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Abstract

The aim of this paper is to survey and briefly dis-
cuss various rules of conditioning proposed in the
framework of possibility theory as well as various con-
ditional independence relations suggested for these
rules. These conditioning rules and conditional inde-
pendence relations are confronted with formal prop-
erties of conditional independence. Special attention
i1s paid to the conditioning rule based on measure-
theoretical approach [3]. It is argued that this way
of conditioning and the related conditional indepen-
dence notion [12] not only generalize some of pre-
sented rules and conditional independence relations,
but also their properties correspond to those pos-
sessed by stochastic conditional independence.

Keywords. Possibility measure, possibility distribu-
tion, conditioning rule, natural extension, conditional
possibility distribution, possibilistic conditional inde-
pendence, formal properties of conditional indepen-
dence.

1 Introduction

Probability theory had been the only mathematical
tool at our disposal for uncertainty quantification and
processing for three centuries, and therefore many im-
portant theoretical as well as practical achievements
have been obtained in this field. However, during the
last thirty years some new mathematical tools alter-
native to probability theory have emerged. Their aims
are to treat either the cases, when the nature of un-
certainty in question does not meet the demands re-
quested by probability theory, or the cases in which
probabilistic approaches are based on too strong and
hardly assurable (or even verifiable) conditions. Nev-
ertheless, probability theory has always served as a
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source of inspiration for the development of these non-
probabilistic calculi and they have been continually
confronted with probability theory and mathematical
statistics from various points of view. The topic of
this paper 1s a good example of this fact.

Conditioning belongs to the most important features
of any model of uncertainty and therefore it has been
studied within possibility theory from its very begin-
ning. In possibility theory, in contrary to the prob-
abilistic framework, various rules were proposed to
define conditional possibility measures (or distribu-
tions) from joint ones. But there exist no criteria
along which these rules can be compared.

Conditional independence notion, on the other hand,
is connected mainly with the application of uncer-
tainty theories (namely probability theory) to arti-
ficial intelligence. Complexity of practical problems
that are in the center of interest of artificial intelli-
gence results usually in necessity to model the field of
application with the help of a great number of vari-
ables, more precisely hundreds or thousands rather
than tens. Processing distributions of such dimension-
ality would not be possible without some tools allow-
ing to reduce demands on computer memory. Condi-
tional independence, which belongs to such tools,; al-
lows to express these multidimensional distributions
by means of lowdimensional ones and therefore to de-
crease substantially demands on the computer mem-
ory.

We will start with the notion of stochastic conditional
independence. Supposing X,Y and Z are random
variables with a joint probability distribution P we
say that X is conditionally independent of Y given Z
with respect to P and write Ip(X,Y|7) if the equality

P(x,y,2) - Pz(z) = Pxz(z,2) - Pvz(y,z) (1)

(where Pxz, Pyz, Pz denote corresponding marginal
distributions) holds for every value #,y, z of the vari-
ables X,Y, 7. It means that in every situation when
the value of Z is known the values of X and Y are



completely unrelated (from the stochastic point of
view). The distribution P is usually fixed and there-
fore omitted from the notation.

There exist many equivalent definitions of stochastic
conditional independence, e.g.

Pxyz(xly, 2) = Px|z(x|z), (2)

but this definition may be used only in the situation
when Py z(y, z) is positivel. Nevertheless, possibilis-
tic counterparts of this very equality are often taken
for definition of possibilistic conditional independence
as will be seen later.

Among the properties satisfied by the ternary relation
I(X,Y|Z) the following are of principal importance:
(A1) I(X,Y|2) — I(Y,X|2)

symmetry,

(A2) I(X,YZ|W) = I(X,Z|W)

decomposition,

(A3) I(X,YZ|W) — I(X,Y|ZW)

weak union,

(A4) [I(X,Y|ZW) A I(X,Z|W)] — I(X,YZ|W)

contraction,

(A5) [I(X,Y|ZW) A I(X,Z|]YW)] = I(X,YZ|W)

intersection.

Tt is well known (see e.g. [11]), that I(X,Y|Z) defined
by (1) or (2) satisfies (A1) — (A4). If P is strictly
positive, then also (Ab) is satisfied.

The properties (A1) — (A5) may be thought of as
purely formal properties of the notion of conditional
independence without any connection to probability
theory (see e.g. [10]). In the mentioned book a few
examples from different areas of mathematics as well
as a nice example concerning reading books can be
found.

In the present paper we will deal with some definitions
of conditional possibility distributions and conditional
independence and summarize which properties are
satisfied by those independence relations. These prop-
erties, evidently, depend not only on the definition of
the conditioning rule but also on the definition of the
conditional independence relation, and therefore for
one rule of conditioning we can obtain several inde-
pendence relations possessing different properties.

'Let us note that we have adopted Kolmogorov ax-
iomatic probability theory. In de Finetti’s approach, (2)
is fundamental equality and (1) holds only for positive
probabilities.

2 Possibility Measures and
Distributions

Let X be a finite set called universe of discourse which
is supposed to contain at least two elements. A pos-
stbility measure Il 1s a mapping from the power set
P(X) of X to the real unit interval [0, 1] satisfying
the following requirement: for any family {A4,,j € J}
of elements of P(X)

11 A = (A2
(]LE_JJ i) I}lea}( (Aj)

For any A € P(X), TI(A) is called the possibility of
A. T is called normal iff TI(X) = 1.

For any IT there exists a mapping 7 : X — [0, 1] such
that for any A € P(X), II(A) = maxgea 7(x). = is
called a distribution of II. This function is a possi-
bilistic counterpart of a density function in probabil-
ity theory. It is evident, that II is normal iff there
exists at least one € X such that =(x) = 1.

Now, let us consider an arbitrary possibility measure
IT defined on a product universe of discourse X x Y.
The marginal possibility measure is then defined by
the equality

Mx(A) =T1(A xY)

for any A C X and the marginal possibility distribu-
tion by the corresponding expression

nx () = maxm(z,y) (3)
yeY
for any # € X. In what follows, we will omit the
subscript if there are no doubts, which marginal we
have in mind.

Normality of joint possibility measure implies normal-
ity of its marginals. Because normality seems to be
quite a natural requirement, we will always suppose
in the sequel that the joint possibility distribution is
normal and discuss whether the conditional distribu-
tion is also normal.

3 Conditioning and Independence: an
Overview

In this section we will overview various definitions of
conditional possibility distributions® and conditional
independence. Their properties are summarized in
Table 1 at the end of this section.

“max operator must be replaced by sup operator if X
is not supposed to be finite.

®This is not the complete list of these definitions; in
[5] many other conditioning rules can be found, but those
rules have not been studied from the viewpoint of condi-
tional independence.



3.1 Zadeh’s Conditioning Rule and
Noninteractivity Notion

Zadeh’s conditioning rule [14] is very simple and con-
sists in setting conditional possibility distributions
equal to the joint ones:

mz(ely) = 7(2,y) (4)

for all (z,y) € X x Y. As mentioned in [5], this con-
ditioning rule has one great disadvantage — it pro-
duces conditional possibility distributions which are
not normal, whenever the marginal 7(y) < 1.

First attempt to incorporate independence notion into
possibility theory was also done by Zadeh. He called
two variables? X and Y noninteractive iff for any
(r,y) eXxY

m(x,y) = min(n(z), 7(y)).

This notion can be generalized as follows (see e.g.
[8]): the variables X and Y are conditionally nonin-
teractive given 7 (In(X,Y 7)) iff for any (x,y,2) €
XXxYxZ

n(x, y|z) = min(n(z|z), 7(y|2)). (5)

If we take into account Zadeh’s definition of condi-
tional possibility distributions (4), we can rewrite this
equation into

n(x,y, z) = min(r(z, ), 7(y, 2)).

3.2 Hisdal’s Conditioning Rule and Related
Independence Notions

Hisdal [9] proposed to define conditional possibility
distributions as a solution of the equation

m(z,y) = min(r(y), 7(z]y)),z € X,y € Y. (6)

This equation, unfortunately, does not have unique
solution (the only exception is if m(y) = 1 for all
y €Y). All its solutions are given by

(x(2.9))
i (xlu) € { N

if m(z,y) < 7(y),
if m(z,y) = n(y).

An arbitrary solution need not be normal (e.g.
Zadeh’s conditioning rule is a solution of (6)) and
therefore some additional condition must be required
in order to the normality is obtained. One of the
possibilities, proposed by Dubois and Prade [7], is to

“For the purpose of this section we may adopt informal
definition of variable (used e.g. in [14, 9]) as an abstract
object that can assume values in certain universe.

take the greatestsolution of the equation® (or the least
specific), i.e.

| w(zyy) i w(z,y) < 7w (y),

mpp(zly) = { 1 if m(x,y) = (y).

In the same paper Hisdal defined the possibilistic in-
dependence in the following way: variable X is pos-
sibilistically independent of the variable Y iff for any
(r,y) eX xY

mi(ely) = m(@). (7)

Then she moreover showed that independence implies
noninteractivity but the reverse is not valid.

However, Hisdal’s approach exhibited one substan-
tial difficulty already noticed in [3]. Since the condi-
tional possibility distribution i1s not defined uniquely,
her definition of independence is of little sense. The
modification with the greatest solution, on the other
hand, is unique, and therefore it is sensible to take a
generalization of (7) for the definition of conditional
independence I(X,Y|7), i.e.

mpp(zl|y, 2) = mpp(x|z). (8)

Let us note that this definition is possibilistic coun-
terpart of (2).

The asymmetry is often considered to be an unpleas-
ant property and therefore Fonck [8] defined condi-
tional independence in the following way:

Is(X,Y|Z2) = I(X,Y|Z) and I(Y, X|Z). (9)

The notion of conditional independence defined by Ig
is, however, rather restrictive (as mentioned in [1]),
since Ig(X,Y|Z) implies either w(x) = 1 forall z € X
orm(y) =1forallyeY.

It is possible to argue, as suggested in [1], that even
the definition (8) is too restrictive as it requires equal-
ity between two conditional distributions. The alter-
native idea is the following: the supplementary knowl-
edge of the value y cannot improve our knowledge of «
given z, but can deteriorate it, i.e. some information
can be lost. Therefore De Campos et al. [1] defined

II(X,Y|Z) & mpp(x|y, 2) > mpp(x|2) (10)

for all x,y, 2.

In [1] still another possibility, how to weaken the def-
inition of conditional possibility is suggested. We can

5Let us note that Zadeh’s conditioning rule is the small-
est solution of the equation.



replace the equality in (8) by equivalence relation =
compatible with using the minimum (or Godel’s) #-
norm (see Subsection 4.1) as the combination opera-
tor of possibility distribution (more precisely

mop(zly,z) = mpp(z]z) &
S min(rpp(xly, z), 7y, 2)) =
=min(rpp(z|z), 7(y, 2))
for all #,y, z) and define
In(X,Y|Z) < mpp(xly, z) = npp(x|2) (11)

for all x,y, 2.

De Campos et al. [1] proposed also the following mod-
ification mpp, of the conditioning rule mpp suggested
by Dubois and Prade

m(x) if mpp(x|ly) > m(x)

holds for all z,

Tppe (2]y) = if there exists 2/
such that

mpp('|y) < w(x').

Tpp(z|y)

The interpretation of this definition is the following: if
the conditional possibility distribution is “worse” (i.e.
less specific) than the unconditional one, it is better
to use the latter one in order not to loose information.
Evidently, this rule produces normal conditional dis-
tributions.

The new definition of conditional independence is
then (analogously to (8))

IC(X’Y|Z) < TDPc ($|y’ Z) = TDPc (a:|z) (12)

for all z,y,z. Despite the fact that mpp. 1s more
restrictive than mpp, both the conditional indepen-
dence relations I(X,Y|7) and I¢(X,Y|Z) meet the
same system of properties (Al) — (A4) (cf. Table 1).

3.3 Dempster’s Conditioning Rule and
Related Independence Notions

In his seminal paper [6] on upper and lower proba-
bilities induced by multivalued mappings Dempster
suggested a rule for conditioning upper probabilities.
Since possibility measures are upper probabilities in-
duced by multivalued mappings of a special type,
Dempster’s rule can also be used for defining condi-
tional possibility distributions. Applying Dempster’s
rule, we obtain:

W(l‘,y) 1
mp(zly) = { ww) o m(y) > 8’

1 if m(y) =

bl

ie. if m(y) = 0 Dempster’s rule chooses the least
specific value mp(z|y) = 1 and therefore conditional
possibility distributions are evidently normal.

In this case, conditional independence Ip(X,Y|7) is
usually defined analogously to (8) if

™o (z|y, 2) = 7p(x]z) (13)
for all values z,y, z such that = (y, z) > 0.

Using the same arguments as in the case of mpp (see
[1]), we can weaken this definition by setting

Ipr(X,Y|7) & np(xly, z) > mp(x|2) (14)

for all ,y,z such that w(y,z) > 0. The properties
of this conditioning rule are, nevertheless, somewhat
surprising (cf. Table 1).

This fact led De Campos et al. to a modification mp
of mp proposed in [1] in the following way:

(@) if (2, y) > m(2) - 7 (y)
holds for all #,

e (zly) = if there exists '
such that

n(x',y) < w(z') - 7(y).

Again, this conditioning rule is more restrictive than
Dempster’s one (cf. mpp, and mpp in Subsection 3.2),
i.e. the resulting conditional possibility distribution
However, in
this case the modification influences the properties

™o (z]y)

1s more specific, nevertheless normal.

possessed by the conditional independence relation

I(X,Y|Z) defined by
Ipc(X,Y|Z) < mp.(2ly, 2) = mpo(x]2)  (15)

for all x,y, 2.

3.4 “Lukasziewicz’ ” Conditioning Rule and
Independence Notion

Fonck [8] studied also properties of conditional inde-
pendence based on the Lukasziewicz’ ¢-norm (see Sub-
section 4.1). The conditioning rule is then

nr(zly) = w(x,y) on(y) + 1

for all z € X and y € Y, and it is again normal. She
defined conditional independence analogously to (8)
by

IL(X,Y|7) & np(z|y, 2) = m(x|z) (16)
forallz € X,y €Y and z € Z.

This conditioning rule, however, seems to be some-
what strange. If we consider (z,y) such that
n(x,y) = 0, i.e. impossible combination of events,
and 7(y) = 0.5, then 7z (z]y) = 0.5, which is at least
contraintuitive.



3.5 Properties of Conditional Independence

We have presented a great number of conditioning
rules and even more conditional independence rela-
tions. The following table summarizes their proper-
ties (CR is conditioning rule, CT is conditional inde-
pendence and * means that the property is satisfied).

property
CR CI A1|A2|A3|A4|A5
| probability theory || * | * | * | * | |
Lrmze | v [« [« ]«x[+«] |
I * * * *
TppP Is * * * * *
Iy * * * *
Iyr * * * *
TDPc Ic * * * *
D Ip * * * *
Ipr * * *
TDc Ipc | o | o | o
Lme [ s [ [ v [« [ x|

Table 1: Properties of conditional independence.

Which conditioning rule and independence relation
should be chosen? Since properties (A2) — (A4) can
be viewed as pure formal properties of the notion of ir-
relevance (as argued in [10]), we can exclude De Cam-
pos relation (14). Nevertheless, the question remains:
what is more suitable to require — symmetry or in-
tersection (or both)?

4 Measure-theoretical Approach

These problems may be avoided, at least partially, if
we adopt de Cooman’s measure-theoretical approach
[2, 3, 4]. In order to be able to do it, we need a few
definitions concerning the -norms. In next three sub-
sections we will follow above mentioned de Cooman’s
papers, but for the purpose of this paper we decided
to give up generality in favour of simplicity.

4.1 Triangular Norms

A triangular norm (or a t-norm) T is a binary oper-
ator on [0,1] (i.e. T :[0,1]* — [0, 1]) satisfying the
following three conditions:
(i) boundary conditions: for any a € [0, 1]
T(1,a) = a, T(0,a) = 0;
(ii) isotonicity: for any a1, as, by, by € [0, 1] such that
ar < az, by < by
T(ay,by) < T(as, bs);

(iil) associativity and commutativity: for any a,b,c €

[0, 1]

T(T(a,b),c) =
T(a,b) =

T(a, T(b,c)),
T(b,a).

A t-norm T 1is called continuous, if T'is a continuous
function.

There exist three distinguished continuous ¢-norms
(all of them already mentioned in this paper):

(i) Gédel’s t-norm: T(a,b) = min(a, b);
(i) product t-norm: T(a,b) = a - b;

(iii) Lukasziewicz’t-norm: T(a,b) = max(0, a+bsl).

4.2 Conditional Possibility Distributions

A mapping h : X — [0, 1] is called fuzzy variable. The
set of fuzzy variables on X will be denoted by G(X).

Let T be a t-norm on [0, 1]. For any possibilistic mea-
sure Il on X with distribution = we define the fol-
lowing binary relation on G(X). For h; and hs in
G(X) we say that hy and hq are (II,7)-equal almost

everywhere (and write hy (ILT) ha) iff for any z € X

T(hi(z), m(x)) = T(ha(2), w(x)).

This notion is very important for the the definition of
conditional possibility distribution which 1s defined as
any solution of the equation

WXY(xay) :T(Try(y),ﬂ'x|y(l‘|y)), (17)

for any (x,y) € XxY. The solution of this equation is
not unique, but the ambiguity vanishes when almost
everywhere equality is considered. We are able to
obtain a representant of these conditional possibility
distributions (if T" is a continuous ¢t-norm) by taking
the residual

(Tly, T

mxpy (el T2 mxy (@, ) apmy (), (18)

that is defined as the greatest solution of the equation

(17).

Let us remark, that if we use product t-norm, we will
obtain Dempster’s rule of conditioning, Lukasziewicz’
t-norm corresponds to “Lukasziewicz’ ” rule of condi-
tioning, Godel’s t-norm leads to Hisdal’s rule of condi-
tioning and the choice of Godel’s t-norm together with
(18) gives the modification of Hisdal’s rule proposed
by Dubois and Prade.



4.3 Independence

Regarding the independence notions presented in the
preceding section, the independence in [4] is defined
in substantially different way. De Cooman considered
two variables X and Y possibilistically T'-independent
iff for any Fx € X~1(P(X)), Fy € Y~HP(Y)),

II(Fx N Fy) = T(II(Fx), I(Fy)),
(Fx N FY) = TAL(Fx ), T(FY)),
H(FY N Fy) = T(I(FE), T(Fy)),

I(FY N FyY) = TI(FY), I(FY)).

From this definition it immediately follows that the
independence notion is parametrized by T'. This fact
was not mentioned in Zadeh’s and Hisdal’s works since
they used only one t-norm, Godel’s t-norm. The
analogy holds also for independence connected with
Dempster’s and “Lukasziewicz’ ” conditioning rules.
However, in these cases it i1s not so apparent as in
Zadeh’s approach (but analogous to Hisdal’s one); the
definitions of independence are, in fact the same. The
t-norms, however, are “hidden” in the conditioning
rules.

De Cooman’s definition, moreover, reveals the rela-
tion between independence of variables and events.
This problem (although very interesting) is behind
the scope of this paper, nevertheless it is thoroughly
studied in [4].

What is more important, from the viewpoint of this
paper, is the following theorem which is an immediate
consequence of Proposition 2.6. in [4].

Theorem 1 Let us assume that t-norm T is contin-
uous. Then the following propositions are equivalent.

(i) X and Y are T-independent.

(ii) Foranyz € X and y €'Y

mxy (z,y) = T(rx(2), 7y (y))-

(iii) For anyx € X andy €'Y

T(rx(x), 7y (y)) T(mx )y (zly), Ty (y)) =

= T(ryx(ylz), 7x(z)).

This theorem shows that the notion of independence
defined by de Cooman is equivalent (for 7' = min) to
Zadeh’s notion of noninteractivity and, in a sense, also
to Hisdal’s notion of independence — if the equality
sign in (7) is substituted by almost everywhere equal-

ity.

4.4 Conditional Independence

In light of these facts we defined in [12] the condi-
tional possibilistic independence in the following way.
Variables X and Y are possibilistically conditionally
T-independent given Z (Ip(X,Y|7) iff for any pair
(r,y) eX xY

(Tiy,T

Txviz(x, y|) 5)T(FX|Z($|'),7TY|Z(3/|'))~ (19)

Let us stress again that we do not deal with the point-
wise equality, but with the almost everywhere equal-
ity in contrast to the conditional noninteractivity (5).
The following theorem is a “conditional counterpart”
of Theorem 1.

Theorem 2 Let us assume that t-norm T is contin-
uous. Then the following propositions are equivalent.

(i) X and Y are T-independent given 7.

(ii) Foranyz € X, y€Y and z € Z

T(rxyyz(zly, 2), 7vz(y, 2)) =
=T(rx|z(z|2), vz (y, 2)).

Proof. Let (i) be satisfied. Then

,2), myz(y, 2)) =
=T7TX|YZ( zly, ), T(my |z (ylz), 7z (%)) =
7TXY|Z(x ylz), m2(2)) =
T(mx|z(x]2), 7y z(y]2)), 72 (2))

),

mx|z(2]2), 7y z (y, z)

where we used only (17), (19) and associativity of a
{-norm.

Let (ii) hold. Then (19) is equivalent to the following
equality

() =
T(T(mxpy z(2ly, 2), 7y 2 (y]2
T(mx)yz(xly, ), 7y z(y, 2)

=T (rxz(x|2), 7yz(y, 2)) =
T( |z
T( |z

T(rxy|z(z,ylz), 7z
|2)),72(2)) =
) =
y7z2(2)) =
), 7z(2)),
where we used only (17), (ii) and associativity of a
{-norm. O

mx|z(x|2), T(my)z(

ylz), ™
T(nx|z(x]2), 7y z(y]2)

Theorem 2 unifies the notions of conditional noninter-
activity (5) and Hisdal’s definition of conditional inde-
pendence (8) and also (13) and (16) (if we substitute
Godel’s t-norm in (5) by product and Lukasziewicz’



t-norm, respectively) in such a sense, that pointwise
equalities are substituted by almost everywhere ones.

It should also be mentioned that one particular
type of the conditional independence It (X,Y|Z) has
been proposed in [1] for Godel’s ¢-norm (see also
In(X,Y|Z) in Subsection 3.2).

Theorem 3 For any continuous t-norm T relation

Ip(X,Y|7) satisfies (A1) - (A4).
Proof.

(A1) Symmetry immediately follows from commuta-
tivity of a t-norm.

(A2) Let
(HW vT)

7TXYZ|W($ayaZ|') =

(HVLVT)

= " T(rxyw(z|), myvziw (y, 2[),  (20)

then

7TXZ|W(1‘,Z|') =
(Hw,T)
= HlaX?TXYZ|W(l‘,yaZ|') =
yveY

ITw,T
( = )maXT(ﬂ'X|W(l‘|'),7TYZ|W(3/aZ|')) =
yeY

=T (mxyw(x|-), maxmy 71w (y, 2]-)) =
yeY

=T (rxyw(x|), mz1w(2]))
due to isotonicity of a t-norm.
(A3) Let (20) be satisfied, we want to prove that also

(Izw,T)
xy|zw(z, Yyl ) =

Mzw,T
( = )T(ﬂ'X|ZW(l‘|'a'),7TY|ZW(3/|',')),(21)
which is equivalent to the following equality

T(rxy|zw (2, Y|z, w), Tzw (2, w)) =
=T (mxy|zw(x, ylz,w),

T(mziw (z|w), mw (w))) =

(mxy ziw (2, y, z|w), 7w (w)) =

(T(mxw (z|w), 7y z1w (y, 2|w)),
mw (w)) =

=T (rmxyw (x|w), T(7y 21w (y, 2|w),
mw (w))) =

=T (mxyw (x|w), T(7y)zw (y|z, w),
mzw (2, w))) =

= T(T(rxw (x]w), 7y zw (y|z, w)),

mzw(z,w)) =

=T
=T

= T(my zw (ylz, w), T(mxw (2|w),
mzw(z,w))) =
=T (my|zw (ylz, w), T(rx|zw (2]2, w),
mzw(z,w))) =
=T (T(rx|zw (x|z, w), Ty zw (y]2, w)),
mzw (2, w)),

where we used (17), (20), associativity and com-
mutativity of a t-norm and Theorem 2.

(A4) Let (20) and

(T, T

Txzw(x, z[) = )T(FX|W($|')MTZ|W(Z|'))

be satisfied, then

T(rxyziw (z,y, z|w), 7w (w)) =
=T (T(rxvyzw(x,ylz, w), 77w (z|w)),
mw (w)) =
=T(T (T (mx|zw (x]2,w), 7y zw (Y2, w)),
mziw (z|w)), Tw (w)) =
=T (T(rx|zw (x|z, w), Ty zw (y]2, w)),
T(mzyw (z|w), mw (w))) =
=T (T(my|zw (Y2, w), Tx|zw (2|2, w)),
mzw(z,w)) =
= T(my|zw(ylz, w),
T(rxizw (z|z,w), 72w (2, w))) =
= T(my|zw(ylz, w),
T(rxyw (z|w), Tzw (2, w))) =
= T(T(rxyw (z|w), 7y zw (y]2, w)),
T(mzyw (z|w), mw (w))) =
=T (T (rxw (z|w), 7y 21w (y, 2|w)), Tw (w)),

where we used only (17), (20), associativity of a
t-norm and Theorem 2. ad

Property (Ab) is not fulfilled, in general, which is ob-
vious from the following example.

Example 1 Let X =Y =Z = {0,1} and

1 ifz= =z,
Txyz(%,y,2) :{ 0 else. !
Then
1 ifz =Y,
Txy(z,y) = { 0 else,
1 lfl‘ =z,
Txz(z,2) = 0 else,
Ty z (Y, %) :{ 0 else,



and

7TyE7T2:1.

Then, for any t-norm,°

T(rx|z(x]2), 7y 2 (ylz)),
T(rxpy (z|y), 721y (2])),
for any (z,y,2) € X xY x Z, but e.g.

FXYZ(la Oa 0) 7£ T(TFX(I)’ FYZ(O’ 0))’

ie. I(X,Y]Z) and I(X,Z|Y) hold, but I(X,Y Z|0)
does not. <&

7TXY|Z($,3/|Z) =
7TXZ|Y(1‘,Z|3/) =

Therefore we can conclude: There exists no t-norm
T such that I (X,Y|7) satisfies (Al)-(A5) for arbi-
trary possibility distribution.

This fact perfectly corresponds to the properties of
probabilistic conditional independence. In probabil-
ity theory (A5) need not be satisfied if the probabil-
ity distribution is not strictly positive. In this case
the conditional probability distributions need not be
defined uniquely. In possibility theory this nonunique-
ness is caused by the use of t-norms. If we adopt the
axiomatic approach presented in this section, fullfil-
ness of (A5) depends on the choice of a t-norm and on
properties of possibility distribution in question. For
example, if we choose product ¢-norm, (Ab) is always
satisfied by strictly positive possibility distributions
as expressed by Theorem 4.

Lemma 1 Let w(z,y, z) be strictly positive. Then the
following statements are equivalent.

(i) Variables X and Y are conditionally product-
independent given 7.

(ii) Joint distribution of X,Y and Z has a form
F($a Y, Z) = Pl(l’a Z) ) pZ(ya Z)
Proof. Let (i) be satisfied. Then
m(e,y,2) = w(x]2) - 7w (ylz) - 7(2)
and (ii) is obviously fullfilled (e.g. pi1(z,z) = n(x, 2)
and pa(y, z) = T2,
Let (ii) be satisfied. Then

7TXY|Z($,3/, Z) =

= 7TX|Z(l‘|Z) '7TY|Z(3/|Z
i.e. (i) is satisfied. m|

Let us note, that the following equalities are point-
wise, since 1y = 7z = 1.

Theorem 4 Let T be product t-norm and w be
strictly positive possibility distribution. Then also
(A5) is satisfied.

Proof. Let I(X,Y|ZW) and I(X, Z|Y W) be satisfied.
It means that (due to Lemma 1) 7 has a form
FXYZW(l‘,y,Zaw) =
= p1($azaw) 'pZ(yaZaw) =
— Ul(xaya w) : UZ(yaZaw)'
Thus, we have for all z

p1($azaw) 'pZ(yaZaw)
O'z(y,Z,W) .

(o] (l‘, Y, w) =
Choosing a fixed z = zg we have

o1(z,y, w) = f(z,w) - g(y, w)

where
f($a w) = Pl(l’a 20, w)
and ( )
p2\Y, 20, W
JWw) = —————~,
g(y ) UZ(ya 20, w)
Therefore

FXYZW(l‘,y,Zaw) = f($aw) g(ya w) : UZ(yaZaw)

and hence I(X,Y Z|W) (again due to Lemma 1) as
desired. O

Although we do not have analogical results for other
t-norms, we conjecture that for any of them (at least
for any “reasonable” one) there exists a class of dis-
tributions satisfying (A5).

5 Conclusions

We have overviewed a great deal of conditioning rules
and conditional independence relations that have
been introduced in possibility theory. Special atten-
tion was pald to the measure-theoretical approach
to conditioning and independence presented in Sec-
tion 4. As we have already mentioned, solutions of
the equation (17) produce almost all of previously in-
troduced conditioning rules, perhaps with the excep-
tion of the modifications of Hisdal’s and Dempster’s
rules proposed by De Campos et al. Similarly, adopt-
ing conditional independence notion (19), we will ob-
tain most of presented conditional independence rela-
tions. Properties of this measure-theoretical approach
to conditioning and conditional independence corre-
spond to those possessed by stochastic conditional
independence. On the other hand, the choice of a
t-norm should not be arbitrary, as mentioned in the
case of “Lukasziewicz’ ” conditioning rule.



Still, there exist some conditioning rules suggested by
various authors we have not mentioned, but most of
them look rather “artificial”. The only exception, as
far as we know, are conditioning rules based on be-
havioural interpretation of possibility theory [5]. Un-
fortunately, the detailed study of this approach is be-
yond the scope of this paper as the author is not so
much familiar with this approach.

The aim of this paper was rather to unify different
approaches to conditioning and conditional indepen-
dence then to discriminate between them. From the
practical point of view, the latter task seems to be
more important. Since conditioning and indepen-
dence are very closely connected, any of them will
determine the other. One possibility is to justify con-
ditioning rule as suggested in [5], another way is to
find satisfactory justification for one independence no-
tion and to derive conditioning rule according to this
notion.
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