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Abstract

To develop a general reliability theory taking into ac-
count various sources of information and a lack of sat-
isfactory data on which estimates of system parame-
ters can be based, the theory of imprecise probabili-
ties can be used. The purpose of the paper is to study
structural reliability based on the imprecise probabili-
ty models taking into account the ageing aspect of the
lifetime distributions, independence of system compo-
nents, and a lack of satisfactory data. We use the new
non-parametric life distribution classes which gener-
alize the well-known increasing and decreasing failure
rate distributions and can represent various judge-
ments related to the lifetime distributions. In this
paper we apply the theory of imprecise probabilities
to reliability analysis of monotone systems.

Keywords. Reliability, imprecise probabilities, nat-
ural extension, monotone systems, mean time to fail-
ure, lifetime distribution.

1 Introduction

Reliability assessments that are combined to describe
systems and components may come from various
sources. Some may be objective measures, based on
relative frequencies or on well established statistical
models. A part of the reliability assessments may be
supplied by experts or engineers. Especially in prac-
tical reliability problems, the use of judgements of en-
gineers may be important, since it may be the only
source of information [2]. The reliability assessments
may be conveyed by statements in natural language
because natural language expressions are often more
appropriate for the expressions of reliability informa-
tion than numerical expressions. To develop a general
reliability theory taking into account various sources
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of information and a lack of satisfactory data on which
estimates of system parameters can be based, the the-
ory of imprecise probabilities [12, 13, 5, 6] can be used.
A general framework for the theory of imprecise prob-
abilities is provided by upper and lower previsions.
They can model a very wide variety of kinds of un-
certainty, partial information, and ignorance [4, 13].
Walley's theory of imprecise probabilities is arguably
the most satisfactory of all current theories of uncer-
tain reasoning from a foundational point of view [7].

Coolen and Newby [3, 2] have shown how the com-
monly used concepts in reliability theory can be ex-
tended in a sensible way and combined with prior
knowledge through the use of imprecise probabilities.
However, they provides a study of methods to develop
parametric models for lifetimes.

Suppose that the information we have about the func-
tioning of components and systems is conveyed by
statements in natural language. For example, judge-
ments of engineers may have such the form as "MTTF
(mean time to failure) of component A equals 10 h and
MTTF of component B is between 3 and 5 h". How
to compute reliability of a series system consisting of
these components by such the partial information? If
we do not know the component lifetime distribution,
then the problem can not be solved by means of the
classical reliability theory methods. An obvious way
is to consider the available reliability measures as the
lower and upper previsions and to use the theory of
imprecise probabilities for calculating the system re-
liability measures as new previsions. In particular,
the problem stated in the above example has been
solved by means of a general procedure called natural
extension [8, 9, 10], which produces a coherent over-
all model from an arbitrary collection of judgements
and can be regarded as a linear optimization problem
[12, 5].

At the same time, there are judgements whose rep-
resentation by previsions is a di�cult problem. Sup-
pose that we obtain some additional information such



as "the long infancy and wear-out periods for compo-
nent A were observed, only the wear-out period for
component B was observed, components are indepen-
dent". The above judgements take into account the
ageing aspect of the lifetime distributions (three phas-
es of the so-called "bathtub" curve characterizing the
lifetime evolution of a system: early failure, useful
life, wear-out periods) and condition of independence
of components. Now the constraints in the optimiza-
tion problem are non-linear and the computation of
natural extension is more complicated. How to com-
pute reliability of the system by such the additional
information?

The purpose of the paper is to study structural relia-
bility based on the imprecise probability models tak-
ing into account the ageing aspect of the lifetime dis-
tributions, independence of system components, and
a lack of satisfactory data. We introduce the new
non-parametric life distribution classes which gener-
alize the well-known increasing and decreasing failure
rate distributions [1] and can represent various judge-
ments related to the lifetime distributions. In this
paper we apply the theory of imprecise probabilities
to reliability analysis of simple unrepairable systems.

2 Natural extension

Consider a system consisting of n components. Let
fij(xi) be the functions of the i-th component lifetime
xi, j = 1; :::;mi. According to [1], the system lifetime
can be uniquely determined by the component life-
times. Denote X = (x1; :::; xn). Then there exist a
function g(X) of the components lifetimes character-
izing the system reliability behavior. The functions
fij(xi) and g(X) can be regarded as gambles. Suppose
that partial statistical information is represented as a
set of lower and upper previsions aij = M(fij(xi)),

aij = M (fij(xi)), i = 1; :::; n, j = 1; :::;mi. Here
mi is a number of quantitative or qualitative judge-
ments and assessments related to i-th component. For
example, we consider a series system consisting of
two components. Suppose that we know only upper
bounds �1, �2 for two moments of the �rst component
lifetime and the upper probability p that the second
component is operating in the interval [0; � ]. Then
we have the following set of previsions: M (x1) = �1,
M (x21) = �2, M (I[0;� ](x2)) = p. Here I[0;� ](x2) = 1 if
x2 2 [0; � ], I[0;� ](x2) = 0 if x2 =2 [0; � ]. If we have to
�nd bounds for the �rst moment of the system life-
time (MTTF), then g(x1; x2) = min(x1; x2) and the
system MTTFs can be regarded as previsions M (g)
and M (g).

For computing new previsions M (g) and M (g) char-
acterizing the system reliability, the natural extension

can be used in the following form [8, 9, 10]:

M(g) = min
c;cij;dij

0
@c+ nX

i=1

miX
j=1

�
cijaij � dijaij

�1A ;

M(g) = �M (�g); (1)

subject to cij 2 R+, dij 2 R+, c 2 R, and

g(X) � c +
nX
i=1

miX
j=1

(cijfij(xi) � dijfij(xi)) ; 8xi � 0:

Returning to the above example, we can write the
following problem:

M (g) = min
c;c11;c12;d21

(c + c11�1 + c12�2 + c21p);

M (g) = �M (�g);

subject to c11; c12; c21 2 R+, c 2 R, and 8xi � 0;

min(x1; x2) � c+ c11x1 + c12x
2
1 + c21I[0;� ](x2):

So, new previsions M (g) and M(g) can be computed
as a solution to a linear programming problem. The
natural extension in the form of the linear optimiza-
tion problem is a powerful tool. However, it has some
limitations. For instance, independence relationship
can not be represented simply in terms of gambles,
since it is non-linear. The same di�culties arise when
there is additional information about the probability
distributions or distribution classes of the component
lifetimes. In this case, the natural extension can be
written in the form of expectations [12, 6]:

M(g) = max

Z 1
0

� � �
Z 1
0

g(X)�(X)dX;

M(g) = min

Z 1
0

� � �
Z 1
0

g(X)�(X)dX; (2)

subject toZ 1
0

� � �
Z 1
0

�(X)dX = 1; �(X) � 0;Z 1
0

� � �
Z 1
0

fij(xi)�(X)dX 2 [aij; aij];

i � n; j � mi:

If components are independent, then �(X) = �(x1) �
� � �(xn). It should be noted that there are di�erent
mathematical de�nitions of independence [12]. Here
we consider the de�nition of independence in the sense
of classical probability theory. Returning to the above
example under the condition of independence, we can



write the following problem:

M (g) = maxZ 1
0

Z 1
0

min(x1; x2)�1(x1)�2(x2)dx1dx2;

M (g) = minZ 1
0

Z 1
0

min(x1; x2)�1(x1)�2(x2)dx1dx2;

subject toZ 1
0

�i(x)dx = 1; �i(x) � 0; i = 1; 2;Z 1
0

x�1(x)dx � �1;

Z 1
0

x2�1(x)dx � �2;Z �

0
�2(x)dx � p:

Note that the integral
R1
0 � � � R10 g(X)�(X)dX can be

represented in a di�erent form. Let Y = g(X) and
H(y) = Pr(Y � y). ThenZ 1

0

� � �
Z 1
0

g(X)�(X)dX =

Z 1
0

H(y)dy:

3 Distribution classes

In order to formalize judgements about the ageing
aspect of the lifetime distributions we introduce the
new exible distribution classes and briey investi-
gate their properties. Arbitrary probability distribu-
tions of the component (system) lifetime X can be
written as H(t) = Pr(X � t) = exp(��(t)), where
�(t) =

R t
0
�(x)dx, �(t) is the time-dependent failure

rate. Obviously, the function �(t) is non-decreasing
and �(0) = 0. Let r and s be the numbers such
that 0 � r < s � +1. Let us de�ne a distribution
class H(r; s) as follows. A probability distribution
belongs to H(r; s) if �(t)=tr increases and �(t)=ts de-
creases as t increases. In that case we will denote
� 2 �(r; s) = f�(t) : exp(��(t)) 2 H(r; s)g.
Special cases:

1. H(1;+1) is the class of all IFRA (increasing fail-
ure rate average) distributions [1];

2. H(r; s), 1 � r < s, is the class of all IFRA distri-
butions whose failure rate has a bounded increase
with the minimal r and maximal s indices;

3. H(0; 1) is the class of all DFRA (decreasing fail-
ure rate average) distributions [1];

4. H(r; s), r < s � 1, is the class of all DFRA dis-
tributions whose failure rate has a bounded de-
crease with the minimal r and maximal s indices;

5. H(r; s), r � 1 � s, is the class of distributions
whose failure rate can be non-monotone. Note
that these distributions are the most popular in
reliability because they characterize periods of
component wear-in and wear-out.

Let us state some properties of distributions from
H(r; s) without proofs:

1. If r1 � r2 � s2 � r1, then �(r1; s1) � �(r2; s2)
and H(r1; s1) � H(r2; s2).

2. The function � ln(H(t))=ts is decreasing in t, the
function � ln(H(t))=tr is increasing in t.

3. The following inequalities hold H�r

(t) �
H(�t) � H�s

(t), 0 < � < 1.

4. The following inequalities hold r�(t)=t � �(t) �
s�(t)=t.

5. The equality r = s is valid i� H(t) is the
Weibull distribution with the scale parameter �
and shape parameter r = s.

6. If �(t) is the density function, then

r = min
t

�t�(t)
H(t) ln(H(t))

; s = max
t

�t�(t)
H(t) ln(H(t))

:

7. The Gamma distribution with the density func-
tion �k (t) = �ktk�1e��t=� (k) belongs to �(1; k)
by k � 1 and to �(k; 1) by k < 1.

8. Let

�(t) =

8<
:

c1 � d1t; 0 � t � A
c2; A � t < B

c3 + d3t; t � B
:

be the failure rate of H(t) and c1, c2, c3, d1,
d2 2 R+. Then H(t) 2 H(r; 2), where

r =
c1 � d1A

c1 � d1A=2 :

Example 1 Let

�(t) =

8<
:

2� t; 0 � t � 1
1; 1 < t < 2
t; t � 2

:

Then

�(t) =

8<
:

2t� t2=2; 0 � t � 1
t+ 1=2; 1 < t < 2

t2=2 + 1=2; t � 2
:

It follows from Property 8 that � 2 �(2=3; 2).

In the following section we must introduce some pre-
liminary results.



4 Basic lemmas

The following Lemmas give a way to solve problem
(2) for several important special cases.

Lemma 1 Suppose bk � 0, k = 1; :::; n, is a mono-
tonically increasing sequence. Denote

z(�1; :::; �n) =

Pn
k=1 ck exp (�bk(�1 + :::+ �k))Pn
k=1 exp (�bk(�1 + :::+ �k))

:

If the sequence c1; :::; cn is increasing, then the func-
tion z is monotonically decreasing in �k � 0, k =
1; :::; n. If the sequence c1; :::; cn is decreasing, then
the function z is monotonically increasing.

Proof. Denote Bk = exp (�bk(�1 + :::+ �k)). The
derivative of z with respect to �j is of the form:

@z

@�j
=

Pn
k;l=j;k>l(cl � ck)(bk � bl)(Bk + Bl)

(
Pn

k=1Bk)
2

+

Pn
k=j

Pj�1
l=1 (cl � ck)bk(Bk + Bl)

(
Pn

k=1Bk)
2 :

Since bk � bl � 0 for k > l, then for the increasing
sequence ck, the inequality @z

@�j
� 0 is valid. This

implies that z is decreasing in �j. For the decreasing
sequence ck, the inequality @z

@�j
� 0 is valid. This

implies that z is increasing in �j. 2

Lemma 2 Let c(t) be a monotone function. Then
the following optimization problem

z = max

Z b

a

c(t) exp(��(t))dt

subject to � 2 �(r; s),
R b
a
exp(��(t))dt = d, has a

solution. If c(t) is decreasing, then z achieves its
maximum at �(t) = cts: If c(t) is increasing, then z
achieves its maximum at �(t) = ctr . Here c = const.

Proof. Let us consider the following optimization
problem:

z = max

 
�

nX
k=1

ck exp (�xk)
!

subject to �
Pn

k=1 exp (�xk) = d. Here � = (b �
a)=n, 0 < � < 1, ck = c(a + �k). We assume that
the sequence xk(a+�k)�s is decreasing, the sequence
xk(a + �k)�r is increasing, xk = �(a + �k) � 0. Let
x1 be a given positive number. De�ne the new non-
negative variables as follows:

�1 =
x1

(a+ �)r
;

�k =
xk

(a+ �k)r
� xk�1
(a + �(k � 1))r

; k = 2; :::; n:

Then xk=(a+�k)
r = �1+ :::+�k. Since the sequence

xk(a + �k)�s is decreasing, then

xk �
�

a + �k

a+ �(k � 1)

�s
xk�1; k = 2; 3; :::; n:

This implies

�k =
xk

(a+ �k)r
� xk�1
(a + �(k � 1))r

�
�

(a+ �k)s�r

(a+ �(k � 1))s
� 1

(a+ �(k � 1))r

�
xk�1

=
(a+ �k)s�r � (a+ �(k � 1))s�r

(a + �(k � 1))s
xk�1:

Hence

�k � (a+ �k)s�r � (a + �(k � 1))s�r

(a+ �(k � 2))s
xk�2

� ::: � (a+ �k)s�r � (a + �(k � 1))s�r

(a+ �)s
x1:

We have obtained the upper bound for �k. Now we
have the following optimization problem:

z = max

 
�

nX
k=1

ck exp (�(a + �k)r(�1 + :::+ �k))

!

subject to

d = �

nX
k=1

exp (�(a+ �k)r(�1 + :::+ �k)) ;

�1 =
x1

(a + �)r
> 0;

0 � �k � (a+ �k)s�r � (a+ �(k � 1))s�r

(a+ �)s
x1;

k = 2; :::; n:

Let c(t) be the increasing function. According to Lem-
ma 1, z achieves its maximum at small values of �k,
i.e. at �2 = ::: = �n = 0. Then xk = (a + �k)r�1.
Since the sequence

xk
(a + �k)s

=
�1

(a+ �k)s�r

is decreasing, then we have obtained the optimal so-
lution to the above problem. By using the passage to
limit as � ! 0, we obtain that z achieves its maxi-
mum at �r(t) = ctr:

Let c(t) be the decreasing function. According to
Lemma 1, z achieves its maximum at large values of
�k, i.e. at

�k =
(a+ �k)s�r � (a + �(k � 1))s�r

(a+ �)s
x1:



This implies

�1 + :::+ �k =
(a+ �k)s�r

(a + �)s
x1:

Hence

xk =

�
a+ �k

a + �

�s

x1; k = 1; :::; n:

Since the sequence

xk
(a+ �k)s

=
(a+ �k)s�r

(a + �)s
x1

is increasing, then we have obtained the optimal so-
lution to the above problem. By using the passage to
limit as � ! 0, we obtain that z achieves its maxi-
mum at �(t) = cts: 2

Denote �(a; s; t) =
�
� (1 + 1=s) ta�1

�s
. Here �(t) is

the gamma function.

Lemma 3 Let c(t) be a monotone function. Then
the following optimization problem

z = max

Z 1
0

c(t) exp(��(t))dt

subject to

� 2 �(r; s);

Z 1
0

exp(��(t))dt = a;

has a solution. If c(t) is decreasing, then z achieves its
maximum at �s(t) = �(a; s; t). If c(t) is increasing,
then z achieves its maximum at �r(t) = �(a; r; t).

Proof. The proof follows from Lemma 2. If c(t) is
decreasing, then �s(t) = cts and the value of c can be
found from the equation

R1
0 exp(�cts)dt = a. Hence

c =
�
� (1 + 1=s) a�1

�s
and �s(t) = �(a; s; t). The

second case is proved similarly. 2

Lemma 4 Let c(t) be a monotone function. Then
the following optimization problem

z = min

Z 1
0

c(t) exp(��(t))dt

subject to

� 2 �(r; s);

Z 1
0

exp(��(t))dt = a;

has a solution. If c(t) is decreasing, then z achieves its
minimum at �r(t) = �(a; r; t). If c(t) is increasing,
then z achieves its minimum at �s(t) = �(a; s; t).

Proof. Note that minz = max(�z). Then the proof
follows from Lemma 3. 2

Lemma 5 Let X be the lifetime and Pr(X � t) 2
H(r; s), t 2 R+. Then Pr(Xm � t) 2 H(r=m; s=m),
m 2 R+.

Proof. Note that Pr(Xm � t) = Pr(X � t1=m) =
exp(��(t1=m)). Then �(t1=m)=(t1=m)r = �(t)=tr in-
creases and �(t1=m)=(t1=m)s = �(t)=ts decreases. 2

Denote

f(x; q; T ) =
�(1 + 1=q)

x1=q
�(T qx; 1=q):

Here �(�; �) is the incomplete gamma function.

Lemma 6 Let c(t) be a monotone function. Then
the following optimization problem

z = max

Z T

0

c(t) exp(��(t))dt

subject to

� 2 �(r; s);

Z T

0

exp(��(t))dt = a;

has a solution. If c(t) is decreasing, then z achieves
its maximum at �s(t) = xts, where x is the solution
of the equation f(x; s; T ) = a. If c(t) is increasing,
then z achieves its maximum at �r(t) = xtr, where x
is the solution of the equation f(x; r; T ) = a.

Proof. Similar to the proof for Lemma 3. 2

Lemma 7 Let c(t) be a monotone function. Then
the following optimization problem

z = min

Z T

0

c(t) exp(��(t))dt

subject to

� 2 �(r; s);

Z T

0
exp(��(t))dt = a;

has a solution. If c(t) is decreasing, then z achieves
its minimum at �r(t) = xtr, where x is the solution
of the equation f(x; r; T ) = a. If c(t) is increasing,
then z achieves its minimum at �s(t) = xts, where x
is the solution of the equation f(x; s; T ) = a.

Proof. Similar to the proof for Lemma 4. 2

Lemmas 6 and 7 allow us to analyze the system reli-
ability when lifetimes are bounded.



5 Reliability analysis

Lemmas 3{7 play an important role in the reliability
analysis of various systems. They show how to solve
problem (2) when we have the additional information
about the lifetime distributions. In this case, the nat-
ural extension can be rewritten as follows:

M (g) = max

Z 1
0

Pr(g(X) > t)dt;

M (g) = min

Z 1
0

Pr(g(X) > t)dt; (3)

subject to

Pr(fij(xi) > t) 2 H(ri; si);Z 1
0

Pr(fij(xi) > t)dt 2 [aij; aij];

i � n; j � mi:

If we �nd a way to represent
R1
0

Pr(g(X) > t)dt asR1
0 c(t) Pr(fij(xi) > t)dt, where c(t) is a monotone
function, then Lemmas 3 and 4 allow us to solve prob-
lems (3). In the sequel, we attempt to apply such
the representation to reliability analysis of typical sys-
tems. If fij(xi) = xi and g(X) = x, then correspond-
ing previsions can be regarded as lower and upper
MTTFs of i-th component and a system, respectively.
In this case, it can be easily proved that the function
c(t) is monotone for series and parallel systems. It
should be noted that generally for arbitrary monotone
systems, the function c(t) can be non-monotone. In
that case, the minimal path and cut sets presentation
or modular decomposition technique can be employed
to calculate the system reliability.

5.1 One component

Theorem 1 Let g(t) = tv and f(t) = tw, v; w 2 R+.
Suppose that we know the lower M g and upper M g

previsions of the gamble g(t). Moreover, Pr(g(X) �
t) 2 H(r; s). Denote

�(q) = �

�
1 +

w

q

��
�

�
1 +

v

q

���w=v
:

If v < w; then lower Mf and upper Mf previsions of

the gamble f(t) are determined by M f = �(s)Mw=v
g ,

M f = �(r)M
w=v

g . If v � w; then lowerM f and upper

M f previsions of the gamble f(t) are determined by

M f = �(r)Mw=v
g , M f = �(s)M

w=v

g .

Proof. The natural extension can be written as fol-
lows:

M f = min
�2�(r;s)

Z 1
0

wtw�1 exp(��(t))dt;

subject to a =
R1
0 vtv�1 exp(��(t))dt. Let x = tv.

Then we obtain

M f = min
�2�(r;s)

w

v

Z 1
0

x(w=v)�1 exp(��(x1=v))dx;

subject to a =
R1
0 exp(��(x1=v))dx. By using Lem-

mas 4 and 5, we obtain for the case v < w

M f =
w

v

Z 1
0

x(w=v)�1 exp(��(a; s=v; x))dx:

By using Lemmas 3 and 5, we can similarly obtain

Mf =
w

v

Z 1
0

x(w=v)�1 exp(��(a; r=v; x))dx:

Note that M f and M f increase as a increases. By
simplifying the above expressions, we compete the
proof. The case v � w is proved similarly. 2

If v and w are integers, then M g, M g, Mf , and Mf

can be regarded as bounds for v-th and w-th moments
of the lifetime.

Example 2 We know the �rst moment a = M g =

M g of the lifetime having the IFRA distribution.
Then bounds of w-th moment are determined by
M f = aw, M f = w!aw: If v = 2, then M f = a2,

M f = 2a2:

Example 3 We know v-th moment a = M g = M g

of the lifetime having the IFRA distribution. Then
bounds of �rst moment are determined by M f =

(v!)�1=va1=v, M f = a1=v: If v = 2, then M f '
0:707

p
a, M f =

p
a.

5.2 Series systems

A system is called series if its lifetime is given by
mini=1;:::;n xi.

Theorem 2 A series system consists of n indepen-
dent components with the lower and upper MTTFs ai
and ai, i = 1; :::; n. Suppose that the i-th component
lifetime distribution belongs to H(ri; si), i = 1; :::; n.
Then the lower M and upper M system MTTFs are
determined by

M =

Z 1
0

nY
i=1

exp (��(ai; ri; t)) dt;

M =

Z 1
0

nY
i=1

exp (��(ai; si; t)) dt:

Proof. Let ai � ai � ai. Note that the MTTF of
the series system is computed as follows:

M (a1; :::; an)



=

Z 1
0

nY
i=1

exp(��i(t))dt

=

Z 1
0

exp(��j(t))
nY

i=1;i6=j

exp(��i(t))dt:

Denote c(t) =
Qn

i=1;i6=j exp(��i(t)). The function
c(t) is decreasing in t for all j = 1; :::; n. Moreover,
the function M (a1; :::; an) is increases as ai increases,
i = 1; :::; n. By using Lemmas 3 and 4, we complete
the proof. 2

Corollary 1 If H(ri; si) = H(r; s) for all i = 1; :::; n,
then

M =

 
nX
i=1

1

ari

!�1=r
; M =

 
nX
i=1

1

asi

!�1=s
:

It follows from Corollary 1 that if r = 1, s = +1
(IFRA distributions), then

M =

 
nX
i=1

1

ai

!�1
; M = min

i=1;:::;n
ai:

If r = 0, s = 1 (DFRA distributions), then

M = 0; M =

 
nX
i=1

1

ai

!�1
:

If the component lifetime distributions are unknown
(r = 0, s = +1), then the condition of independence
does not inuence on the lower and upper MTTFs of
series systems.

Let us return to the example of judgements present-
ed in Introduction of the paper. Initial judgements
allow us to conclude that the lower and upper MT-
TFs of the two-component series system are 0 and
5, respectively. After obtaining additional informa-
tion, we assume that rA ' 0:9 (long infancy period),
sA = 2 (see Example 1), i.e. �A 2 �(0:9; 2). Sim-
ilarly, �B 2 �(1;+1) (only the wear-out period).
It follows from Theorem 2 that the lower and upper
MTTFs of the system are 2:68 and 4:69, respectively.
Note that if we take rA ' 0:5 (middle infancy period),
then MTTFs are 1:6 and 4:69.

5.3 Parallel systems

A system is called parallel if its lifetime is given by
maxi=1;:::;n xi.

Theorem 3 A parallel system consists of n indepen-
dent components with the lower and upper MTTFs ai
and ai, i = 1; :::; n. Suppose that the i-th component

lifetime distribution belongs to H(ri; si), i = 1; :::; n.
Then the lower M and upper M system MTTFs are
determined by

M =

Z 1
0

 
1�

nY
i=1

(1� exp (��(ai; si; t)))
!
dt;

M =

Z 1
0

 
1�

nY
i=1

(1� exp (��(ai; ri; t)))
!
dt:

Proof. Let ai � ai � ai. Note that the MTTF of
the parallel system is computed as follows:

M (a1; :::; an)

=

Z 1
0

0
@1� nY

i=1;i6=j

(1 � exp(��i(t)))

1
A dt

+

Z 1
0

exp(��j(t))
nY

i=1;i 6=j

(1 � exp(��i(t)))dt:

Denote c(t) =
Qn

i=1;i 6=j(1 � exp(��i(t))). The func-
tion c(t) is increasing in t for all j = 1; :::; n. Moreover,
the function M (a1; :::; an) is increases as ai increases.
By using Lemmas 3 and 4, we complete the proof. 2

Corollary 2 If H(ri; si) = H(r; s) for all i = 1; :::; n,
then

M =
nX
i=1

ai �
X
i<j

 
1

asi
+

1

asj

!�1=s

+:::+ (�1)n�1
 

nX
i=1

1

asi

!�1=s
;

M =
nX
i=1

ai �
X
i<j

�
1

ari
+

1

arj

��1=r

+:::+ (�1)n�1
 

nX
i=1

1

ari

!�1=r
:

It follows from Corollary 2 that if r = 1, s = +1
(IFRA distributions), then

M = max
i=1;:::;n

ai;

M =
nX
i=1

ai �
X
i<j

�
1

ai
+

1

aj

��1

+:::+ (�1)n�1
 

nX
i=1

1

ai

!�1
:

If r = 0, s = 1 (DFRA distributions), then

M =
nX
i=1

ai �
X
i<j

�
1

ai
+

1

aj

��1



+:::+ (�1)n�1
 

nX
i=1

1

ai

!�1
;

M =
nX
i=1

ai:

If the component lifetime distributions are unknown
(r = 0, s = +1), then the condition of independence
does not inuence on the lower and upper MTTFs of
parallel systems.

5.4 Monotone systems

Generally for a monotone system, the minimal path
and cut sets presentation technique can be employed
to calculate the system reliabilities. A minimal path
of a system is a minimal set of components such that
if these components work, the system works. A min-
imal cut is a minimal set of components such that if
these components fail, the system fails. Suppose that
a monotone system has p minimal paths P1; :::; Pp
containing m1; :::;mp components, respectively, and
k minimal cut sets K1; :::;Kk. Then the system life-
time g(X) is given by [1]

g(X) = max
1�j�p

min
i2Pj

xi = min
1�j�k

max
i2Kj

xi:

Denote L1 = �(ai; ri; t) and L2 = �(ai; ri; t). The
lower and upper MTTFs of the system consisting of
independent components are determined from Theo-
rems 2 and 3 as

M � max
1�j�p

Z 1
0

Y
i2Pj

exp (�L1) dt;

M � min
1�j�k

Z 1
0

0
@1� Y

i2Kj

(1� exp (�L2))

1
A dt:

Another method for calculating system reliabilities is
the modular decomposition technique. The method
is based on subdivision of a system into series and
parallel modules. By computing the lower and upper
MTTFs of modules (see Theorems 2 and 3) and by
determining parameters r and s of the obtained life-
time distribution classes for each module (see Theo-
rems 4 and 5), we can consider each module as one
component for which MTTFs and parameters r, s are
known. Let us �nd the values of r and s for the series
and parallel systems.

Theorem 4 Let a series system consist of n inde-
pendent components. Suppose that the i-th compo-
nent lifetime distribution belongs to H(ri; si), i =
1; :::; n. Then the system lifetime distribution belongs
to H(r; s), where r = min1�i�n ri, s = max1�i�n si.

Proof. For a series system, there holds �(t) =Pn
i=1 �i(t). Then the proof is obvious from the fol-

lowing:

�(t)

tr
=

nX
i=1

�i(t)

tri
tri�r ;

�(t)

ts
=

nX
i=1

�i(t)

tsi
1

tsi�s
:

2

Theorem 5 Let a parallel system consist of n in-
dependent components. Suppose that the i-th com-
ponent lifetime distribution belongs to H(ri; si), i =
1; :::; n. Then the system lifetime distribution belongs
to H(r; s), where r = min1�i�n ri, s =

Pn
i=1 si.

Proof. For a parallel system, there hold H(t) = 1�Qn
i=1(1�Hi(t)) and �(t) = � lnH(t). Hence

�(t) =

Pn
j=1

Qn
i=1;i6=j(1�Hi(t))Hj(t)�j(t)

1�Qn
i=1(1�Hi(t))

:

Introduce the function '(t) = t�(t)=�(t). Then

'(t) =
�tPn

j=1

Qn
i=1;i 6=j(1�Hi(t))Hj(t)�j(t)

H(t) lnH(t)
:

Let us consider the maximum and minimum of '(t)
over all distributions Hi 2 H(ri; si). From Property
4, we can write rj�j(t) � t�j(t) � sj�j(t). This
implies that '(t) � '(t) � '(t), where

'(t) =
�Pn

j=1

Qn
i=1;i6=j(1 �Hi(t))Hj(t)rj�j(t)

H(t) lnH(t)
;

'(t) =
�Pn

j=1

Qn
i=1;i6=j(1 �Hi(t))Hj(t)sj�j(t)

H(t) lnH(t)
:

If we denote xi = 1 � Hi(t), then �i(t) = � ln(1 �
xi). By dividing the nominator and denominator onQn

i=1 xi, we obtain

'(t) =
nX
j=1

rjYj=Y; '(t) =
nX

j=1

sjYj=Y;

where

Yj =
(1� xj) ln(1 � xj)

xj
;

Y =
(1� x1 � � � xn) ln (1� x1 � � � xn)

x1 � � � xn
Let us consider the function  (t) =

Pn
j=1 kjYj=Y ,

where kj is a positive constant. It can be easily proved
that the function  decreases as xj increases, 0 <
xj < 1, j = 1; :::; n. Consequently,  achieves its
maximum at xj ! 0. Since limx!0(1� x)x�1 ln(1 �
x) = �1, then max'(t) =

Pn
j=1 sj . The limit value

of  depends on the order of numbers j for which
xj ! 1. If j0 is the last number, then the limit value
of  is rj0 . This implies that min'(t) = min1�i�n ri.
This completes the proof. 2



5.5 Bounded lifetimes

By using Lemmas 6 and 7, we can obtain lower and
upper MTTFs of systems with bounded component
lifetimes. Let M (xi) = ai andM(xi) = ai be the low-
er and upper MTTFs of i-th component, i = 1; :::; n.
Suppose that 0 � xi � Ti, i = 1; :::; n. In this case,
the explicit expressions for the system reliability can
be obtained only for special cases. For example, the
lower and upper MTTFs of a series system consisting
of n independent components with unknown lifetime
distributions (H(0;1)) are computed as follows:

M =

�
min

i=1;:::;n
Ti

� nY
i=1

ai
Ti

!
; M = min

i=1;:::;n
ai:

Denote T = maxi=1;:::;n Ti. The lower and upper
MTTFs of a parallel system consisting of n indepen-
dent components with unknown lifetime distributions
(H(0;1)) are computed as follows:

M = max
i=1;:::;n

ai; M = T

 
1�

nY
i=1

�
1� ai

Ti

�!
:

The proof of the above bounds can be found in [11].
Let us write important properties of systems consist-
ing of independent components with bounded gam-
bles.

1. If the component lifetime distributions are un-
known and Ti ! 1 for all i = 1; :::; n, then
condition of independence does not inuence the
lower and upper MTTFs of systems. For ex-
ample, MTTFs of a series system are M = 0,
M = mini=1;:::;n ai. These expressions coincide
with expressions obtained by means of the natu-
ral extension without the independence assump-
tion [8].

2. If the component lifetime distributions are un-
known and n ! 1, then condition of inde-
pendence does not inuence the lower and up-
per MTTFs of systems. For example, MTTFs
of a series system by n ! 1 are M = 0,
M = mini=1;:::;n ai. These expressions coincide
with expressions obtained by means of the natu-
ral extension without the independence assump-
tion [8].

6 Discrete lifetime distributions

Discrete lifetimes usually arise through grouping or
�nite-precision measurement of continuous time phe-
nomena. They may also be found naturally in those
cases where failure may occur only at the instants

of shock. For a random lifetime X taking posi-
tive integral values, let G(k) = Pr(X � k). Let
R(k) = � lnG(k). Let us de�ne a distribution class
G(r; s) as follows. A probability distribution be-
longs to G(r; s) if R(k)=kr increases and R(k)=ks de-
creases as k increases. In that case we will denote
R 2 R(r; s) = fR(k) : exp(�R(k)) 2 G(r; s)g.

Lemma 8 Let c(k) be a monotone function, k =
0; 1; :::. Let xq be the solution of the equationP

k�0 exp(�kqxq) = a. Then the following optimiza-
tion problem

z = max

0
@X
k�0

c(k) exp(�R(k))
1
A

subject to

R 2 R(r; s);
X
k�0

exp(�R(k)) = a;

has a solution. If c(k) is decreasing, then z achieves
its maximum at Rs(k) = ksxs. If c(k) is increasing,
then z achieves its maximum at Rr(k) = krxr.

Proof. Similar to the proof for Lemma 3. 2

Lemma 9 Let c(k) be a monotone function, k =
0; 1; :::. Let xq be the solution of the equationP

k�0 exp(�kqxq) = a. Then the following optimiza-
tion problem

z = min

0
@X
k�0

c(k) exp(�R(k))
1
A

subject to

R 2 R(r; s);
X
k�0

exp(�R(k)) = a;

has a solution. If c(k) is decreasing, then z achieves
its maximum at Rr(k) = krxr. If c(k) is increasing,
then z achieves its maximum at Rs(k) = ksxs.

Proof. Similar to the proof for Lemma 4. 2

The reliability assessments for the discrete lifetime
distributions are similar to assessments for the con-
tinuous lifetime distributions. For example, MTTFs
of a series system consisting of n independent compo-
nents whose component lifetime distributions belong
to G(ri; si), i = 1; :::; n, are determined by

M =
X
k�0

nY
i=1

exp (�krixri) ;

M =
X
k�0

nY
i=1

exp (�ksixsi) ;



where xri is the solution
of the equation

P
k�0 exp(�krixri) = ai, xsi is the

solution of the equation
P

k�0 exp(�ksixsi) = ai.

7 Conclusion

In this paper, we have shown how additional infor-
mation about the ageing aspect of the lifetime distri-
butions and independence of system components can
be used for analyzing the system reliability. The ob-
tained results generalize the reliability models based
on the natural extension in the form of the linear op-
timization problem [8, 9, 10]. It should be noted that
the results in the paper also generalize the reliability
bounds presented by Barlow and Proschan [1] for the
IFRA and DFRA distributions.

We have found the solution of the optimization prob-
lems in an explicit form for several special cases. This
simpli�es usage of the presented approaches in prac-
tice and makes them explainable from engineering
point of view. The obtained results allows us to com-
pute reliability of various unrepairable systems whose
reliability characteristics are represented by the lower
and upper MTTFs. However, it should be noted that
the class of analyzed systems can be easily extend-
ed, for instance, on a case when we know only some
moments of the lifetime.

The proposed lifetime distribution classes can cover a
wide variety of kinds of partial and precise reliability
information. At the same time, further work is needed
to develope e�cient statistical methods for calculating
parameters of the distribution classes which may lead
to new questions and ideas.
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