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Abstract

A solution is provided to the problem of computing
a convex set of conditional probability distributions
that characterize the state of a nonlinear dynamic
system as it evolves in time. The estimator uses the
Galerkin approximation to solve Kolmogorov's equa-
tion for the di�usion of a continuous-time nonlinear
system with discrete-time measurement updates. Fil-
tering of the state is accomplished for a convex set
of distributions simultaneously, and closed-form rep-
resentations of the resulting sets of means and covari-
ances are generated.

Keywords. nonlinear �ltering theory, convex sets of
probability distributions, set-valued estimation

1 Introduction

The classical �ltering problem of estimation theory is
to compute real-time the conditional distribution of
the state of a dynamic system given the observations.
For linear Gaussian systems with a unique probabil-
ity model, this problem is solved by computing the
conditional expectation and covariance of the state,
resulting in the well-known Kalman �lter. This ap-
proach is appropriate for linear systems when there
exists a unique a priori distribution for the initial sys-
tem state. To deal with situations where the a priori
distribution is not unique, Morrell and Stirling [10]
developed the set-valued Kalman �lter. Under this
approach, the a priori state is represented by a convex
set of distributions, and the problem is to compute the
corresponding convex set of conditional expectations.

For nonlinear systems, the �ltering problem becomes
di�cult because the entire conditional density func-
tion, rather than just the �rst two moments, must be
computed at each time. The solution to this problem
is represented by the so-called Kolmogorov's equation,
a partial di�erential equation that describes the evo-
lution of the conditional density of the state of a dy-

namic system. Although a general closed-form solu-
tion does not exist, recently a new approach, using
the Galerkin approximation [1], has been shown to
be an e�ective means of approximating the solution
to Kolmogorov's equation. The resulting nonlinear
projection �lter thus represents an alternative to tra-
ditional approaches to nonlinear estimation, such as
the extended Kalman �lter, which relies on lineariza-
tion.

In this paper we extend the nonlinear projection �lter
to deal with non-unique a priori distributions. This
extension is accomplished by constructing a convex
set of a priori density functions represented by a con-
vex set of Euclidean r- dimensional vectors. The coor-
dinates of these vectors are the coe�cients of expan-
sion of these density functions in terms of a set of basis
functions. Each such vector represents the Galerkin
approximation to one of the densities in the prior set
and every such density is represented in this way. A
functional is de�ned to represent this set with a �nite
number of parameters. A recursive representation of
the time and measurement updating of the whole set
of conditional densities is found by exploiting a cer-
tain property of the nonlinear measurement update
equations. Based on this set of parameterized density
functions a description of the sets of associated means
and covariances is derived.

2 The Nonlinear Projection Filter

In this section we summarize the development of the
approximate point-valued �lter proposed by Beard et
al. [1]. The system is represented by the nonlinear
stochastic vector di�erential equation

dxt = f(xt; t)dt+G(xt; t)d�t; t � t0 (1)

where xt 2 Rn is the state of the system at time t and
f�t; t � t0g is a p-dimensional Brownian motion with
covariance matrix Q(t)dt. Let m-dimensional noisy



measurements be made at discrete times tk

yk = h(xtk ; tk) + vk; k = 1; 2; � � � ; (2)

where fvk; k � 1g is an m-dimensional white Gaus-
sian sequence independent of d�t with covariance ma-
trix Rk. De�ne the collection of measurements taken
up to and including time t as Yt = fyk : tk � tg. It is
desired to determine the statistical properties of the
stochastic process described by the system (1) and (2)
given the a priori distribution p(x; t0).

The solution to this system is the conditional prob-
ability density function ptjtk (xtjYtk) which contains
all of the statistical information about the stochastic
process xt for every value of the parameter t. It is a
well established fact that p(x; tjYtk ) evolves in time
between observations according to Kolmogorov's for-
ward equation [5, page 130]. That is, between obser-
vations at times tk and tk+1, p � p(x; tjYtk ) evolves
according to

Prediction Equation:
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where the initial condition to (3) is p(x; tkjYtk ),
the measurement updated density at time tk, and
(GQGT )ij is the (i; j)th element of the matrix
GQGT . The information obtained by taking a mea-
surement at time tk+1 may be computed according to
Bayes rule, yielding

Filter Equation:
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and p(x; t�k+1jYtk) is the state conditional density ob-
tained from (3) immediately prior to the measurement
at time tk+1.

The optimal nonlinear state estimator for the sys-
tem (1) and (2) is given by (3) and (4) for the case of
continuous dynamics and discrete measurements. Be-
tween measurements the statistical properties of the
state are predicted by the evolution of its density func-
tion according to (3). At the time of an observation
the new information from the measurement is incor-
porated into the state estimate through the di�erence
equation (4). The problem with this optimal �lter is

that closed form solutions for (3) exist for only a few
special cases.

Galerkin's method [2, 6, 8] is a general method for the
approximate solution of partial di�erential equations,
in which the exact solution is considered to be an ele-
ment of a Hilbert space with compact support, 
, and
an approximate solution is chosen from a �nite dimen-
sional subspace, SN , such that it solves the equation
projected onto that subspace. Let f�`g1`=0 be a com-
plete orthonormal basis for the Hilbert space, H. The
inner product associated with H is given by

hf; gi =

Z



g(�)f�(�)d�: (6)

The approximate solution to the �ltering problem us-
ing Galerkin's method is obtained by solving for the
expansion coe�cients of the approximating density
function given by

p̂(x; tjYt) =

N�1X
`=0

c`(t)�`(x); (7)

where �0; : : : ; �N�1 are the basis functions that span
the approximation subspace SN . Between mea-
surements the approximate solution to Kolmogorov's
equation becomes the solution to the system of ordi-
nary di�erential equations

_c(t) = A(t)c(t); (8)

where

c(t) = [c0(t); : : : ; cN�1(t)]T

and
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The solution to this equation may be characterized by
a state-transition matrix �(�; �), where

c(t) = �(t; tk)c(tk); t 2 [tk; tk+1): (10)

Note that if f ;G; andQ, are not time dependent, then
A(t) = A = constant matrix and �(t; tk) = eA(t�tk).

The application of measurement information accord-
ing to Bayes law is accomplished by the di�erence
equation (4) which becomes

c(tk+1) =
�k+1c(t

�
k+1)

�Tk+1c(t
�
k+1)

; q = 0; : : : ; N � 1; (11)



where

[�k+1]q;` = hp(yk+1jx)�`; �qi (12)

[�k+1]` = hp(yk+1jx); �
�
` i: (13)

This is the measurement update step of the
continuous-discrete �lter within the approximating
subspace SN .

3 The Set-Valued Nonlinear

Projection Filter

3.1 A Convex Set of Prior Distributions

Our aim in this section is to de�ne a parameterization
for convex sets of prior probability density functions
(pdf's) which may be propagated according to the �l-
ter equations. Consider a set of r probability density
functions

� = f�0; : : : ; �r�1g (14)

where the �i are arbitrary pdf's. A convex combina-
tion of the elements of � is a pdf

p� = �0�0 + : : :+ �r�1�r�1; (15)

where �i � 0 and
Pr�1

i=0 �i = 1. We wish to construct
a convex set of density functions with elements of the
form of (15).

The set of probability density functions to be con-
structed will be a subset of the convex hull1 of �,
and will be referred to as V . We seek a parame-
terization of V in terms of a convex set of vectors
� = (�0; : : : ; �r�1)T . The coordinates, �i, of each
vector, �, are coe�cients of a convex combination, as
in (15), of the functions in �. De�ne

V =f� 2 Rr jnT (�� �) = 0 and kM(�� �)k � 1g;
(16)

where n = (1; : : : ; 1)T , and � is chosen to be some r

vector, � = (�0; : : : ; �r�1)T , such that
Pr�1

i=0 �i = 1
and �i � 0. We require M 2 Rr�r to be nonsingular.
The set V is a hyperellipsoidal (r � 1)-dimensional
manifold in Rr . This structure ensures that as time
evolves and V is subsequently updated, that it re-
tains the same hyperellipsoidal structure, and leads
to convenient recursions. The vector � and the ma-
trix M parameterize the imprecision associated with
the prior distribution.

We desire each element of V to be a valid parameter-
ization for a probability density function in V of the

1The convex hull of a set is the smallest convex set
containing the original set.

form (15). From the de�nition of V , any � 2 V sat-

is�es the requirement that
Pr�1

i=0 �i = 1. To ensure
satisfaction of the requirement that �i � 0, for � 2 V ,
we must chooseM 2 Rr�r so that V is contained en-
tirely within the positive orthant. In this case the set
V de�nes a set of convex combinations of the densi-
ties in � since each vector � = (�0; : : : ; �r�1) 2 V

represents a sequence of valid coe�cients for a convex
combination of the form of (15). Thus the set of r
dimensional real vectors V speci�es the convex set of
probability density functions V : That is,

V = fp�j� 2 V and p� = �0�0 + : : :+ �r�1�r�1g:
(17)

We have characterized the vectors� as parameters for
probability density functions from the convex hull of
�. What we really need, however, are the orthogonal
projections of the elements of V onto the basis func-
tions of SN , the approximating subspace of functions
on which the �lter is de�ned.

Recall that the approximate continuous-discrete �lter
consists of a recursion on a vector c(t). The coor-
dinates of this vector de�ne the conditional density
function for the state by (7). We now need to �nd
a representation within SN for the set of priors V .
We require a set of coe�cients c1(t0) : : : cN�1(t0) such
that, upon equating projections, we have

hp�(x; t0); �si =

*
r�1X
l=0

�l�l; �s

+

=

*
N�1X
q=0

cq(t0)�q ; �s

+

= hp̂(x; t0); �si; (18)

for s = 0; : : : ; N � 1. It follows that

N�1X
q=0

cq(t0)h�q ; �si =
r�1X
l=0

�lh�l; �si: (19)

Since h�q ; �`i = �q;`, this becomes

c(t0) = K0�; (20)

where c(t0) = (c0; : : : ; cN�1)T , and [K0]s;l = h�l; �si.

The relationship (20) maps each density in V , each of
which is of the form (15), to its corresponding approx-
imation in the subspace SN , of the form of (7). That
is, each density function in V is represented by its pa-
rameter vector � 2 V � Rr , and each of these vectors
is then mapped by (20) to a vector c(t0) 2 RN .



3.2 The Set-Valued Nonlinear Projection

Filter Equations

We must now �nd a method for propagating the infor-
mation contained in the prior set V conditioned on the
data. At this juncture it is useful to combine the pre-
diction equation (10) with the measurement update
equation (11) to obtain

c(tk+1) =
�k+1�(tk+1; tk)c(tk)

�Tk+1�(tk+1; tk)c(tk)
: (21)

By carrying out a few iterations of the recursion it
becomes easy to see that in general (21) is equivalent
to

c(tk+1) =
�k+1�(tk+1; tk)Kk�

�Tk+1�(tk+1; tk)Kk�
; (22)

where Kk is given by the recursion

Kk = �k�(tk; tk�1)Kk�1; k = 1; : : : : (23)

Thus, for any prior density in V we can construct the
corresponding approximate density at any time t > 0
conditioned on the data sequence Yt. Each prior in V
has a unique representation in terms of a parameter
vector � 2 V . The transformation (22) produces, at
time t, for each � 2 V , a parametric representation
of the current conditional density for the state of the
form (7). The signi�cance of this is that all of the in-
formation necessary to construct the set of conditional
densities is propagated by the linear recursion (23),
and that when we want to scrutinize this information
at some time instant we may resolve it to a useful
form through the nonlinear transformation (22).

4 Computing Sets of First and

Second Moments

4.1 The Set of Conditional Means

The set of densities propagated by the set-valued �l-
ter, (23) and (22), is parameterized by the set of vec-
tors � 2 V where V � Rr . We will assume that
r > n, where n is the dimension of the state vector
x, and r is the number of prior density functions in
the set � which spans V . We wish to derive the set
of conditional means at a given time instant directly
from the set V .

By de�nition, the conditional mean of the state at
time t given observations, Y� , up to and including
time � � t is

�x�t =

Z
�p(�; tjY� )d�: (24)

We may compute the mean of any one of the approx-
imate densities generated by (16) and (22) as follows

�̂x
�
t =

Z
�p̂(�; tjY� )d�

=

Z
�

N�1X
l=0

cl(t)�l(�)d�

=

N�1X
l=0

cl(t)

Z
��l(�)d�

= �T c(t) (25)

where the columns of

�T =
� R

��0(�)d�; : : : ;
R
��N�1(�)d�

�
2 Rn�r

(26)

are mean vectors of the basis distributions. From this
and (22) we have

�̂x
tk+1

t =
�T�(t; tk+1)�k+1�(tk+1; tk)Kk�

�Tk+1�(tk+1; tk)Kk�
: (27)

De�ne

��
T
= �T�(t; tk+1)�k+1�(tk+1; tk)Kk; (28)

and

��T = �Tk+1�(tk+1; tk)Kk; (29)

then (27) becomes

�̂x =
��
T
�

��T�
; (30)

where we have suppressed the dependence on time.
We may now simplify our problem by applying the
linear invertible transformation

~� =M� (31)

as follows

�̂x =
��
T
M�1M�

��TM�1M�
=

~�
T
~�

~�T ~�
; (32)

where

~� = M�T �� (33)

~� = M�T ��: (34)

Now with � =M�1 ~�, we have

~V =
�
~� 2 Rr

��kM(M�1 ~�� �)k2 � 1

and nT (M�1 ~�� �) = 0
	
;

(35)



which, upon setting

~� = M� (36)

~n = M�Tn; (37)

becomes

~V =
�
~� 2 Rr

��k~�� ~�k2 � 1; and ~nT (~�� ~�) = 0
	
:

(38)

Our problem has now become that of �nding the set
of all means �̂x generated by (32) as ~� ranges over all
values in the set ~V .

The set ~V resides in Rr and r is potentially much
greater than n, the dimension of the state space. If
we restrict attention only to the �rst moments of the
distributions represented by ~V , however, we may sig-
ni�cantly reduce the dimension of the parameteriza-
tion space. We observe that the only component of
any ~� 2 ~V which a�ects the value of �̂x in (32) is
that component which lies in the column space of the
augmented matrix

� = (~�; ~�) 2 Rr�(n+1) : (39)

To see this, consider the orthogonal projection trans-
formation

} =�(�T�)�1�T ; (40)

which maps any vector in Rr to its projection in the
subspace spanned by the columns of � within Rr .
Consider also the orthogonal projection operator

}? = I�} (41)

which projects into the orthogonal complement of the
column space of � with respect to Rr . We may now
write

�̂x =
~�
T
~�

~�T ~�

=
~�
T
(}+}?)~�

~�T (}+}?)~�

=
~�
T
}~�+ ~�

T
}? ~�

~�T}~�+ ~�T}? ~�

=
~�
T
}~�

~�T}~�
(42)

since ~�
T
}? and ~�T}? are both zero due to the con-

struction of }?. Thus we see that only the component
of ~� contained in the column space of � determines
�̂x.

We may now transform (32) with a (possibly non-
invertible) linear transformation which preserves this

essential information and which simpli�es the form
of (32). We proceed by �rst applying the Gram-
Schmidt [4] process to the columns of� to obtain the
matrix U = (u1; : : : ;un+1), which has orthonormal
columns spanning the same space as the columns of
�. The orthogonal projection matrix de�ned above
may now be written

} = UUT : (43)

With } in this form, (32) may be written as

�̂x =
~�
T
~�

~�T ~�

=
~�
T
}~�

~�T}~�

=
~�
T
UUT ~�

~�TUUT ~�
: (44)

Now let

�� = UT ~� (45)

�� = UT ~� (46)

�� = UT ~�; (47)

so that

�̂x =
��
T
��

��T ��
=

��
T
��

k~�keT1 ��
(48)

where �� 2 Rn+1 and ei is the i
th standard Euclidean

basis vector. Note that �� = k~�ke1 due to the con-
struction of U.

We must now characterize the set of all �� 2 Rn+1

such that �� = UT ~� for some ~� 2 ~V . We will refer
to this set as �V , and we will provide for its de�nition
an inequality constraint on a functional. That is, we
will �nd a description for this set of the form

�V =
�
�� 2 Rn+1 jf(��) � a constant

	
(49)

where f is to be determined. To derive this functional
we must determine conditions which are satis�ed only
by those points of ~V that map to boundary points of
�V .

Theorem 1 Let the set ~V be de�ned as in (38), that
is

~V =
�
~� 2 Rr

��k~�� ~�k2 � 1; and ~nT (~�� ~�) = 0
	
:

(50)

De�ne U 2 Rr�(n+1) to have orthonormal columns
that span the column space of (~�; ~�). With } = UUT

and }? = I�}, let

M = I+
~n~nT

~nT}?~n
; (51)



and de�ne

�V =
�
�� 2 Rn+1

��(��� ��)TUTMU(��� ��) � 1
	
;

(52)

where r � n + 1, and �� = UT ~�. Then �� 2 �V if and
only if �� = UT ~� for some ~� 2 ~V .

The proofs of all theorems in this paper may be found
in [7]. We will now proceed to determine a represen-
tation of the set of means from the simpli�ed interme-
diate equation of (48) and (52). Consider the linear
transformation

F =
�
e1

T ; ��
T
�T

2 R(n+1)�(n+1) : (53)

Without loss of generality, the rows of F may be taken
to be linearly independent since dependencies among
the rows of F would allow us to reduce the order of
the �lter. Hence F is invertible, and we may make
the transformation on the equations for �̂x as follows.
De�ne

�� = F��: (54)

Then

�̂x =
��
T
F�1F��

k~�keT1 F
�1F��

=
(0; I)��

k~�keT1 ��
(55)

for each �� 2 �V , where

�V =
n
�� 2 Rn+1

���(F�1 ��� ��)TUT
MU(F�1 ��� ��)�1

o
:

Setting

� = F�TUTMUF�1 (56)

�� = F��; (57)

we obtain

�V =

�
�� 2 Rn+1

����
�1=2(��� ��)

2 � 1 ;

�
: (58)

With the problem cast in the form of (55) and (58)
we may now state the following theorem that gives
us the set of all conditional means generated by (16)
and (27).

Theorem 2 De�ne

�̂V =

�
�̂x 2 Rn

����(k~�k�1 ; �̂xT )N
�
k~�k�1

�̂x

�
� 0

�
;

(59)

where ~� is given by (34) and

N = �����T�� ��T����+�: (60)

Then �̂x 2 �̂V if and only if

�̂x =
(0; I)��

k~�k eT1 ��
(61)

for some �� 2 �V , where �V is given by (58).

4.2 The Set of Covariance Matrices

Theorem 2 provides the �nal step in de�ning the set
of means produced by the set-valued �lter at a given
time instant. Notwithstanding the importance of a
convex set of estimates such as (59), it only portrays
a portion of the information available in the convex
set of conditional densities. A measure of the cen-
tral tendency of a distribution about its mean pro-
vides needed information about the reliability of the
estimate. Usually the covariance associated with the
distribution �lls this need.

We will �nd in this development that by augmenting
the mean vector with a row scanned version of the as-
sociated correlation matrix, the problem of determin-
ing the set of correlation matrix/mean vector pairs
reduces to the same form as that of �nding the set of
means by themselves. This makes the development of
the previous section directly applicable to the prob-
lem of determining the set of correlations. To �nd the
related set of covariance matrix/mean vector pairs we
employ a nonlinear invertible transformation. We will
now proceed to characterize this set of covariances.

We �rst consider the correlation matrix, which is
given by de�nition as

COR = EfxxT g =

Z
p(�)��T d�: (62)

Replacing p(x) with p̂(x), we obtain the approxima-
tion

\COR =

Z
p̂(�)��T d�

=

Z  N�1X
`=0

c`(t)�`(�)

!
��T d�

=

N�1X
`=0

c`(t)

Z
�`(�)��

T d�: (63)

Recall that\COR is a real symmetric matrix, hence
there is no loss of information if we concern ourselves
only with those entries lying on and above the diago-

nal. To accomplish this and also to put\COR into a

manageable form we will represent\COR as a column

vector by stacking up the entries of \COR and then
deleting those entries in the resulting vector which are
redundant because of symmetry. We will make use of
the function vec(�) de�ned in [3] to achieve this goal.
The function vec(�) is a vector valued function of a
matrix argument which is de�ned as follows

cor = vec(\COR)

=
h
\COR

T

�1; \COR
T

�2; � � � ; \COR
T

�n

iT
;(64)



where\COR�i denotes the ith column of \COR. We
now may write

cor =

N�1X
`=0

c`(t)

Z
�`(�)

2
6664

�1�

�2�
...

�n�

3
7775 d�

=
N�1X
`=0

c`(t)

Z
�`(�)(� 
 �)d�

=

�Z
(� 
 �)�(�)d�

�
c(t) (65)

where �(�) = (�0(�); �1(�); : : : ; �N�1(�)), and 
 is
the matrix Kroneker product. We must now remove
the redundancy inherent in cor as we mentioned be-
fore. This will be accomplished by �rst de�ning the

linear transformation T 2 R
n(n+1)

2 �n2 as

T = [e1; : : : ; en; en+2; : : : ; e2n; e2n+3; : : : ;

e3n; e3n+4; : : : ; : : : ; en2 ] ; (66)

where ei is the i
th standard basis vector of Rn

2

. Left
multiplication of the vector cor by the non-square
matrix T will have the e�ect of removing the coor-
dinates of cor which originated from elements below

the diagonal of\COR. We may now write

corcorcor = Tcor

=

�
T

Z
(� 
 �)�(�)d�

�
c(t); (67)

and with

�T =

�
T

Z
(� 
 �)�(�)d�

�
(68)

we have

corcorcor = �T c(t): (69)

We may now augment this equation for the correlation
with the equation for the conditional mean to obtain

xxx =

�
corcorcor

�̂x

�
=

�
�T

�T

�
c(t);

and with

GGGT =

�
�T

�T

�
(70)

we may write

xxx = GGGT c(t); (71)

wherein we will refer to the vector xxx as the augmented
correlation vector. Equation (71) is in identically the

same form as (25); therefore, the entire development
for determining the set of conditional means applies
directly to determining the set of augmented corre-

lation vectors xxx = (corcorcorT ; �̂x
T
)T . That is, the set of

augmented correlation vectors is given by�
xxx 2 Rn(n+3)=2

����(k~�k�1 ;xxxT )N
�
k~�k�1

xxx

�
� 0

�
;

(72)

where we now have

F =

 
e
T

1

�GGG
T

!

�GGG = U
T ~GGG

~GGG = M
�T
K
T

k�
T (tk+1; tk)�

T

k+1�
T (t; tk+1)GGG

~� = M
�T
K
T

k�
T (tk+1; tk)�k+1

� =
�
~�; ~GGG

�

We now turn to the problem of specifying the set of
covariances. To accomplish this we de�ne the aug-
mented covariance vector

��� =

�
covcovcov

�̂x

�

=

�
Tvec(COV)

�̂x

�

=

�
corcorcor �Tvec(�̂x�̂x

T
)

�̂x

�

= xxx�

�
Tvec(�̂x�̂x

T
)

0

�
: (73)

The right hand side of (73) gives the augmented co-
variance vector, ���, in terms of the augmented correla-
tion vector, xxx, along with a term which depends only
on the mean. Since the mean vector is a sub-vector of
��� we may construct the inverse transformation from
��� to xxx as follows

��� = xxx�

�
Tvec(�̂x�̂x

T
)

0

�
; (74)

which implies

xxx = ���+

�
Tvec(�̂x�̂x

T
)

0

�

= ���+

�
T[(0; In)
 (0; In)](���
���)

0

�
= ���+W(���
���); (75)

where we de�ne

W =

�
T[(0; In)
 (0; In)]

0

�
: (76)



With the relationship of (75) and the de�nition of the
set of augmented correlation vectors (72) we may now
specify the set of augmented covariances as

V =

(
��� 2 Rn(n+1)=2

�����
�

k~�k�1

���+W(���
���)

�T

N

�
k~�k�1

���+W(���
���)

�
� 0

�
(77)

which is the desired representation.

5 Simulation Results

The following simulation compares the performance
and operating characteristics of the set-valued nonlin-
ear projection �lter (SVNPF) developed in this paper
with those of the set-valued extended Kalman �lter
(SVEKF) [9, 10]. The prior basis pdf's for the SVNPF
are Gaussian with variances equal to the variance used
in the SVEKF and their mean values chosen so that
the resulting set of prior means is approximately the
same as those of the SVEKF. The same data sequence
is applied to both the SVEKF and to the SVNPF. The
system dynamics are described by

dxt = sin
�
xt +

�

18

�
dt+ d�t (78)

where xt 2 R is the state of the system at time t and
f�t; t � t0g is a Brownian motion process with vari-
ance Q(t)dt. This system has an equilibrium point at
each zero crossing of the sine function, but only the
equilibria associated with a negative slope are sta-
ble. Thus, if a probability density function maintains
nonzero mass across an unstable equilibrium, it will
tend to bifurcate as its mass migrates to the two ad-
jacent stable equilibria unless information in the data
overcome this tendency. Suppose, however, that ob-
servations are taken according to the nonlinear model

yk =
1

2
jxtk j+ vk; k = 1; 2; : : : ; (79)

where fvk; k � 1g is a white Gaussian sequence in-
dependent of d�t with variance Rk. Since this ob-
servation renders it impossible to distinguish between
positive and negative values of the state, there will not
be su�cient information to overcome the bifurcation.

For this example, n = 1, N = 64, and r = 5.
� consists of Gaussian distributions with means in
f�2;�1; 0; 1; 2g with unit variance. The orthonormal
basis functions for the Hilbert space are taken as

�`(x)

( 1p
b�a ` = 0q
2

b�a cos
�

�`
b�a (x� a)

�
` = 1; 2; : : : ;

(80)

where 
 = [a; b]. For this simulation, a and b are
chosen to ensure that several equilibria are included
in the support.
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Figure 1: Simulation results: (a) conditional density
and mean/variance pairs at t = 0; (b) conditional
density and mean/variance pairs at t = 2:25. (For
this simulation, Q(t) = 1 and Rt = 2.)

Figure 1 shows the state of this system at time t = 0
and at time t = 2:25. A particular density function is
chosen from the set of priors and its evolution in time
is plotted, with the true system state is marked with
a diamond. Cross plots of the set of mean/variance
pairs is plotted for both the SVEKF and the SVNPF.
In the case of the SVEKF the variance is the same
for each density in the set, hence the associated set of
mean variance pairs is always a line, plotted in bold
face. The true initial state is zero, which is the best
possible circumstance for the SVEKF since that is
the initial valued of its central mean, ccc0j0 (ccckjk is the
point about which the SVEKF linearizes the system
and measurement functions). Notice that the initial



mean set of the SVEKF has been chosen to have about
the same width as does that of the SVNPF.

Figure 1(b) illustrates the situation at time t = 2:25.
This representative distribution has a distinctive bi-
modal character, with the two modes converging to
the two stable equilibria. As expected by the sys-
tem's inability to distinguish the polarity of the ob-
servations, the set of means produced by the SVNPF
is enlarging, reecting the fact that some of the den-
sities in the set have more mass converging to one
side than the other. The SVEKF, however, has in-
correctly converged to a point estimate at the wrong
equilibrium point since the actual state converged to
the other stable equilibrium.

This example illustrates that, with nonlinear systems,
it is possible to generate multi-modal conditional dis-
tributions. In such situations, the �rst two moments
do not convey su�cient information to indicate the
behavior of the estimator. The SVNPF, however, pro-
vides the set of all such conditional distributions, from
which sets of all high-order moments can be extracted.

6 Summary

We have extended the nonlinear �lter of [1] to prop-
agate a convex set of probability distributions. A pa-
rameterization of a convex set of probability density
functions is de�ned in (16). This parameterization
is shown to represent the uncountably in�nite set of
priors with a �nite number of parameters. The ap-
proximate �lter equations (8) and (11) from [1] are
extended to evolve the set of conditional distributions
arising at each time t from the set of priors parame-
terized by (16). It is seen that the set of conditional
density functions produced by the �lter is equivalent
to propagating each density in the prior set individ-
ually with the �lter of [1]. A method is developed in
Section 4.1 for describing the set of conditional means
at any chosen time t. This set of conditional means
contains the mean values of each of the pdf's prop-
agated by the �lter, and is given by a closed form
expression in Theorem 2. To further aid in the inter-
pretation of the �lter output, the set of conditional
covariances associated with the set of conditional dis-
tributions is also derived. This set is de�ned by the
closed form expression of (77) which de�nes the set of
mean vector/covariance matrix pairs.

Since nonlinear �ltering requires the propagation of
the entire distribution in contrast to the need to prop-
agate only the �rst two moments with linear �ltering,
it is to be expected that the computational burden
is severe. This burden can be mitigated by judicious
choice of Hilbert space basis functions and employing
fast algorithms, such as the fast cosine transform, to

perform inner products. These innovations notwith-
standing, however, the practical implementation of
set-valued non-linear projection �ltering is not yet a
feasible option for systems with high state space di-
mensionality.
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