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Abstract

Several approaches to the product of non-additive
monotone measures (or capacities) are discussed and
a new approach is proposed. It starts with the M�obius
product [2] of totally monotone measures and extends
it by means of a supremum to general monotone mea-
sures. The sup runs over sets of totally monotone
measures. These sets are de�ned like the core of
monotone measures (or cooperative games). The new
product is compatible with the partial order for arbi-
trary monotone measures.
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1 Introduction

The Copenhagen group Hendon et al. [2] has shown
convincingly, that among the di�erent approaches for
the product of non-additive monotone measures (or
capacities) the version using the M�obius represen-
tation has best properties if one restricts to totally
monotone measures. Especially it extends the classi-
cal product of additive measures. But in general this
M�obius product, performed with monotone measures
is not monotone any more.

Koshevoy [3] proposes a class of so called triangula-
tion products. First he de�nes the product of f0; 1g-
valued monotone measures as a sup of totally mono-
tone f0; 1g-valuedmeasures (or unanimity games) and
extends this de�nition by piecewise linearity with re-
spect to a triangulation of the set of normed mono-
tone measures, the wedges being f0; 1g-valued mono-
tone measures. Constructing a triangulation contain-
ing the totally monotone measures as a simplex, he
can overcome the abovementioned shortcoming of the
M�obius product. Another (canonical) one among the
triangulation products is the chain product. It is
again a monotone measure, but it is not additive if
both factors are additve measures.

We propose a variant of the core, the totally monotone
core of a set function (or cooperative game) where to-
tally monotone measures (or belief functions) replace
the additive ones in the very de�nition. Taking the
sup of the products of the respective core elements,
we extend the M�obius product for totally monotone
measures to arbitrary measures. This new product of
monotone measures is - like the triangulation prod-
ucts - always monotone and the main achievement is
that it behaves monotone in both factors.

Compatibility of the product with the partial order
of monotone measures is essential if one is concerned
with imprecise probabilities, e.g. for the issue of gen-
eralised stochastic independence. Since imprecision
of probabilities can be described by a pair of conju-
gate monotone measures, one would also appreciate
to have a product which is compatible with conjuga-
tion of monotone measures. With respect to conjuga-
tion we get only the partial result (9). Another open
question concerns associativity of the product if the
factors are not totally monotone or f0; 1g-valued.

2 Chain and M�obius representation

of a monotone measure

For simplicity we suppose that 
 is a nonvoid �nite
set. Throughout, a (normed) set function � on the
power set 2
 is a real valued function � : 2
 ! [0; 1]
with �(;) = 0 and �(
) = 1. A set function �

is called a monotone measure if A � B implies
�(A) � �(B). A set function � is called k-monotone,
k � 2 , if for A1; :::; Ak � 


�(

k[
i=1

Ai) +
X

I�f1;:::;kg
I 6=;

(�1)jIj �(
\
i2I

Ai) � 0:

2-monotonicity is also called supermodularity or
convexity. Submodularity is the corresponding
property with the reversed inequality sign. � is to-
tally monotone or a belief function if it is mono-



tone and k-monotone for any k � 2.

The familiar method of representing a real function on
a �nite set as linear combination of indicator functions
will be applied to a monotone measure �. First, �
has only �nitely many distinct upper level sets f;g �
S1 � � � � � Sn � 2
, i.e. Si = fA � 
 j �(A) � tig
for some ti and 1 = t1 > t2 > � � � > tn > 0. De�ning
�i by �i(A) = 1 if A 2 Si and = 0 else, we get a
representation of � as convex combination of f0; 1g-
valued monotone measures,

� =

nX
i=1

ci �i with distinct f0; 1g� valued (1)

�1 � � � � � �n and all ci > 0 :

Furthermore, any monotone measure � has only one
representation of type (1). We call it the chain rep-

resentation of �.

There are still simpler f0; 1g-valued monotone mea-
sures than the � above, the 'unanimity games' of co-
operative game theory. A unanimity game uK for
'coalition' K 2 2
, K 6= ;, is the monotone measure
de�ned by uK(A) = 1 i� A � K and = 0 else. Every
f0; 1g-valued monotone measure � can be written as
a maximum (we use the sign _) of unanimity games

� =
_
j

uKj
where Kj are (2)

the minimal sets K with �(K) = 1 :

� is also a linear combination of unanimity games with
integer coe�cients, which can easily be derived from
(2) applying the principle of inclusion exclusion (see
[1]). Combining this result with (1) we get a represen-
tation of an arbitrary monotone � as linear combina-
tion of unanimity games, the coe�cient of uK being
denoted ��(K),

� =
X
K�

K 6=;

��(K) uK : (3)

Again, this representation is unique since the unanim-
ity games are linearly independent. This is the well
known M�obius representation of �. Compared to
the chain representation, it has the disadvantage that
the coe�cients ��(K) may assume negative values
and the advantage that the f0; 1g-valued monotone
measures used in the representation, the unanimity
games, are totally monotone, whereas generally the
�i in (1) don't have this property. If the coe�cients
in (3) are all non-negative, �� � 0, then � is totally
monotone like the uK , and the converse is also true.

Finally, in this preparatory section, we recall the def-
inition of the conjugate � of a set function �,

�(A) := 1� �(
 nA) :

In applications to imprecise probabilities the pair
(�; �) describes the imprecision or uncertainty, es-
pecially if � � �. The di�erence � � � is called am-

biguity or vagueness (see e.g. [1] Section 9).

3 The totally monotone core

Combining (1) with (2), it can easily be seen that
� is a maximum of linear combinations of unanimity
games with positive coe�cients, hence a maximum of
totally monotone measures. This nice property had
been the motive to introduce the following variant of
the (additive) core.

The additive core1 of a set function � on 2
 is

core+� := f� j � additive on 2
; � � �;

�(
) = �(
)g

It is well known that core+� 6= ; if � is submodular
and monotone. Analogously we de�ne the totally

monotone core2 as

core�� := f� j � totally monotone on 2
; � � �;

�(
) = �(
)g:

Obviously core+� � core�� and, as noted already,

core�� 6= ; ; � =
_

�2core��

� (4)

for arbitrary monotone �. More general we have

Proposition 3.1 Given a monotone measure � on
2
 and a chain K � 2
, there exists � 2 core�� such
that �jK = �jK.

Proof Let ; = K0 � : : : � Kn = 
 be the chain K.
We construct � via its M�obius representation,

��(Ki) := �(Ki)� �(Ki�1) � 0; i = 1; : : : ; n;

��(A) := 0 for A 2 2
 n K :

Then �(Ki) =
P

L�Ki
��(L) = �(Ki) for all i. For

arbitrary A � 
 select the maximal index i such that
Ki � A. Then �(A) = �(Ki) = �(Ki) � �(A), which
completes the proof. 2

As a corollary we get that for any function X on 

there exists a �X 2 core�� with

R
Xd� =

R
Xd�X .

1In cooperative game theory the usual notation is
core � := f� j � additive on 2
; � � �; �(
) = �(
)g =
core+� :

2core�� might also be an interesting solution concept
in cooperative game theory. � 2 core�� de�nes a distri-
bution �� � 0 of total wealth �(
) to all coalitions K 6= ;,
not only to singletons like the elements of core+�. Notice
that with the present notations �(K) is the maximal value,
coalition K (together with its subcoalitions) can get.



Here the integral is the Choquet integral. Again, for
the additive core the corresponding result holds only
if � is submodular.

Example 3.1 core+uK = ; if K has at least two el-
ements. But core�uK consists of all convex combina-
tions of the unanimity games uL, L � K, core�uK =
f
P

L�K aLuL j aL � 0 for L � K;
P

L�K aL = 1g.
Since core+uK 6= ; we get also core�uK 6= ; 2

4 The M�obius product

Let 
1 and 
2 be �nite sets and 
 := 
1 � 
2 their
cartesian product. The problems with the product
arise from the fact that 2
1 � 2
2 does not identify
via (A1; A2) 7! A1 � A2 with 2
1�
2 but only with
a proper subfamily. The minimal requirement for a
product 
 of two monotone measures �1 on 2
1 and
�2 on 2
2 is

�1 
 �2(A1 �A2) = �1(A1) �2(A2) ; Ai � 
i : (5)

But how to extend it for arbitrary sets in 
 ?

For unanimity games (5) implies

uK1 
 uK2 = uK1�K2 ; Ki � 
i : (6)

Hendon et al. [2] advocate to extend this formula by
bilinearity, applied to the M�obius representation (3)
of the monotone measures �1 and �2,

�1
� �2 :=
X
K1;K2

��1(K1)�
�2(K2)uK1 
 uK2 ; (7)

whereKi runs through all nonempty subsets of 
i, i =
1; 2. We will call the product �1
� �2 the M�obius

product, whence the index � in the notation. The
right hand side of (7) simultaneously gives the M�obius
representation of �1
� �2 . Notice that the M�obius
coe�cients ��1
�2(K) of the product are vanishing if
K is not a product set K1 �K2.

Proposition 4.1 (i) The M�obius product is lin-
ear in both factors and (5) holds;

(ii) if �1, �2 are additive then �1
� �2 is the clas-
sical additive product;

(iii) �1
� �2 is totally monotone i� �1, �2 are
totally monotone (i.e. ��i � 0);

(iv) if �2 is totally monotone then �1 � �1 im-
plies �1
� �2 � �1
� �2;

(v) (�1
� �2)
� �3 = �1
� (�2
� �3) .

If one restricts to totally monotone set functions,
property (v) implies that the M�obius product is mono-
tone in both factors.

Proof The proofs are straightforward, only (iv) needs
some explanation. We may assume �2 = uK2 for
some K2 � 
2. For A � 
1 � 
2 de�ne A1 :=S
K1�K2�A

K1 � 
1 and show �1 
� uK2(A) =
�1(A1). Since the same equality holds with �1, the
assertion follows from �1 � �1. 2

Fubini's Theorem, for the Choquet integral, holds in
the following sense ([1]).

Proposition 4.2 If �1 is totally monotone, then
Z

Xd�1
� �2 �

Z Z
X(!1; !2)d�1(!1)d�2(!2)

and equality holds if �2 is additive.

A serious shortcoming of the M�obius product is, that
monotonicity is not inherited by the product. Thus, it
provides a satisfactory product only for totally mono-
tone measures (see (iii)).

Example 4.1 Let �i(Ai) = 1 i� Ai 6= ;, Ai � 
i,
i.e. �i = u
i

. Suppose 
i = fai; big, i = 1; 2,
and let � := �1
� �2, then �(f(a1; a2); (b1; b2)g) = 2
whereas �(f(a1; a2); (a1; b2); (b1; b2)g) = 1, whence �

is not monotone. 2

5 Triangulation products

To circumvent this unpleasant phenomenon Koshevoy
[3] proposes further products in representing normed
monotone measures as convex combinations of f0; 1g-
valued monotone measures. Since these representa-
tions are not unique, he �xes a triangulation of the
set of all monotone measures with the f0; 1g-valued
monotone measures as wedges, with respect to which
there is a unique representation.

First the product of f0; 1g-valued monotone measures
�1, �2 has to be de�ned. According to (2) and (6) it
is natural to set ([3])

�1 
 �2 :=
_
j1;j2

uK1;j1

 uK2;j2

(8)

=
_

�i(Ki)=1
i=1;2

uK1 
 uK2

where we use the representations (2) �i =
W
ji
uKi;ji

on 2
i , i = 1; 2. The product �1 
 �2 is a f0; 1g-
valued monotone measure on 2
1�
2 and it behaves
monotone and associative for f0; 1g-valued monotone
measures.

In Example 4.1 we get as desired �1 
 �2(A) = 1 i�
A 6= ;, i.e. u
1 
 u
2 = u
1�
2 : In other words, the
product (8) of the non-informative pairs (u
i

; u
i
),

i = 1; 2, now is the non-informative pair (u
; u
) on



the product set 
 = 
1 �
2. This result generalises
to arbitrary unanimity games,

uK1 
 uK2 = uK1�K2 = uK1 
 uK2 : (9)

The easy proof relies on the general fomula uK =W
!2K uf!g .

Koshevoy constructs triangulations which contain the
set of totally monotone measures as a simplex. Given
such a triangulation, every monotone measure belongs
to exactly one simplex of minimal dimension and can
uniquely be represented as a convex combination of
the extreme points (i.e. f0; 1g-valued monotone mea-
sures) of that simplex. Then the product (8) is ex-
tended by bilinearity like the M�obius product above.
But now, since only linear combinations with positive
coe�cients are used, the product is always a mono-
tone measure.

There is another interesting triangulation where a
simplex is de�ned by a chain of f0; 1g-valued mono-
tone measures, being their convex hull. Since this
triangulation is canonical there is no need to re-
fer explicitly to triangulations for de�ning the cor-
responding product. The chain product ([3], [1]) of
monotone measures applies the chain representations
�i =

P
ki
ci;ki�i;ki ; with distinct �i;1 � � � � � �i;ni

and all ci;ki > 0, i = 1; 2, (see (1)),

�1
� �2 :=
X
k1;k2

c1;k1c2;k2 �1;k1 
 �2;k2 : (10)

Since the ci;ki are positive, �1
� �2 is a monotone
measure, too, and (5) holds. The f0; 1g-valued mono-
tone measures on the right hand side of (10) are not
totally ordered, so this is not the chain representa-
tion of the product �1
� �2. Hence associativity is
not obvious like for the M�obius product, it still is an
open problem. Another shortcoming here is, that for
additive monotone �1, �2 it happens that the chain
product is not additive.

6 An alternative product

Here we generalise formula (8) directly. Notice that
among the f0; 1g-valued monotone measures the to-
tally monotone ones are the unanimity games, which
appear on the right hand side of that formula. Anal-
ogously to (2), monotone measures �i on 2
i can be
represented as (4)

�i =
_

�i2core��i

�i; i = 1; 2:

Now we de�ne our new product,

�1 
 �2 :=
_

�i2core��i
i=1;2

�1 
� �2 :

It inherits the good properties, which the M�obius
product has for totally monotone measures.

Proposition 6.1 (i) �1
�2 is a monotone mea-
sure for arbitrary monotone measures �1, �2 and
(5) holds;

(ii) �1 
 �2 coincides with the M�obius product
�1 
� �2 for totally monotone measures �1, �2;

(iii) �1 
 �2 coincides with (8) for f0; 1g-valued
monotone measures �1, �2;

(iv) �i � �i, i = 1; 2, implies �1 
 �2 � �1 
 �2;

(v) associativity

�1 
 (�2 
 �3) = (�1 
 �2)
 �3

holds at least if all �i are totally monotone or
f0; 1g-valued.

Proof The proofs of (i),(ii),(iv) and (v) are straight-
forward, but notice that monotonicity of the M�obius
product ((v) in Proposition 4.1) plays an important
rôle, not only for (iv), but also for (ii).

For (iii) with f0; 1g-valued �i = �i we have to show

_
�i2core��i

i=1;2

�1 
� �2 =
_

�i(Ki)=1
i=1;2

uK1 
 uK2 (11)

For the Ki on the right hand side uKi
2 core��i so

that � holds in (11). If in equation (7) for �1 
� �2
the product of unanimity games uK1 
 uK2 appears
with a coe�cient 6= 0, then �i(Ki) = 1, i = 1; 2; so
that uK1 
uK2 appears also on the right hand side of
(11). Since the (nonnegative) coe�cients (7) sum to
1 we get � in (11). 2

7 Conclusion and outlook

We have combined ideas of existing models for the
product of monotone measures to construct a pro-
duct which is again monotone and is compatible with
the partial order in both factors. Also a dual ap-
proach is feasable. It starts with the conjugate uK of
the unanimity games, represents an arbitrary mono-
tone measure as linear combination of the uK (dual
M�obius representation) reverses inequalities and re-
places the sup _ with the inf ^. The resulting dual
product equals �1 
 �2 and things would be easy if
this equalled �1 
 �2 (in (9) we got this equality only
for unanimity games). Otherwise the question arises,
which pair should be taken as the product of im-
precision pairs �i � �i ; i = 1; 2? There are four
possibilities �1 
 �2 � �1 
 �2 ; �1 
 �2 � �1 
 �2 ;

�1 
 �2 � �1 
 �2 and �1 
 �2 � �1 
 �2 :
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