x; z) � PYZ(y; z) (1)

(where PXZ ; PYZ ; PZ denote corresponding marginal
distributions) holds for every value x; y; z of the vari-
ables X;Y; Z. It means that in every situation when
the value of Z is known the values of X and Y are



completely unrelated (from the stochastic point of
view). The distribution P is usually �xed and there-
fore omitted from the notation.

There exist many equivalent de�nitions of stochastic
conditional independence, e.g.

PXjYZ(xjy; z) = PXjZ(xjz); (2)

but this de�nition may be used only in the situation
when PYZ(y; z) is positive1. Nevertheless, possibilis-
tic counterparts of this very equality are often taken
for de�nition of possibilistic conditional independence
as will be seen later.

Among the properties satis�ed by the ternary relation
I(X;Y jZ) the following are of principal importance:

(A1) I(X;Y jZ) ! I(Y;XjZ) symmetry,

(A2) I(X;Y ZjW ) ! I(X;ZjW ) decomposition,

(A3) I(X;Y ZjW ) ! I(X;Y jZW ) weak union,

(A4) [I(X;Y jZW ) ^ I(X;ZjW )] ! I(X;Y ZjW )
contraction,

(A5) [I(X;Y jZW ) ^ I(X;ZjY W )] ! I(X;Y ZjW )
intersection.

It is well known (see e.g. [11]), that I(X;Y jZ) de�ned
by (1) or (2) satis�es (A1) { (A4). If P is strictly
positive, then also (A5) is satis�ed.

The properties (A1) { (A5) may be thought of as
purely formal properties of the notion of conditional
independence without any connection to probability
theory (see e.g. [10]). In the mentioned book a few
examples from di�erent areas of mathematics as well
as a nice example concerning reading books can be
found.

In the present paper we will deal with some de�nitions
of conditional possibility distributions and conditional
independence and summarize which properties are
satis�ed by those independence relations. These prop-
erties, evidently, depend not only on the de�nition of
the conditioning rule but also on the de�nition of the
conditional independence relation, and therefore for
one rule of conditioning we can obtain several inde-
pendence relations possessing di�erent properties.

1Let us note that we have adopted Kolmogorov ax-
iomatic probability theory. In de Finetti's approach, (2)
is fundamental equality and (1) holds only for positive
probabilities.

2 Possibility Measures and
Distributions

Let X be a �nite set called universe of discourse which
is supposed to contain at least two elements. A pos-
sibility measure � is a mapping from the power set
P(X) of X to the real unit interval [0; 1] satisfying
the following requirement: for any family fAj; j 2 Jg
of elements of P(X)

�(
[
j2J

Aj) = max
j2J

�(Aj):2

For any A 2 P(X), �(A) is called the possibility of
A. � is called normal i� �(X) = 1:

For any � there exists a mapping � : X ! [0; 1] such
that for any A 2 P(X), �(A) = maxx2A �(x). � is
called a distribution of �. This function is a possi-
bilistic counterpart of a density function in probabil-
ity theory. It is evident, that � is normal i� there
exists at least one x 2 X such that �(x) = 1.

Now, let us consider an arbitrary possibility measure
� de�ned on a product universe of discourse X�Y.
The marginal possibility measure is then de�ned by
the equality

�X(A) = �(A �Y)

for any A � X and the marginal possibility distribu-
tion by the corresponding expression

�X (x) = max
y2Y

�(x; y) (3)

for any x 2 X. In what follows, we will omit the
subscript if there are no doubts, which marginal we
have in mind.

Normality of joint possibility measure implies normal-
ity of its marginals. Because normality seems to be
quite a natural requirement, we will always suppose
in the sequel that the joint possibility distribution is
normal and discuss whether the conditional distribu-
tion is also normal.

3 Conditioning and Independence: an
Overview

In this section we will overview various de�nitions of
conditional possibility distributions3 and conditional
independence. Their properties are summarized in
Table 1 at the end of this section.

2max operator must be replaced by sup operator if X
is not supposed to be �nite.

3This is not the complete list of these de�nitions; in
[5] many other conditioning rules can be found, but those
rules have not been studied from the viewpoint of condi-
tional independence.



3.1 Zadeh's Conditioning Rule and

Noninteractivity Notion

Zadeh's conditioning rule [14] is very simple and con-
sists in setting conditional possibility distributions
equal to the joint ones:

�Z(xjy) = �(x; y) (4)

for all (x; y) 2 X �Y. As mentioned in [5], this con-
ditioning rule has one great disadvantage | it pro-
duces conditional possibility distributions which are
not normal, whenever the marginal �(y) < 1.

First attempt to incorporate independence notion into
possibility theory was also done by Zadeh. He called
two variables4 X and Y noninteractive i� for any
(x; y) 2 X�Y

�(x; y) = min(�(x); �(y)):

This notion can be generalized as follows (see e.g.
[8]): the variables X and Y are conditionally nonin-
teractive given Z (IN (X;Y jZ)) i� for any (x; y; z) 2
X�Y � Z

�(x; yjz) = min(�(xjz); �(yjz)): (5)

If we take into account Zadeh's de�nition of condi-
tional possibility distributions (4), we can rewrite this
equation into

�(x; y; z) = min(�(x; z); �(y; z)):

3.2 Hisdal's Conditioning Rule and Related

Independence Notions

Hisdal [9] proposed to de�ne conditional possibility
distributions as a solution of the equation

�(x; y) = min(�(y); �(xjy)); x 2 X; y 2 Y: (6)

This equation, unfortunately, does not have unique
solution (the only exception is if �(y) = 1 for all
y 2 Y). All its solutions are given by

�H (xjy) 2

�
f�(x; y)g if �(x; y) < �(y);
[�(x; y); 1] if �(x; y) = �(y):

An arbitrary solution need not be normal (e.g.
Zadeh's conditioning rule is a solution of (6)) and
therefore some additional condition must be required
in order to the normality is obtained. One of the
possibilities, proposed by Dubois and Prade [7], is to

4For the purpose of this section we may adopt informal
de�nition of variable (used e.g. in [14, 9]) as an abstract
object that can assume values in certain universe.

take the greatest solution of the equation5 (or the least
speci�c), i.e.

�DP (xjy) =

�
�(x; y) if �(x; y) < �(y);
1 if �(x; y) = �(y):

In the same paper Hisdal de�ned the possibilistic in-
dependence in the following way: variable X is pos-
sibilistically independent of the variable Y i� for any
(x; y) 2 X �Y

�H(xjy) = �(x): (7)

Then she moreover showed that independence implies
noninteractivity but the reverse is not valid.

However, Hisdal's approach exhibited one substan-
tial di�culty already noticed in [3]. Since the condi-
tional possibility distribution is not de�ned uniquely,
her de�nition of independence is of little sense. The
modi�cation with the greatest solution, on the other
hand, is unique, and therefore it is sensible to take a
generalization of (7) for the de�nition of conditional
independence I(X;Y jZ), i.e.

�DP (xjy; z) = �DP (xjz): (8)

Let us note that this de�nition is possibilistic coun-
terpart of (2).

The asymmetry is often considered to be an unpleas-
ant property and therefore Fonck [8] de�ned condi-
tional independence in the following way:

IS(X;Y jZ) , I(X;Y jZ) and I(Y;XjZ): (9)

The notion of conditional independence de�ned by IS
is, however, rather restrictive (as mentioned in [1]),
since IS (X;Y jZ) implies either �(x) = 1 for all x 2 X

or �(y) = 1 for all y 2 Y.

It is possible to argue, as suggested in [1], that even
the de�nition (8) is too restrictive as it requires equal-
ity between two conditional distributions. The alter-
native idea is the following: the supplementary knowl-
edge of the value y cannot improve our knowledge of x
given z, but can deteriorate it, i.e. some information
can be lost. Therefore De Campos et al. [1] de�ned

II(X;Y jZ) , �DP (xjy; z) � �DP (xjz) (10)

for all x; y; z.

In [1] still another possibility, how to weaken the def-
inition of conditional possibility is suggested. We can

5Let us note that Zadeh's conditioning rule is the small-

est solution of the equation.



replace the equality in (8) by equivalence relation �
compatible with using the minimum (or G�odel's) t-
norm (see Subsection 4.1) as the combination opera-
tor of possibility distribution (more precisely

�DP (xjy; z) � �DP (xjz) ,

, min(�DP (xjy; z); �(y; z)) =

= min(�DP (xjz); �(y; z))

for all x; y; z) and de�ne

IM (X;Y jZ) , �DP (xjy; z) � �DP (xjz) (11)

for all x; y; z.

De Campos et al. [1] proposed also the following mod-
i�cation �DPC of the conditioning rule �DP suggested
by Dubois and Prade

�DPC (xjy) =

8>>>>>><
>>>>>>:

�(x) if �DP (xjy) � �(x)
holds for all x;

�DP (xjy) if there exists x0

such that
�DP (x0jy) < �(x0):

The interpretation of this de�nition is the following: if
the conditional possibility distribution is \worse" (i.e.
less speci�c) than the unconditional one, it is better
to use the latter one in order not to loose information.
Evidently, this rule produces normal conditional dis-
tributions.

The new de�nition of conditional independence is
then (analogously to (8))

IC (X;Y jZ) , �DPC (xjy; z) = �DPC (xjz) (12)

for all x; y; z. Despite the fact that �DPC is more
restrictive than �DP , both the conditional indepen-
dence relations I(X;Y jZ) and IC(X;Y jZ) meet the
same system of properties (A1) { (A4) (cf. Table 1).

3.3 Dempster's Conditioning Rule and

Related Independence Notions

In his seminal paper [6] on upper and lower proba-
bilities induced by multivalued mappings Dempster
suggested a rule for conditioning upper probabilities.
Since possibility measures are upper probabilities in-
duced by multivalued mappings of a special type,
Dempster's rule can also be used for de�ning condi-
tional possibility distributions. Applying Dempster's
rule, we obtain:

�D(xjy) =

(
�(x;y)
�(y) if �(y) > 0;

1 if �(y) = 0;

i.e. if �(y) = 0 Dempster's rule chooses the least
speci�c value �D(xjy) = 1 and therefore conditional
possibility distributions are evidently normal.

In this case, conditional independence ID(X;Y jZ) is
usually de�ned analogously to (8) if

�D(xjy; z) = �D(xjz) (13)

for all values x; y; z such that �(y; z) > 0.

Using the same arguments as in the case of �DP (see
[1]), we can weaken this de�nition by setting

IDI (X;Y jZ) , �D(xjy; z) � �D(xjz) (14)

for all x; y; z such that �(y; z) > 0. The properties
of this conditioning rule are, nevertheless, somewhat
surprising (cf. Table 1).

This fact led De Campos et al. to a modi�cation �DC
of �D proposed in [1] in the following way:

�DC (xjy) =

8>>>>>><
>>>>>>:

�(x) if �(x; y) � �(x) � �(y)
holds for all x;

�D(xjy) if there exists x0

such that
�(x0; y) < �(x0) � �(y):

Again, this conditioning rule is more restrictive than
Dempster's one (cf. �DPC and �DP in Subsection 3.2),
i.e. the resulting conditional possibility distribution
is more speci�c, nevertheless normal. However, in
this case the modi�cation in
uences the properties
possessed by the conditional independence relation
I(X;Y jZ) de�ned by

IDC(X;Y jZ) , �DC (xjy; z) = �DC (xjz) (15)

for all x; y; z.

3.4 \ Lukasziewicz' " Conditioning Rule and

Independence Notion

Fonck [8] studied also properties of conditional inde-
pendence based on the  Lukasziewicz' t-norm (see Sub-
section 4.1). The conditioning rule is then

�L(xjy) = �(x; y)� �(y) + 1

for all x 2 X and y 2 Y, and it is again normal. She
de�ned conditional independence analogously to (8)
by

IL(X;Y jZ) , �L(xjy; z) = �L(xjz) (16)

for all x 2 X; y 2 Y and z 2 Z.

This conditioning rule, however, seems to be some-
what strange. If we consider (x; y) such that
�(x; y) = 0, i.e. impossible combination of events,
and �(y) = 0:5, then �L(xjy) = 0:5, which is at least
contraintuitive.



3.5 Properties of Conditional Independence

We have presented a great number of conditioning
rules and even more conditional independence rela-
tions. The following table summarizes their proper-
ties (CR is conditioning rule, CI is conditional inde-
pendence and � means that the property is satis�ed).

property
CR CI A1 A2 A3 A4 A5

probability theory � � � �

�Z IN � � � �

I � � � �
�DP IS � � � � �

II � � � �
IM � � � �

�DPC IC � � � �

�D ID � � � �
IDI � � �

�DC IDC � � � �

�L IL � � � � �

Table 1: Properties of conditional independence.

Which conditioning rule and independence relation
should be chosen? Since properties (A2) { (A4) can
be viewed as pure formal properties of the notion of ir-
relevance (as argued in [10]), we can exclude De Cam-
pos relation (14). Nevertheless, the question remains:
what is more suitable to require | symmetry or in-
tersection (or both)?

4 Measure-theoretical Approach

These problems may be avoided, at least partially, if
we adopt de Cooman's measure-theoretical approach
[2, 3, 4]. In order to be able to do it, we need a few
de�nitions concerning the t-norms. In next three sub-
sections we will follow above mentioned de Cooman's
papers, but for the purpose of this paper we decided
to give up generality in favour of simplicity.

4.1 Triangular Norms

A triangular norm (or a t-norm) T is a binary oper-
ator on [0; 1] (i.e. T : [0; 1]2 ! [0; 1]) satisfying the
following three conditions:

(i) boundary conditions: for any a 2 [0; 1]

T (1; a) = a; T (0; a) = 0;

(ii) isotonicity: for any a1; a2; b1; b2 2 [0; 1] such that
a1 � a2; b1 � b2

T (a1; b1) � T (a2; b2);

(iii) associativity and commutativity: for any a; b; c 2
[0; 1]

T (T (a; b); c) = T (a; T (b; c));

T (a; b) = T (b; a):

A t-norm T is called continuous, if T is a continuous
function.

There exist three distinguished continuous t-norms
(all of them already mentioned in this paper):

(i) G�odel's t-norm: T (a; b) = min(a; b);

(ii) product t-norm: T (a; b) = a � b;

(iii)  Lukasziewicz' t-norm: T (a; b) = max(0; a+b�1).

4.2 Conditional Possibility Distributions

A mapping h : X ! [0; 1] is called fuzzy variable. The
set of fuzzy variables on X will be denoted by G(X).

Let T be a t-norm on [0; 1]. For any possibilistic mea-
sure � on X with distribution � we de�ne the fol-
lowing binary relation on G(X). For h1 and h2 in
G(X) we say that h1 and h2 are (�; T )-equal almost

everywhere (and write h1
(�;T )

= h2) i� for any x 2 X

T (h1(x); �(x)) = T (h2(x); �(x)):

This notion is very important for the the de�nition of
conditional possibility distribution which is de�ned as
any solution of the equation

�XY (x; y) = T (�Y (y); �XjY (xjy)); (17)

for any (x; y) 2 X�Y. The solution of this equation is
not unique, but the ambiguity vanishes when almost
everywhere equality is considered. We are able to
obtain a representant of these conditional possibility
distributions (if T is a continuous t-norm) by taking
the residual

�XjY (xj�)
(�Y ;T )

= �XY (x; �)4T�Y (�); (18)

that is de�ned as the greatest solution of the equation
(17).

Let us remark, that if we use product t-norm, we will
obtain Dempster's rule of conditioning,  Lukasziewicz'
t-norm corresponds to \ Lukasziewicz' " rule of condi-
tioning, G�odel's t-norm leads to Hisdal's rule of condi-
tioning and the choice of G�odel's t-norm together with
(18) gives the modi�cation of Hisdal's rule proposed
by Dubois and Prade.



4.3 Independence

Regarding the independence notions presented in the
preceding section, the independence in [4] is de�ned
in substantially di�erent way. De Cooman considered
two variables X and Y possibilistically T -independent
i� for any FX 2 X�1(P(X)), FY 2 Y �1(P(Y)),

�(FX \ FY ) = T (�(FX );�(FY ));

�(FX \ FC
Y ) = T (�(FX );�(FC

Y ));

�(FC
X \ FY ) = T (�(FC

X );�(FY ));

�(FC
X \ FC

Y ) = T (�(FC
X );�(FC

Y )):

From this de�nition it immediately follows that the
independence notion is parametrized by T . This fact
was not mentioned in Zadeh's and Hisdal's works since
they used only one t-norm, G�odel's t-norm. The
analogy holds also for independence connected with
Dempster's and \ Lukasziewicz' " conditioning rules.
However, in these cases it is not so apparent as in
Zadeh's approach (but analogous to Hisdal's one); the
de�nitions of independence are, in fact the same. The
t-norms, however, are \hidden" in the conditioning
rules.

De Cooman's de�nition, moreover, reveals the rela-
tion between independence of variables and events.
This problem (although very interesting) is behind
the scope of this paper, nevertheless it is thoroughly
studied in [4].

What is more important, from the viewpoint of this
paper, is the following theorem which is an immediate
consequence of Proposition 2.6. in [4].

Theorem 1 Let us assume that t-norm T is contin-
uous. Then the following propositions are equivalent.

(i) X and Y are T -independent.

(ii) For any x 2 X and y 2 Y

�XY (x; y) = T (�X(x); �Y (y)):

(iii) For any x 2 X and y 2 Y

T (�X(x); �Y (y)) = T (�XjY (xjy); �Y (y)) =

= T (�Y jX (yjx); �X(x)):

This theorem shows that the notion of independence
de�ned by de Cooman is equivalent (for T = min) to
Zadeh's notion of noninteractivity and, in a sense, also
to Hisdal's notion of independence | if the equality
sign in (7) is substituted by almost everywhere equal-
ity.

4.4 Conditional Independence

In light of these facts we de�ned in [12] the condi-
tional possibilistic independence in the following way.
Variables X and Y are possibilistically conditionally
T -independent given Z (IT (X;Y jZ) i� for any pair
(x; y) 2 X �Y

�XY jZ(x; yj�)
(�Z;T )

= T (�XjZ(xj�); �Y jZ(yj�)): (19)

Let us stress again that we do not deal with the point-
wise equality, but with the almost everywhere equal-
ity in contrast to the conditional noninteractivity (5).
The following theorem is a \conditional counterpart"
of Theorem 1.

Theorem 2 Let us assume that t-norm T is contin-
uous. Then the following propositions are equivalent.

(i) X and Y are T -independent given Z.

(ii) For any x 2 X, y 2 Y and z 2 Z

T (�XjY Z(xjy; z); �YZ(y; z)) =

= T (�XjZ(xjz); �YZ(y; z)):

Proof. Let (i) be satis�ed. Then

T (�XjY Z(xjy; z); �YZ(y; z)) =

= T (�XjY Z(xjy; z); T (�Y jZ(yjz); �Z(z))) =

= T (�XY jZ(x; yjz); �Z(z)) =

= T (T (�XjZ(xjz); �Y jZ(yjz)); �Z(z))

= T (�XjZ(xjz); �YZ(y; z));

where we used only (17), (19) and associativity of a
t-norm.

Let (ii) hold. Then (19) is equivalent to the following
equality

T (�XY jZ(x; yjz); �Z(z)) =

= T (T (�XjY Z(xjy; z); �Y jZ(yjz)); �Z(z)) =

= T (�XjY Z(xjy; z); �YZ(y; z)) =

= T (�XjZ(xjz); �YZ(y; z)) =

= T (�XjZ(xjz); T (�Y jZ(yjz); �Z(z))) =

= T (T (�XjZ(xjz); �Y jZ(yjz)); �Z(z));

where we used only (17), (ii) and associativity of a
t-norm. 2

Theorem 2 uni�es the notions of conditional noninter-
activity (5) and Hisdal's de�nition of conditional inde-
pendence (8) and also (13) and (16) (if we substitute
G�odel's t-norm in (5) by product and  Lukasziewicz'



t-norm, respectively) in such a sense, that pointwise
equalities are substituted by almost everywhere ones.

It should also be mentioned that one particular
type of the conditional independence IT (X;Y jZ) has
been proposed in [1] for G�odel's t-norm (see also
IM (X;Y jZ) in Subsection 3.2).

Theorem 3 For any continuous t-norm T relation
IT (X;Y jZ) satis�es (A1) { (A4).

Proof.

(A1) Symmetry immediately follows from commuta-
tivity of a t-norm.

(A2) Let

�XY ZjW (x; y; zj�)
(�W ;T )

=

(�W ;T )
= T (�XjW (xj�); �YZjW (y; zj�)); (20)

then

�XZjW (x; zj�) =

= max
y2Y

�XYZjW (x; y; zj�)
(�W ;T )

=

(�W ;T )
= max

y2Y
T (�XjW (xj�); �YZjW (y; zj�)) =

= T (�XjW (xj�);max
y2Y

�YZjW (y; zj�)) =

= T (�XjW (xj�); �ZjW (zj�))

due to isotonicity of a t-norm.

(A3) Let (20) be satis�ed, we want to prove that also

�XY jZW (x; yj�; �)
(�ZW ;T )

=

(�ZW ;T )
= T (�XjZW (xj�; �); �Y jZW (yj�; �)); (21)

which is equivalent to the following equality

T (�XY jZW (x; yjz; w); �ZW (z; w)) =

= T (�XY jZW (x; yjz; w);

T (�ZjW (zjw); �W (w))) =

= T (�XY ZjW (x; y; zjw); �W (w)) =

= T (T (�XjW (xjw); �YZjW (y; zjw));

�W (w)) =

= T (�XjW (xjw); T (�YZjW (y; zjw);

�W (w))) =

= T (�XjW (xjw); T (�Y jZW (yjz; w);

�ZW (z; w))) =

= T (T (�XjW (xjw); �Y jZW (yjz; w));

�ZW (z; w)) =

= T (�Y jZW (yjz; w); T (�XjW (xjw);

�ZW (z; w))) =

= T (�Y jZW (yjz; w); T (�XjZW (xjz; w);

�ZW (z; w))) =

= T (T (�XjZW (xjz; w); �Y jZW (yjz; w));

�ZW (z; w));

where we used (17), (20), associativity and com-
mutativity of a t-norm and Theorem 2.

(A4) Let (20) and

�XZjW (x; zj�)
(�W ;T )

= T (�XjW (xj�); �ZjW (zj�))

be satis�ed, then

T (�XY ZjW (x; y; zjw); �W (w)) =

= T (T (�XY jZW (x; yjz; w); �ZjW(zjw));

�W (w)) =

= T (T (T (�XjZW (xjz; w); �Y jZW (yjz; w));

�ZjW (zjw)); �W (w)) =

= T (T (�XjZW (xjz; w); �Y jZW (yjz; w));

T (�ZjW (zjw); �W (w))) =

= T (T (�Y jZW (yjz; w); �XjZW (xjz; w));

�ZW (z; w)) =

= T (�Y jZW (yjz; w);

T (�XjZW (xjz; w); �ZW(z; w))) =

= T (�Y jZW (yjz; w);

T (�XjW (xjw); �ZW (z; w))) =

= T (T (�XjW (xjw); �Y jZW (yjz; w));

T (�ZjW (zjw); �W (w))) =

= T (T (�XjW (xjw); �YZjW (y; zjw)); �W (w));

where we used only (17), (20), associativity of a
t-norm and Theorem 2. 2

Property (A5) is not ful�lled, in general, which is ob-
vious from the following example.

Example 1 Let X = Y = Z = f0; 1g and

�XY Z(x; y; z) =

�
1 if x = y = z;

0 else.

Then

�XY (x; y) =

�
1 if x = y;

0 else,

�XZ(x; z) =

�
1 if x = z;

0 else,

�YZ(y; z) =

�
1 if y = z;

0 else,



and
�Y � �Z � 1:

Then, for any t-norm,6

�XY jZ(x; yjz) = T (�XjZ(xjz); �Y jZ(yjz));

�XZjY (x; zjy) = T (�XjY (xjy); �ZjY (zjy));

for any (x; y; z) 2 X�Y � Z, but e.g.

�XY Z(1; 0; 0) 6= T (�X(1); �YZ(0; 0));

i.e. I(X;Y jZ) and I(X;ZjY ) hold, but I(X;Y Zj;)
does not. 3

Therefore we can conclude: There exists no t-norm
T such that IT (X;Y jZ) satis�es (A1){(A5) for arbi-
trary possibility distribution.

This fact perfectly corresponds to the properties of
probabilistic conditional independence. In probabil-
ity theory (A5) need not be satis�ed if the probabil-
ity distribution is not strictly positive. In this case
the conditional probability distributions need not be
de�ned uniquely. In possibility theory this nonunique-
ness is caused by the use of t-norms. If we adopt the
axiomatic approach presented in this section, full�l-
ness of (A5) depends on the choice of a t-norm and on
properties of possibility distribution in question. For
example, if we choose product t-norm, (A5) is always
satis�ed by strictly positive possibility distributions
as expressed by Theorem 4.

Lemma 1 Let �(x; y; z) be strictly positive. Then the
following statements are equivalent.

(i) Variables X and Y are conditionally product-
independent given Z.

(ii) Joint distribution of X;Y and Z has a form

�(x; y; z) = �1(x; z) � �2(y; z):

Proof. Let (i) be satis�ed. Then

�(x; y; z) = �(xjz) � �(yjz) � �(z)

and (ii) is obviously full�lled (e.g. �1(x; z) = �(x; z)

and �2(y; z) = �(y;z)
�(z) ).

Let (ii) be satis�ed. Then

�XY jZ(x; y; z) =

=
�1(x; z) � �2(y; z)

�1(z) � �2(z)
=

=
�1(x; z) � �2(z)

�1(z) � �2(z)
�
�1(z) � �2(y; z)

�1(z) � �2(z)
=

= �XjZ(xjz) � �Y jZ(yjz);

i.e. (i) is satis�ed. 2

6Let us note, that the following equalities are point-
wise, since �Y � �Z � 1:

Theorem 4 Let T be product t-norm and � be
strictly positive possibility distribution. Then also
(A5) is satis�ed.

Proof. Let I(X;Y jZW ) and I(X;ZjYW ) be satis�ed.
It means that (due to Lemma 1) � has a form

�XY ZW (x; y; z; w) =

= �1(x; z; w) � �2(y; z; w) =

= �1(x; y; w) � �2(y; z; w):

Thus, we have for all z

�1(x; y; w) =
�1(x; z; w) � �2(y; z; w)

�2(y; z; w)
:

Choosing a �xed z = z0 we have

�1(x; y; w) = f(x;w) � g(y; w)

where
f(x;w) = �1(x; z0; w)

and

g(y; w) =
�2(y; z0; w)

�2(y; z0; w)
:

Therefore

�XY ZW (x; y; z; w) = f(x;w) � g(y; w) � �2(y; z; w)

and hence I(X;Y ZjW ) (again due to Lemma 1) as
desired. 2

Although we do not have analogical results for other
t-norms, we conjecture that for any of them (at least
for any \reasonable" one) there exists a class of dis-
tributions satisfying (A5).

5 Conclusions

We have overviewed a great deal of conditioning rules
and conditional independence relations that have
been introduced in possibility theory. Special atten-
tion was paid to the measure-theoretical approach
to conditioning and independence presented in Sec-
tion 4. As we have already mentioned, solutions of
the equation (17) produce almost all of previously in-
troduced conditioning rules, perhaps with the excep-
tion of the modi�cations of Hisdal's and Dempster's
rules proposed by De Campos et al. Similarly, adopt-
ing conditional independence notion (19), we will ob-
tain most of presented conditional independence rela-
tions. Properties of this measure-theoretical approach
to conditioning and conditional independence corre-
spond to those possessed by stochastic conditional
independence. On the other hand, the choice of a
t-norm should not be arbitrary, as mentioned in the
case of \ Lukasziewicz' " conditioning rule.



Still, there exist some conditioning rules suggested by
various authors we have not mentioned, but most of
them look rather \arti�cial". The only exception, as
far as we know, are conditioning rules based on be-
havioural interpretation of possibility theory [5]. Un-
fortunately, the detailed study of this approach is be-
yond the scope of this paper as the author is not so
much familiar with this approach.

The aim of this paper was rather to unify di�erent
approaches to conditioning and conditional indepen-
dence then to discriminate between them. From the
practical point of view, the latter task seems to be
more important. Since conditioning and indepen-
dence are very closely connected, any of them will
determine the other. One possibility is to justify con-
ditioning rule as suggested in [5], another way is to
�nd satisfactory justi�cation for one independence no-
tion and to derive conditioning rule according to this
notion.
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