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Abstract

This paper shows how the logic of gambles corre-
sponding to Peter Walley's system of Imprecise Prob-
ability can be extended to allow gambles involving
in�nitesimal values and in�nite values. This logic can
then be used for reasoning with in�nitesimal probabil-
ities alongside conventional reasoning with linear con-
straints on probabilities. The proof theory is shown
to be sound and complete for �nite input sets.
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1 Introduction

Very unlikely propositions can sometimes cause prob-
lems for theories of probability. The proposition may,
for example, relate to an event that has not occurred
before in our experience. If we assign a precise prob-
ability to such a proposition, then the value can be
very arbitrary, and thus can lead to very arbitrary
inferences, and arbitrary decisions. Even if a proba-
bility interval [�; �] is assigned for such a proposition,
related problems arise; the values � and � will tend
to be also very arbitrary; if we're cautious, giving a
wide interval, the inferences will often be disappointly
weak; if on the other hand, we give a narrow interval,
this su�ers from similar problems as assigning a pre-
cise probability; an interval of intermediate width can
su�er from either (or even both) problems. Similarly,
utility values of very large magnitudes can be prob-
lematic.

An alternative is to consider such values of proba-
bility as essentially in�nitesimal, and such values of
utility as of in�nite magnitude. An earlier paper [11]
constructed a theory of probability which allowed in-
�nitesimal values of probability as well as the usual
values. As shown, in [9, 10, 11], this theory of proba-
bility can be used in a simple way in the interpretation

and semantics of a number of theories of uncertain
reasoning, for example, non-monotonic consequence
relations [1, 4]; NCFs [7], possibility functions [3] and
counterfactual probabilities [2].

In this paper, this work is developed into a logic that
can reason with both conventional and in�nitesimal
probability; it is a uni�ed framework that can be used
for automated deduction with gambles (or linear con-
straints on probabilities), and also order of magnitude
statements about probabilities. It thus uni�es a prob-
abilistic logic and a form of possibilistic reasoning.

Section 2 reiterates from [12] the expression of Impre-
cise Probability [8] as a logic. Section 3 describes the
simple theory of in�nitesimals given in [11]. Section
4 brings the two together, constructing a logic that
can be used for reasoning with linear constraints on
probabilities which can take both real and in�nites-
imal values; the proof of the main result is sketched
in section 5. The proof theory is illustrated with an
example in section 6. The logic can be also used for
making a parametrised family of conventional prob-
abilistic inferences as shown in section 7. Section 8
summarises the main results and discusses some av-
enues for further exploration.

2 The Logic of Gambles

This section gives the construction of the logic of gam-
bles and basic properties of the logic, taken from [12]
(the results are derived from results in [8].

Let 
 be a �nite set of possibilities, exactly one of
which must be true. A gamble on 
 is a function
from 
 to IR. If you were to accept gamble X and
it was ! that turned out to be true then you would
gain X(!) utiles (so you would lose if X(!) < 0). An
agent's beliefs are elicited by asking them to tell us
a set � of gambles they �nd acceptable, i.e., gambles
they would be happy to accept.

For � 2 IR we write � for the constant gamble de�ned



by �(!) = � for all ! 2 
. If � > 0 we should cer-
tainly consider gamble � acceptable since, whatever
happens, we gain. If � < 0 then we should certainly
not accept gamble � since, whatever happens, we lose.
Addition and subtraction of gambles is de�ned point-
wise, so that for gambles X and Y , for each ! 2 
,
(X � Y )(!) = X(!) � Y (!). For A � 
 we de�ne
gamble A to be the indicator function of A, so that
A(!) = 1 if ! 2 A and A(!) = 0 otherwise. Any such
gamble A would seem acceptable since you couldn't
lose. On the other hand, the gamble A � 1 (given by
(A � 1)(!) = 0 if ! 2 A; (A � 1)(!) = �1 otherwise)
would only be acceptable to you if you were certain
that A were true. If 
 = f!1; !2g andX is the gamble
f!1g � 0:5 (so that X(!1) = 0:5 and X(!2) = �0:5)
and you considered !1 more likely than !2 then it
seems that you should consider the gambleX accept-
able.

Gambles can represent a varied set of probability
statements. Another way of viewing gambles is as lin-
ear constraints on an unknown chance distribution,
and indeed any such linear inequality can be rep-
resented as a gamble. For example, the constraint
Pr(A) � 0:6 would be represented by the gamble
A � 0:6; the constraint Pr(A) � Pr(B) + 0:1 would
be represented by the gamble B + 0:1 � A; the con-
straint Pr(AjB) � 0:9 (which is taken to satis�ed if
Pr(B) = 0) by the gamble 0:9B� (A\B). In general
a linear constraint �1Pr(A1)+ � � �+�k Pr(Ak) � � is
represented by the gambleX = �1A1+� � �+�kAk��.
The constraint �1Pr(A1) + � � � + �k Pr(Ak) � � is
equivalent to the constraint (��1) Pr(A1) + � � � +
(��k) Pr(Ak) � �� and so is represented by the gam-
ble �X. Hence �1Pr(A1) + � � � + �k Pr(Ak) = � is
represented by the pair of gambles fX;�Xg. The lan-
guage does, however, have some limitations: indepen-
dence relationships or constraints such as Pr(AjB) �
Pr(A) cannot be represented simply in terms of gam-
bles, since they are non-linear.

The Language

Let L be the set of gambles on 
. The constant gam-
ble �1 is written as ?.

Proof Theory

We are going to de�ne an inference relation `, where
for � � L and X 2 L, � ` X is intended to mean
`Given that I'm prepared to accept any gamble in �
then I should also be prepared to accept X'. The
axioms and inference rules used to de�ne ` will be
justi�ed by the semantics (with probability distribu-
tions as models) given below. However, they can be
justi�ed directly [8].

Axiom Schema: X, for any X with min!2
X(!) �
0.

For any such X we can't lose so it should be accept-
able.

Inference Rule (Schema) 1: For any � 2 IR such
that � � 0 the inference rule From X deduce �X.

This relates to the situation where stakes are multi-
plied by a factor �.

Inference Rule 2: From X and Y deduce X + Y .

This relates to the combination of two gambles.

Then, in the usual way, we say that � � L proves
X 2 L, abbreviated to � ` X, if there is a �nite
sequence X1; : : : ; Xn of gambles in L with Xn = X
and each Xi is either an element of �, an axiom or
is produced by an inference rule from earlier elements
in the sequence.

For � � L de�ne TH(�) to be the set
fX 2 L : � ` Xg. The relation ` is reexive i.e.,
TH(�) � �; it is monotonic i.e, � � � ) TH(�) �
TH(�); it is transitive, i.e, TH(TH(�)) � TH(�) (and
therefore TH(TH(�)) = TH(�)) and compact i.e, if
� ` X then there exists �nite �0 � � with �0 ` X.

Semantics

The set of models M of L is de�ned to be the set of
probability distributions on 
. For probability distri-
bution P and gambleX, P(X) is de�ned to be the ex-
pected value ofX, i.e.,

P
!2
 P(!)X(!). We say that

probability distribution P satis�es gambleX (written
P j= X) i� P(X) � 0, that is, if and only if the ex-
pected utility is non-negative, i.e., i� we would expect
(in the long run) not to lose money from X if P rep-
resented objective chances. Note that P satis�es the
constraint �1P(a1) + � � �+ �kP(ak) � � if and only if
P j= X where X = �1a1+ � � �+�kak�� is the gamble
representing the constraint.

We extend j= in the usual way: P satis�es set of gam-
bles � (written P j= �) if and only if it satis�es ev-
ery gamble X in �, and the semantic entailment re-
lation j= is de�ned by � j= X i� for all models P,
[P j= �) P j= X].

The relation j= is reexive, transitive, monotonic, but
not compact.

The proof theory is sound with respect to the model
theory:

Theorem 1 (Soundness) For gamble X and set of
gambles �, � ` X ) � j= X.

Completeness holds for �nite sets of premises:



Theorem 2 (Finite Completeness) For gamble X and
�nite set of gambles �, if � j= X then � ` X.

We come close to completeness even for in�nite sets
of premises:

Theorem 3 (Almost-Completeness) For gamble X
and set of gambles �, if � j= X then � ` X + � for all
� > 0.

Corollary (Consistency Completeness) For � � L,
� ` ? () � j= ?.

3 A Simple Theory of In�nitesimals

This section gives the construction of the simple the-
ory of in�nitesimals de�ned in [11]. The extended
reals IR� are formed by adding an `in�nitesimal' el-
ement ", to the real numbers. Probability is then
de�ned using the usual axioms.

3.1 The Extended Reals IR�

Let the extended reals IR� be IR("), the �eld of ra-
tional functions in (dummy variable) " over the �eld
IR (see [5], page 122). Each element of IR� can be
written as a pair p=q where p and q are polynomial
functions in ", and p=q represents the same element of
IR� as r=s if and only if ps is the same polynomial as
qr. IR� clearly contains a copy of IR: for x 2 IR, the
ratio of constant polynomials x=1 is in IR�, and we'll
denote this element of IR� also by x. In particular the
element 0 of IR� is the function which has constant
value 0.

Every non-zero element r of IR� can be uniquely ex-
pressed as �r"r̂r0, where �r 2 IR n f0g, r̂ is in Z, the
set of integers, and r0 2 IR� is such that r0(0) = 1.
De�ne 0̂ =1. The function r 7! r̂ gives the order of
magnitude (in terms of powers of ") of element r of
IR�. Also for r 2 IR� let r be lim"!0 r("), so that

r =

8><
>:

0 if r̂ > 0;
1 if r̂ < 0 and �r > 0;
�1 if r̂ < 0 and �r < 0;
�r if r̂ = 0.

If r 2 IR then r = r. For r 2 IR�, r will be referred to
as `the real part of r'. Extended reals r and s will be
said to be approximately equal if r � s = 0.

3.2 The Ordering on IR�

If r = p=q 2 IR� where p; q are polynomials in ", then,
for x 2 IR, r(x) (the value of r when x is substituted
for ") is a real number, if q(x) 6= 0. For r; s 2 IR�,
de�ne relation > by r > s if and only if there exists
strictly positive real number y such that r(x) > s(x)
for all real x with 0 < x < y.

" is intended to be a very small positive number, so
we de�ne r > s i� r is bigger than s for small enough
". Relations <, � and � are de�ned from relation >
in the usual way, e.g., r � s if and only if s > r or
s = r. This ordering makes IR� an ordered �eld (see
[5], page 261).

Though they are de�ned as functions, elements of IR�

should be thought of as numbers; " is a positive num-
ber smaller than any strictly positive real number, "2

is an even smaller positive number, " � "2 is between
the two, though much closer to ", and so on.

The one axiom of the real numbers that IR� lacks is
the completeness axiom, that any set bounded above
has a least upper bound. However, this is the case
for any ordered �eld extension of IR containing an in-
�nitesimal. Consider any ordered �eld extension R of
the reals IR. Let E be the set of positive in�nitesi-
mals in R, i.e., all r 2 R such that r > 0 and for all
strictly positive reals x, r < x. Assume E 6= ; (i.e.,
that R contains an in�nitesimal). E is bounded above
by any strictly positive real. Suppose it has a least
upper bound a. a must be in E because if for some
strictly positive x 2 IR, x � a then x=2 < a and x=2
is an upper bound for E , which contradicts a being
the least upper bound. However a 2 E implies that
2a 2 E , contradicting a being an upper bound for E .

3.3 Extended Probability

To de�ne extended probability and utility, the usual
de�nitions su�ce, except using IR� instead of IR.

An extended utility function (or extended gamble) on

 is a function from 
 to IR�. An extended probabil-
ity measure P over 
 is de�ned to be a function from
2
 to IR�, satisfying P(
) = 1, and for A;B � 
 such
that A \B = ;, P(A [B) = P(A) + P(B).

Extended probability theory has many of the same
properties as probability theory, since it shares all the
axioms, apart from the completeness axiom of the real
numbers.

An interpretation of extended probability is given in
[11]. Briey, a proposition E with very small but un-
known probability is assigned the value ". The state-
ment `the probability of A is "' is then interpreted
as that A and E are (precisely) equiprobable. The
meaning of statements of the form `The probability
of A is r', for various extended reals r, is constructed
using a sequence of thought experiments using inde-
pendent, mutually exclusive, or conditional proposi-
tions; for example, `the probability of A is "2' is inter-
preted as meaning that A is equiprobable with E ^F
where F is some proposition independent of E and
equiprobable with E.



4 A Logic of Extended Gambles

We can extend the language, proof theory and seman-
tics of the logic of gambles to allow in�nitesimals and
in�nities just by replacing IR by IR� in the various
de�nitions.

Hence the language L� is de�ned to be the set of ex-
tended gambles, i.e., the set of functions from 
 to
IR�. As before, ? is an abbreviation for the constant
extended gamble �1.

Proof theory

The proof theory is generated by the following axiom
schema and inference rules:

Axiom Schema: X, for anyX with min!2
X(!) �
0.

Inference Rule (Schema) 1: For any � 2 IR� such
that � � 0 the inference rule From X deduce �X.

Inference Rule 2: From X and Y deduce X + Y .

So, in the usual way, we say that � � L� proves X 2
L�, abbreviated to � `� X, if there is a �nite sequence
X1; : : : ; Xn of extended gambles in L� with Xn = X
and each Xi is either an element of �, an axiom, or
is produced by an inference rule from earlier elements
in the sequence.

Like `, the relation `� is reexive, monotonic, transi-
tive and compact.

Semantics

The set of models M� of L� is de�ned to be the
set of extended probability distributions on 
, i.e.,
functions P from 
 to IR� such that for all ! 2 
,
P(!) � 0 and

P
!2
 P(!) = 1. For extended proba-

bility distribution P and extended gambleX, P(X) is
de�ned, as before, to be the expected value of X, i.e.,P

!2

P(!)X(!); we say that probability distribution

P satis�es extended gamble X (written P j=� X) i�
P(X) � 0. The relation j=� is extended in the usual
way: P satis�es set of extended gambles �, written
P j=� �, if and only if it satis�es every extended
gamble X in �, and the semantic entailment rela-
tion j=� is de�ned by � j=� X i� for all models P,
[P j=� �) P j=� X].

Set of extended gambles � is said to be consistent if
it has a model, i.e., if there exists P 2 M� such that
P j=� �. It can be seen that � is inconsistent if and
only if � j=� ?.
Like j=, the relation j=� is reexive, transitive and
monotonic, and not compact. A counter-example to
compactness is when � = f(A� 1 + "n) : n 2 INg,

where A is some non-empty proper subset of 
. If
P j=� � then for all n, P(A � 1 + "n) � 0, so for all
n, P(A) � 1 � "n. This implies that P(A) = 1, and
so we have � j=� A � 1. However, if �0 is any �nite
subset of �, then it is not the case that �0 j=� A � 1
(contradicting compactness)|since we can choose P
such that P(A) = 1 � "n for some n large enough
so that P j=� �0, but P isn't a model of A � 1, as
P(A� 1) = �"n < 0.

We still have Soundness:

Theorem 4 (Soundness of `� w.r.t. j=�) For extended
gamble X and set of extended gambles �, � `� X )
� j=� X.

The proof is straight-forward: we just check the
soundness of the axioms and inference rules; if Z is one
of the axiom schema, then we certainly have P j=� Z
for any model P; if � � 0 and P j=� X and P j=� Y
then P j=� �X and X + Y . The result then follows
using induction on the length of a proof in the logic.

As before, we cannot hope to have full completeness
of `� with respect to j=� because j=� is not compact.
However we do have completeness for �nite sets �.
The following is the main result of the paper:

Theorem 5 (Finite Completeness of `� w.r.t. j=�)
For extended gamble X and �nite set of extended gam-
bles �, if � j=� X then � `� X.

The proof is sketched in the next section.

Unfortunately we do not have Almost-Completeness
(c.f. section 2) as the following example shows.

Counter-Example to Almost-Completeness

Let IR�+ be the set of strictly positive elements of IR�,
i.e., fr 2 IR� : r > 0g. We say that � 2 IR�+ is a pos-
itive in�nitesimal in IR� if � < x for all x 2 IR with
x > 0. Let E be the set of positive in�nitesimals in
IR�.

Let A be some non-empty proper subset of 
. De�ne
the set of extended gambles �1 to be fA� � : � 2 Eg
and �2 to be fr� A : r 2 IR�+ � Eg.
Now � = �1[�2 is inconsistent, i.e., it has no model:
for suppose P j=� �, and let s = P(A); then P j=� �1
which implies s � � for all � 2 E ; also P j=� �2, so
s � r for all r 2 IR�+ � E ; but there is no value s 2
IR� satisfying these constraints (the second constraint
implies s 2 E ; but then s < 2s 2 E which contradicts
the �rst constraint).

However, it can be shown that it is not the case that
� `� ?.
This example thus shows that it not the case that



� `� ? () � j=� ?, so it is a counter-example to
Consistency Completeness.

If Almost-Completeness held, then � j=� ? would im-
ply that � `� ? + 1

2
; however, � `� ? + 1

2
implies

(using inference rule 1) � `� ? which, as observed
above, is not the case. Therefore Almost Complete-
ness does not hold.

5 Sketch of Proof of Finite
Completeness (Theorem 5)

A subset of L� is said to be a convex cone (over IR�)
if it is closed under multiplication by non-negative
scalars (in IR�) and closed under addition, i.e., i�
it is closed under the two inference rule schemas of
the proof theory. For � � L�, de�ne C(�) to be
the unique smallest convex cone containing �. Ev-
ery element of C(�) can then be expressed as a linear
combination of the elements in � with non-negative
co-e�cients. A convex cone � is said to be �nite if
� = C(�) for some �nite �.

For T;X 2 L� de�ne TX to be
P

!2
 T (!)X(!). For
� � L�, de�ne �+ (known as the dual cone of �) to
be fT 2 L� : TX � 0 for all X 2 �g.
Theorem 6 (Finite IR�-convex cones are reexive) If
� is a �nite convex cone over IR� then it is reexive,
i.e., (�+)+ = �.

This is the analogue of a fundamental property of con-
vex cones over IR, which requires a lengthy proof;
the proof of this in [6] was used to prove Theorem
6: each step of the proof was examined (where nec-
essary breaking it down into components) to con�rm
that the step is valid also for IR�-convex cones (the
key point to check was that the completeness property
of IR was not used, only the properties of an ordered
�eld, which are shared by IR�).

For � � L�, de�ne TH(�) to be the syntactic
consequences of �, i.e., fX : � `� Xg, and de�ne
Th(�) to be the semantic consequences of �, i.e.,
fX : � j=� Xg. Theorem 4 (Soundess) is equivalent
to the statement that for all �, TH(�) � Th(�). The-
orem 5 (Finite Completeness) is equivalent to: for all
�nite �, Th(�) � TH(�).

Proposition 1

Let R = fR 2 L� : for all ! 2 
; R(!) � 0g. Let �
be a subset of L�. De�ne [�] to be �+ \R. For each
! 2 
 de�ne the indicator gamble I! by I!(!

0) = 0 if
! 6= !0, and I!(!) = 1. Let I = fI! : ! 2 
g.

(i) Th(�) = [�]+;

(ii) [�] = [TH(�)];

(iii) TH(�) = C(� [ I);

(iv) [C(� [ I)] = �C(� [ I)�+;
(v) Th(�) =

��
TH(�)

�+�+
.

Sketch of proof: (i) follows easily using the observa-
tion that the models of � are normalised elements of
[�]. (ii) is a version of Soundness and can be proved
in the same way. (iii) is immediate from the de�-
nitions. (iv) holds because if TX � 0 for all X 2 I
then T 2 R. (v): applying, in turn, equalities (i), (ii),
(iii), (iv) and (iii) gives Th(�) = [�]+ = [TH(�)]+ =

[C(� [ I)]+ =
��
C(� [ I)�+�+ =

��
TH(�)

�+�+
.

Proof of Theorem 5: As � is �nite, by Proposi-
tion 1(iii), TH(�) is a �nite convex cone, so is reex-

ive by Theorem 6: TH(�) =
��
TH(�)

�+�+
. Hence,

by Proposition 1(v), Th(�) = TH(�), proving Finite
Completeness.

6 Example

The following is an example to illustrate the mechan-
ics of the proof theory.

Suppose we are given the following constraints on ex-
tended probabilities:

P(AjB) � "3, P(BjC) � ", P(AjA [ �C) � 0:1,
and the logical piece of information A � B \C,
where �C is the negation of the proposition C, and a
constraint is taken to be satisi�ed if the probability is
unde�ned (owing to the denominator being zero).

What upper bounds can we give for P(AjC)?
Firstly we must represent propositions A, B and C as
subsets of a set of possibilities 
. A natural way of
doing this that doesn't assume anything more than is
given in the problem is to set 
 = f!1; !2; !3; !4; !5g
and A = f!1g, B = f!1; !2; !3g, C = f!1; !2; !4g.
(Other representations of 
, A, B and C are of course
possible, but the choice doesn't a�ect derived proba-
bilities. Although the choice of 
 etc. is not part of
the logic, it could be automated.)

The following notation is used for gambles:
(9; 8; 7; 6; 5) is taken to be the gambleX withX(!1) =
9,X(!2) = 8 etc. The above inequalities must be con-
verted into gambles. The constraint P(AjB) � "3 is
equivalent to "3P(B)�P(A\B) � 0, and hence can be
expressed as the gambleX1 = "3B�A\B, which may
be written more explicitly as ("3�1; "3; "3; 0; 0). Thus
P satis�es the �rst constraint if and only if P j=� X1.

Similarly, the second constraint can be represented
by the gamble X2 = (" � 1; " � 1; 0; "; 0), and



the third constraint can be represented by X3 =
(0:9; 0;�0:1; 0;�0:1). Let � = fX1; X2; X3g.
From X3 can be derived Y1 = (0:9; 0;�0:1; 0;0): this
is because Y1 � X3 is non-negative, so is one of the
axioms in the axiom schema, and we can then derive
using inference rule 2, Y1 = X3 + (Y1 � X3). The
�rst inference rule then enables us to derive 10Y1 and
1
"3
X1, so we can derive (using inference rule 2) Y2 =

10Y1+
1

"3
X1, which equals (10� 1

"3
; 1; 0; 0; 0). We can

add this toX2 to derive Y3 = ("+9� 1

"3
; "; 0; "; 0), and

we're essentially there (since we've made Y3(!3) =
Y3(!5) = 0 and Y3(!2) = Y3(!4)).

For any model P of �, by the soundness of the proof
theory, P j=� Y3, i.e., (9� 1

"3
)P(!1)+"(P(!1)+P(!2)+

P(!4)) � 0, so (9� 1

"3
)P(A \ C) + "P(C) � 0, which

can be rearranged to give

P(AjC) � "4

1� 9"3
(or P(C) = 0).

This upper bound is just slightly more than "4, and
less than e.g., 1:001"4.

In fact, this is best upper bound we can put on P(AjC)
because it can be shown that there is a model P of �
with P(AjC) = "

4

1�9"3
.

7 Substituting Real Values for "

Since the interpretation of extended probability given
in [11] involves considering " as a small positive un-
known real number, one might wonder, if we take an
inference � `� X, whether we can replace all occur-
rences of " by a real number x and obtain a sound
(conventional) probabilistic inference (as de�ned in
section 2).

Let X["=x] be the gamble obtained when extended
gambleX has each occurrence of " replaced by a pos-
itive real number x. Similarly, if � is a set of ex-
tended gambles, let �["=x] = fY ["=x] : Y 2 �g. In
fact X["=x] may not be well-de�ned, since some com-
ponent may have a zero denominator; for example if
X is the constant extended gamble "=(1 � ") then
X["=1] is not well-de�ned. However, it is always the
case that for all small enough x,X["=x] is well-de�ned
(because 
 is �nite). Hence, if � is �nite, for all small
enough x, �["=x] is a set of well-de�ned gambles.

Lemma 1 Let � be a �nite set of extended gambles,
and suppose that � `� X for some extended gamble
X. Then there exists strictly positive y 2 IR such that
for all 0 < x < y, �["=x] ` X["=x].

This result also holds for in�nite �, as long as there
exists some strictly positive y0 2 IR such that for all
Y 2 �, Y ["=x] is well-de�ned for all 0 < x < y0; this

condition is required to ensure that for small enough
x, �["=x] is a well-de�ned set of gambles.

Sketch of proof: By de�nition of `� there exists
a sequence of extended gambles X1; X2; : : : ; Xn with
Xn = X, where each Xi is either an element of �,
an axiom, or is produced from earlier elements in
the sequence using one of the two inference rules. It
can be shown inductively that, if x is small enough,
X1["=x]; X2["=x]; : : :; Xn["=x] is a proof of X["=x]
from �["=x] in the logic of gambles.

In fact, for any particular proof of X from �, by con-
sidering each step, one can generate (often easily) a
range of values of x which lead (via the substitution)
to sound conventional probabilistic inferences. The
logic of extended gambles can thus be used for mak-
ing a parametrised family of probabilistic inferences
of a more usual kind.

This can be illustrated using the example of section
6, where it can be easily checked that each inference
in the proof is valid if " is substituted for any strictly
positive value, and so the whole proof is valid for any
such substitution; however, the �nal rearrangement is
only valid if 1� 9"3 > 0, i.e., if " < 1= 3

p
9.

Lemma 2 Let � [ fXg be a �nite set of extended
gambles. Suppose there exists strictly positive y 2 IR
such that for all 0 < x < y, �["=x] j= X["=x]. Then
� j=� X.

Note that this result does not hold for in�nite �. Con-
sider, for example, � = f(1� n") : n = 1; 2; 3; : : :g,
and any X which is not an axiom (e.g., X = ?). For
any x > 0, �["=x] has no model, so �["=x] j= X["=x]
(when X["=x] is well-de�ned). However, � is satis�ed
by every model, so it is not the case that � j=� X.

Sketch of proof of Lemma 2: Suppose P 2
M� is such that P j=� �. We must show that
P j=� X. It can be shown that for all suf-
�ciently small x, P["=x] j= �["=x]; so then, by
the hypothesis, for su�ciently small x, P["=x] j=
X["=x], i.e.,

P
!2
 P["=x](!)X["=x](!) � 0. Hence�P

!2
 P(!)X(!)
�
["=x] � 0 for all su�ciently small

x, which implies, using a basic property of the order-
ing �, that P

!2
 P(!)X(!) � 0, i.e., P j=� X, as
required.

Theorem 7 Let � [ fXg be a �nite set of extended
gambles. The following statements are equivalent:

(i) � `� X;

(ii) � j=� X;

(iii) there exists strictly positive y 2 IR such that for
all 0 < x < y, �["=x] ` X["=x];



(iv) there exists strictly positive y 2 IR such that for
all 0 < x < y, �["=x] j= X["=x].

Proof: by Lemma 1, (i) ) (iii); by Theorem 1, (iii)
) (iv); Lemma2 gives (iv)) (ii); �nally, by Theorem
5, (ii) ) (i).

Theorem 7 means that one can give an alternative
interpretation of this logic of extended gambles: X
follows from �nite � if and only if for all su�ciently
small x, one can infer (in a more conventional proba-
bilistic way) X["=x] from �["=x].

8 Summary and Discussion

A logic has been constructed which can reason
with both conventional and in�nitesimal probabilities.
Surprisingly, perhaps, for such an expressive logic, it
has a very simple proof theory which is complete for
�nite input sets.

The inferences made by this proof theory are guaran-
teed to be correct (in the sense of conventional prob-
abilistic reasoning) if we replace the parameter " by
real-valued positive x, so long as x is small enough.

Use of the proof theory, however, may well often not
be the most e�cient method for deduction; it would
be interesting to see to what extent linear program-
ming techniques, for example, could be adapted for
this logic.

It is clear that this logic doesn't completely solve the
problem of very unlikely propositions; for example, if
we want to represent two very small values, we have
to precisely state their ratio. A natural extension of
this work is therefore to add several incomparable in-
�nitesimals to the reals as briey discussed in [10].
Also, assuming that a probability of a proposition is
arbitrarily small can lead to undesirable inferences:
that you should bet against such a proposition at any
�nite odds. However, propagating an interval (0; y) of
valid real substitutions for " (as discussed in section 7)
will partly solve this problem by clarifying how small
we're assuming " to be for any given inference.

A technical issue is whether it is possible to bring
proof (`�) and truth (j=�) closer together. How-
ever we can't strengthen `� by adding extra inference
rules: a consequence of Finite Completeness is that
any sound inference rule is a derived inference rule of
`�, so any additional inference rules (or axioms) are
either unsound or redundant. An alternative idea is to
weaken j=� by increasing the set of models; a natural
way to do so is to increase the range of the probabil-
ity distributions: i.e., to allow probability values in
some larger set IR�� (without increasing the language
L�). Possible choices for IR�� include rational func-

tions in
p
" or even power series in

p
". Soundness is

maintained even though the associated semantic en-
tailment relations are weakened. However, it is not
yet clear whether or not Almost-Completeness can be
achieved in such a manner.

The close relationship (see e.g., [9]) between order
of magnitude probabilities and possibility theory [3]
means that this logic can be used as a possibilis-
tic logic. Upper bounds on the possibility of A
can be translated to sets of gambles of the form
fA� N"n : N = 1; 2; : : :g, for a particular value of
n; lower bounds get translated to sets of gambles of
the form f 1

N
"n � A : N = 1; 2; : : :g. Because these

are in�nite sets, we lose the completeness of the proof
theory. However, a trick can be used to represent
each of these in�nite sets as a single statement, but
this complicates the logic and it is not clear that com-
pleteness is restored.
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