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Abstract

We investigate some problems related to implemen-
tation of uncertainty management, in particular the
handling of computational and conceptual di�culties
that easily appear in complex problems. The un-
certainty polytope resulting from a set of inequality
judgments on probabilities and means in a problem
has very high dimension, but can be represented by
a projection on a low-dimensional space if the judg-
ments are structured into a graph with low tree-width.
With this representation many judgments of indepen-
dence become vacuous. The uncertainty polytope is
high-dimensional and thus di�cult to grasp or visu-
alize. We propose a method to sample uniformly and
e�ciently from the polytope, as a means to obtain
various summaries not obtainable by linear program-
ming, such as volume, center of gravity, principal axes,
etc.
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1 Introduction

The concept of uncertainty has rather deep philosoph-
ical connotations. How can I say something certain
about uncertainty? What do I mean by saying that
something (e.g., some proposition A) is uncertain?
One thing I mean is that I do not know whether or
not A holds. It is a property of our language that
this can mean di�erent things. It can mean that A is
permanently true or false, but I do not know which
is the case. It can mean that A is dependent on an
unstated context. It can mean that I do not know
exactly what A means. The �rst of these cases can
be analyzed using di�erent schemes of Bayesian infer-
ence.

Bayesian reasoning can be regarded as an extension of
Aristotelian deductive logic. Aristotle structured the
reasoning process into assumption of premises, and

a set of manipulative steps whereby new statements
are found that are di�erent but must be true if the
assumptions are. We use terms invented by Aristo-
tle when we talk about statements, e.g., as premises
and conclusions. So we have a vocabulary of state-
ments, A, B, etc., and means to combine them and
infer consequences. Deductive reasoning is the logic
of certainty. It is a special case of any useful logic
of uncertainty. Aristotle apparently realized the lim-
itations of deduction as the only inference method in
science. His attempts on the logic of uncertainty were
quite in�uential but non-quantitative and apparently
�awed[18], so now we must �nd inspiration from work
done much later in order to �nish his projects.

Bayesianism as a developing school of thought started
in the 1930s with work by de Finetti and Je�reys,
among others. Instead of assuming certain statements
to be true, we assume a number of statement plausi-
bilities and derive plausibilities of other statements.
When statement plausibilities change as a result of
observations made, other statements will have their
plausibilities changed. In 1946, R.T. Cox[4] published
his �ndings on some properties required by any good
calculus of plausibility of statements. He stated three
requirements:

I: Plausibility is a real number, II: Consistency, III:
Common sense.

A very lucid elaboration of Cox �ndings can be found
in E. T. Jaynes posthumous manuscript[11], Ch 2.
The conclusion was that every type of reasoning with
the plausibility of statements satisfying I, II and III
above, as they interpret them, is equivalent to com-
puting with probabilities after a rescaling of the plau-
sibility measure.

This is because he found a rescaling that must sat-
isfy the two �rst rules of probability: P (AB|C) =
P (A|C)P (B|AC) and P (A|C) = 1 − P (A|C). Bayes
rule P (A|BC) = P (B|AC)P (A|C)/P (B|C) is an im-
mediate consequence of the probability rule for con-



junction and commutativity of conjunction. A similar
derivation (more related to de Finettis work) was pub-
lished by Lindley[15]. The accompanying discussion
is recommended reading as an illustration of how di�-
cult this topic is. The analysis has been both praised
and criticized regularly since 1946, see e.g., [9]. In
Cox argument it is easily seen that the conclusion
hangs critically on (I), sometimes referred to as the
Bayesian dogma of precision. Walley[21] made a sim-
ilar derivation without assumption (I), resulting in a
system where plausibility is measured by an interval
of numbers. The accompanying methodology suggests
that our uncertainty about the world is measured by
a polytope in 2n-space of probabilities for a world of n
binary variables (atomic statements). This is in con-
trast with most applications of Bayesianism, where
the situation would be measured either with a point in
2n-space, for the purpose of decision making, or with
a probability distribution over 2n-space for the pur-
pose of learning from observation or experience. If we
have a pdf (a distribution over 2n-space) to measure
uncertainty, all its information required for Bayesian
decision making is summarized in its mean.

The standard Bayesian view has no room for total
ignorance - there is one prior, �rst- or second-order.
But it is completely natural to model some types of ig-
norance with families of Bayesian assessments, among
which we do not want to choose. Each such assess-
ment can be thought of as coming from one expert
or even a mode of an expert. Although standard
Bayesianism advocates earliest possible fusion of such
assessments, this may not always be possible or even
desirable. An interesting question is then how learn-
ing should be realized: Do we never want to choose
between the assessments, or is there a useful mecha-
nism by which some assessments become downplayed
by observations - as one would imagine happens when
a decision maker tries to rationally use advice given
by a collection of quarreling experts, using as input
each experts past performance?

We will investigate problems related to combining
previsions and observations, as a feasibility study
concerning new tools for analysis of knowledge and
observations related to medical and human brain
informatics[8].

2 De�nitions

The concepts underlying this discussion are consid-
ered in many application areas which have developed
rather di�erent terminologies. The usage in this paper
is de�ned here:

We consider worlds that can be de�ned by the truth
or falsity of each of n atomic statements in a vocab-

ulary V , which we call binary variables. We consider
binary variables here, since the generalization to vari-
ables taking more than two values is obvious. A pos-

sible world is speci�ed by an assignment of true or
false to each of these n variables. It is thus a cor-
ner of the n-dimensional hypercube, and there are 2n

possible worlds. A probability distribution over these
worlds is speci�ed with a point in the 2n-dimensional
hypercube, giving the relative probabilities of the 2n

possible worlds. We use the quantities ys to denote
such probabilities, where s is a binary string of length
n. When referring to their computation by linear pro-
gramming, the ys will be called LP variables. A sub-

world (or subvocabulary) of the n-variable world is de-
�ned by a subset W ⊂ V of its variables, and denoted
in probabilities with a superscript which is a list of
its variables. The possible subworld probabilities are
obtained by summing the possible world probabilities
over those indices corresponding to variables not in-
cluded in the subworld. This process is also known as
marginalization. The possible subworld probabilities
are denoted xW

s or zW
s , where W is a list of binary

variables and s is a list of corresponding binary indica-
tors. The subworld probabilities will also sometimes
be used as LP variables.

3 Assessment and Learning

In the �rst treatise on probability, Bernoulli gave the
method of assigning probabilities to hypotheses, the
principle of insu�cient reason or indi�erence: If there
are n exclusive and exhaustive hypotheses to choose
from, and s of them imply success, and there is no in-
formation leading us to distinguish among them, then
the probability of success is s/n. Even if we start
out with some queer measure of plausibility satisfy-
ing requirements I, II and III, the basic rule of as-
signing plausibility refers to the probability, and not
to the queer measure we started with. There is a
problem with this recipe: it says that probability is
conditioned by all information we possess that is rele-
vant to the problem under consideration. Many ques-
tionable derivations in Bayesian analysis result from
taking this condition too lightly. Bayes, being more
humble, had the opposite problem: it has been re-
ported that his ambivalence towards the uniform prior
caused him not to publish his paper.

It is equally dubious to omit from the analysis in-
formation that we have, as it is to enter information
which we do not have. In the notation A|C, C stands
for this information. It is useful to call it the context
of the analysis. It is important to note that two in-
dividuals with the same information state (context)
will in principle assign the same probabilities, so they
are not truly subjective. But this is a hypothetical



statement - it is not practically possible to measure
the information state of an individual. The method of
lower previsions seems to relate to the situation where
we have a set of contexts that we do not want to fuse
by weighting. The uncertainty polytope is the result
of keeping an unweighted set of contexts and using
their convex hull (all possible weightings) as a set of
possible contexts.

All non-trivial applications of uncertainty reasoning
must deal with the problem of learning from experi-
ence. In statistics oriented systems the learning prin-
ciple seems to be application of Bayes rule to a second-
order probability function, which is a generalization
of the model choice principle using Bayes rule. This
seems to be the most controversial part of Bayesian-
ism, because conclusions are typically not robust with
respect to choice of prior. In many application ar-
eas this is not felt as a problem, but in others it is.
This topic is one of the most discussed in statistical
methodology. It caused Bayes problems, Laplace was
ridiculed for his choice of example. It looks as a man-
ifestation of an eternal (Socratic) educational riddle:
How can you learn if you do not already know? Re-
cently proposals were made to use families of learning
functions with some canonical properties like the im-
precise Dirichlet prior[20]. This is a non-committing
family of priors which however has a 'sti�ness' pa-
rameter that controls speed of learning. It could be
seen as a second-order manifestation of the Bayesian
dogma of precision which is somewhat hard to escape.
In the current discussion we can see that the view of
the uncertainty polytope as a description of consensus
among di�erent experts can be augmented by intro-
ducing learning into the expert set. With this view
we say that each expert should learn by experience, in
which case the uncertainty polytope changes by ob-
servation, but remains the convex hull of the opinions
of the di�erent experts. The above is meant to sug-
gest that it is a good idea to look at the uncertainty
polytope and in particular to get handles on the com-
putational and conceptual challenges it poses.

4 Joining Small Worlds

The method of lower previsions allows a user to im-
pose judgments on the probability space of a problem,
and each such judgment may become modi�ed by ob-
servations made. Thus, a problem with n binary vari-
ables is described by a set of probability distributions
over the 2n possible worlds, each described by a 2n-
tuple of probabilities summing to one. A judgment
in this system is a linear constraint on these proba-
bilities. Thus, a state of uncertainty resulting after a
set of judgments have been passed is described by a
polytope in 2n-space. Most inferences required are in

the form of estimates of a linear function of the prob-
ability vector, and with the only information that the
vector lies in a polytope, the answer to the inference
problem is an interval of numbers that can be found
in two linear programming optimizations, one maxi-
mization and one minimization. For large n it is not
possible to attack the linear programming problem us-
ing standard methods. However, using the technique
of decomposability, it is often possible to solve com-
bination and optimization problems with many vari-
ables, provided the judgments are reasonably struc-
tured. The method has been used under many names
in quite many application areas: [1, 17, 16, 14, 19]. We
illustrate the method with an informal discussion with
a simple example instead of introducing one of the
rather complex notational systems invented to cover
the general case.

The analysis starts with a graph where each of the
n binary variables is a vertex. For each imposed
judgment involving a set of k of these variables, and
for each desired inference of a quantity referring to
k variables, we draw edges in the graph that com-
pletely connect the corresponding k vertices with

(
k
2

)

edges. Then we make a tree-decomposition of the
graph, i. e., we construct a number of subworlds we
call small worlds and connect them in a tree structure
in such a way that

1 For every judgment made, the variables mentioned
in the judgment are all present in at least one
small world.

2 For each variable, the set of small worlds in which
it is present forms a contiguous part of the tree.

In general it is di�cult to �nd a tree-decomposition
with smallest possible size of its largest subworld.
However, there are several methods proposed that
work in linear time for a �xed largest subworld size
[2, 3] and the method proposed in [2] was implemented
in the Graphed system[10]. Now, we treat the dif-
ferent subworlds separately, and introduce a set of
2w probabilities xW

s for a world W of w binary vari-
ables, each representing the probability of one of the
states of W . These new probabilities are related to
the probabilities ys of the original n-variable world
by summation over those indices not appearing in W .
Each judgment referring only to variables in subworld
W can be translated to a linear constraint on these
probabilities. In this way we get much less than 2n

variables for the whole problem, if the judgments are
reasonably structured. But we must also connect the
probabilities of di�erent subworlds, since some vari-
ables exist in several of them. The following method
does that.
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Figure 1: Decomposition of constraint graph

For every edge in the decomposition tree, we must
connect the probabilities of the two subworlds on each
side by marginalization, so that both subworlds give
the same probabilities of the world de�ned by their in-
tersection. Let the edge connect worlds W1 and W2,
and let W ′ = W1 ∩ W2 = {V1, . . . Vr} be the vari-
ables common to W1 and W2. Then, for each of the
2r states of these r variables we introduce the prob-
ability zW ′

s (s is a binary indicator string). These
quantities can be obtained both by summing over xW1

and over xW2 probabilities, and the two ways to ob-
tain them must give equal results. The �rst condition
1 on the tree-decomposition will now guarantee that
every probability appearing in a judgment can be ex-
pressed in the possible subworld probabilities x rather
than in the many more possible world probabilities y.
The second condition 2 is required for guaranteeing
that the di�erent subworlds are mutually consistent,
so that a feasible point in the decomposed world prob-
lem corresponds to some global solution expressible
with the ys probabilities. The mechanism will be ex-
plained in the example.

Example: Assume we have variables A, B, and C.
Then we have made judgments involving P (A), P (B),
P (AB) and P (BC), and want to make an inference
about P (C). We decompose this problem into two
worlds AB and BC, and their intersection world is
B, see �g. 1.

The probabilities ys are connected to the probabilities
xAB

s and xBC
s by:

xAB
10 = y101 + y100

xAB
11 = y111 + y110

xAB
01 = y011 + y010

xAB
00 = y001 + y000

xBC
10 = y110 + y010 (1)

xBC
11 = y011 + y111

xBC
01 = y101 + y001

xBC
00 = y100 + y000

1 =
∑

ijk

yijk

The probabilities zB
s of the intersection world are con-

nected to the probabilities of W1 and of W2 by the
following:

xAB
00 + xAB

10 = zB
0

xAB
01 + xAB

11 = zB
1

xBC
00 + xBC

01 = zB
0

xBC
10 + xBC

11 = zB
1

When asking for the probability of C after assign-
ing real numbers to pA, PB , PAB and pBC , we get
the linear programming problems with non-negative
LP variables of maximizing and minimizing PC =
xBC

01 + xBC
11 under constraints (where the question

marks indicate a relation <, > or =, depending on
the type of judgment made):

xAB
10 + xAB

11 ? pA

xAB
11 ? pAB

xAB
00 + xAB

01 + xAB
10 + xAB

11 = 1
xBC

10 + xBC
11 ? pB

xBC
11 ? pBC

xBC
00 + xBC

01 + xBC
10 + xBC

11 = 1
xAB

00 + xAB
00 − zB

0 = 0
xBC

00 + xBC
01 − zB

0 = 0 (2)

zB
0 zB

1 = 1

The value of a conditional probability or conditional
mean is not linear in the LP variables introduced,
but its range can be found by checking the feasibil-
ity of the system after adding the linear constraint
with a particular value of the conditional quantity,
and iteration using duality[21]. In order to esti-
mate P (C|B) we would thus consider the feasibil-
ity of the system obtained by adding the constraint
xBC

10 − r(xBC
10 + xBC

11 ) = 0, for di�erent numerical val-
ues of r.

It should be clear that a feasible point of the entire
system, with LP variables x, z, and y, can be pro-
jected to a feasible point in the system where equa-
tions involving the y, namely the set (1), have been re-
moved. The reverse is also true. To see this, �rst note
that all judgments have been expressed in the small
world probabilities xW

s . Given a feasible point in x-z-



space, we can construct a feasible set of y-values as fol-
lows: For one particular probability, say yijk, we fetch
all x and z variables that represent its projections on
small worlds (namely xAB

ij and xBC
jk ) and intersection

worlds (in this example zB
j ). If one of these is zero,

yijk will also be zero. Otherwise, we get yijk by mul-
tiplying together all the x-values found and dividing
by all the z-values found. This is a simple application
of the general method of �nding a pdf given as a set of
potentials[5, 22]. In our example we would construct
the probability of ABC as: y101 = xAB

10 xBC
01 /zB

0 , un-
less the denominator is zero, in which case both nu-
merators are also zero and y101 too. We can now
verify that equation set (1) is satis�ed. For example,
we get y100 + y101 = xAB

10 (xBC
01 + xBC

00 )/zB
0 , which, by

(2), equals xAB
10 as it should.

This argument shows that there is always a solution
for the possible world probabilities y, but it seems
not easy to characterize the full 2n-space polytope
without actually introducing exponentially many vari-
ables.

Another thing that this example shows is that a judg-
ment that A and C are independent conditional on B
does not change the problem, since there is always a
solution where quantities in di�erent worlds are inde-
pendent conditional on the state of some intersection
world between them. It seems as if this is a natural
and no-cost judgment of independence. Other condi-
tional independence judgments are possible to argue
for, but they seem fairly di�cult to interpret or relate
to a causality argument. When they are needed, more
complex solutions will still be required[21], but they
would hopefully be used infrequently.

The number of variables that need to be introduced
in the outlined method can be somewhat reduced us-
ing more optimal state reduction methods, like tree
automata[1] or BDD technology[16]. This leads to
some di�culties in interpretation and surprises in the
number of states actually produced, however. The de-
composition idea has been used before in uncertainty
management, typically in computations of probabil-
ities where non-edges mean independence, like for
graphical decomposable probability models[13]. The
applications closest to this one is the use in probabilis-
tic logic[1] and in �nding probability intervals for par-
tially speci�ed probability models[19]. The di�erence
here is that we tried to analyze the problem in such
a way that the question of independence can be de-
coupled from the analysis, and consequently compat-
ible judgments of independence can be ignored (they
will not in�uence intervals of probabilities that can be
seen in the decomposed model), and that likewise con-
ditional beliefs can be entered directly as judgments
of conditional probabilities. Conditional probability

intervals can be found using iteration, which gives a
belief update function.

5 Summarizing the Uncertainty

Polytope

The polytope describing the state of uncertainty will
usually be high-dimensional and impossible to visu-
alize in a comprehensible way, even in cases where
the number of variables can be brought down by de-
composition. For this reason it will be desirable to
compute a summary. Such summaries can be mea-
sures of location and extent. The LP formulation
makes it relatively easy to �nd ranges of the poly-
tope in various directions. But some more handles
seem to be called for in order to assess the adequacy
of the modeling e�ort. It seems clear from look-
ing at speci�c examples that the analysis of a prob-
lem bene�ts from other types of summaries like vol-
umes, centers of gravity and principal axes. Such
quantities depend on the geometry of the polytope
and are typically obtained by integration over it. A
high-dimensional polytope is too complex for stan-
dard numerical integration methods, and there are
convincing results showing that no deterministic inte-
gration method will work[6]. The standard practical
approaches to this problem have been ad hoc use of
Monte Carlo simulations, but the convergence analy-
sis of such methods has typically been missing, and
there have been no guarantees that the simulation is
statistically valid. Fortunately, recent results using
the theory of rapidly mixing Markov chains has in-
dicated that integration problems with required ac-
curacy are possible with Monte Carlo methods. In
[12], it is shown that the volume of a polytope of di-
mension n can be approximated within relative er-
ror ε using O∗(n5) polytope containment tests. The
approximation is obtained by a random walk on a
modi�ed version of the polytope and is quite com-
plex. We propose that the only feasible summariza-
tion of a high-dimensional polytope must be obtained
via a uniform sample. A two-dimensional example is
shown in �g. 2. One method is as follows: A set of
independent variables is chosen such that their val-
ues determine, by equality constraints, the remaining
variables. The projection of the polytope on these
variables gives a full-dimensional body to work with.
Initialize all LP variables to a point in the polytope.
In each step, choose an independent variable and �nd
a proposed new value, uniformly over its feasible val-
ues given the current values of the other independent
variables. The mean probability over the polytope is
estimated with the average of the coordinates occur-
ring in the chain. As can be seen in �g. 3, the chain
has high autocorrelation and it takes a long chain to



get a uniform sample.

Figure 2: A uniform sample of a polytope, with prin-
cipal components

The procedure has been tested on polytopes with
known geometry, and converges rapidly for these, even
for high dimensions. However, it is also clear that it
is easy to construct cases (thin and tilted polytopes,
as in the example) where the chain mixes intolera-
bly slowly, and this indicates the need to look at the
solution with guaranteed accuracy proposed in [12].
Two measures taken seem important for improving
the performance considerably, even in an algorithm
that works with heuristic assessment of statistical con-
vergence: In a �rst step, the volume is transformed
by a randomized algorithm so that the radius ratio of
an enclosing and an enclosed ball is made small. This
will make it possible to traverse the volume with fewer
steps. This is done by taking a sample of points in the
body, �nding its principal components, and scaling to
unit variance using the eigenvalue found for each prin-
cipal axis. A second feature is a technical design of
the chain (rounding) that is allowed to expand slowly
from the center of the polytope, in order to improve
provable mixing rates. These two techniques have an
obvious intuitive appeal and would seem to speed up
the computation in practice for di�cult polytopes. In
�g. 4 we can see how the chain is improved if a small
sample is used to rescale the polytope by the prin-
cipal components of the sample. This chain has the
same length (40 steps) as that of �g. 3. It can easily
be translated back to the original polytope by a lin-
ear transformation. In higher dimensions this e�ect
becomes more pronounced.

Figure 3: Walk in a thin and tilted polytope

Figure 4: Walk in the rounded polytope

6 Conclusion

We investigated some problems of computational
and conceptual complexity in imprecise probability
methodology. Decomposing a problem by constraint
structure makes it solvable with much fewer variables
than originally needed, and facilitates many types of
independence judgments.

The exploration of the uncertainty polytope for the
purpose of presenting summaries was also described
with a proposed solution, although preliminary.
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