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Abstract

In this paper, based on a suitable generalization of
the coherence principle of de Finetti, we consider im-
precise probability assessments on �nite families of
conditional events and we study the problem of their
extension. Then, we extend some theoretical results
and an algorithm, previously obtained for precise as-
sessments, to the case of imprecise assessments and
we propose a generalized version of the fundamental
theorem of de Finetti. Our algorithm can be also
exploited to produce coherent lower and upper prob-
abilities. Moreover, we compare our approach to sim-
ilar ones, like probability logic. Finally, we apply our
algorithm to some well known inference rules under
taxonomical knowledge.
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1 Introduction

In many arti�cial intelligence applications we often
need to reason with uncertain information under par-
tial knowledge. Then, among the numerical ap-
proaches to the treatment of uncertainty, the prob-
abilistic one is well founded and has a clear rationale.
A common situation is that in which the probabilistic
assessments are de�ned on a given family of condi-
tional events. Usually, such family has no particular
algebraic structure and then the most suitable prob-
abilistic methodology is that of de Finetti, which has
been adopted in many papers (see for example [9],
[10], [19], [20], [22], [25], [32]). Within this frame-
work one can exploit suitable procedures which can be
used to check the coherence of some given (precise or
imprecise) conditional probability assessments and to
propagate them to further conditional events. Based
on the fundamental theorem of de Finetti, the propa-
gation of conditional probability assessments has been

studied also in [4], where an algorithm has been pro-
posed to determine the interval [p0; p00].
The consistency problem when an imprecise proba-
bility assessment is de�ned on a family of conditional
events can be examined by suitably generalizing the
concept of coherence (see [8], [9], [18], [19], [21], [34],
[36]). In particular, the de�nitions adopted in [9]
and [19] are based on the coherence principle of de
Finetti. In [34] (see also [36]) general results and
principles are given in the context of lower and up-
per previsions of random quantities. If we compare
them we can see that the de�nitions adopted in [34]
and [36] are stronger than those introduced in [9] and
[19]. To avoid possible ambiguities our generalized
concept of coherence is renamed g-coherence. It can
be shown that for lower and upper probabilities the g-
coherence condition is equivalent to the "avoiding sure
loss" property ([33], [34]). As well known, starting
with an avoiding sure loss lower probability, a coher-
ent lower probability can be produced exploiting the
principle of natural extension ([34]). In [30], based on
a characterization theorem for coherent conditional
probabilities given in [12], it is proposed a procedure
which, given a g-coherent imprecise assessment, de-
termines its "least-committal" coherent correction. A
logical approach to probability corresponding to Wal-
ley's theory of imprecise probabilities has been devel-
oped in [37].
In this paper, based on the coherence condition
adopted in [19], we generalize some theoretical results
obtained in [4] to the case of imprecise probability as-
sessments. Moreover, we propose a version of the fun-
damental theorem of de Finetti for imprecise assess-
ments. We also describe an algorithm, implemented
with Maple V (see [3]), which is based on a previ-
ous one proposed in [16] for checking the coherence
of precise conditional probability assessments. Such
an algorithm, given a g-coherent imprecise assessment
An, de�ned on a family Fn of n conditional events,
allows to determine its g-coherent extensions to a fur-
ther conditional event En+1jHn+1. Notice that our



algorithm can be also exploited to produce the co-
herent lower and upper probabilities obtained by the
"least committal" correction connected with the prin-
ciple of natural extension.
The paper is organized as follows. In section 2 we re-
call some preliminary results and algorithms. In sec-
tion 3 we examine the extension of imprecise proba-
bility assessments and we present some theoretical re-
sults. Moreover, we give an algorithm. In section 4 we
compare our approach to similar ones, like probabil-
ity logic, probabilistic satis�ability and probabilistic
deduction. In this context, we brie
y describe how to
frame our approach from the probabilistic deduction
point of view. In section 5 we examine some com-
putational results, applying our algorithms to some
well known inference rules under taxonomic knowl-
edge ([27]). Finally, in section 6 we give some conclu-
sions and �nal comments.

2 Preliminaries

We recall the following well known result (see [23],
[26], [31], [36]).

Theorem 1 Given a coherent probability assessment
Pn = (p1; : : : ; pn) on a family of n conditional events
Fn = fE1jH1; : : : ; EnjHng, let En+1jHn+1 be a fur-
ther conditional event. Then, there exists a suit-
able interval [p0; p00] � [0; 1] such that the assess-
ment Pn+1 = (p1; : : : ; pn; pn+1) on Fn+1 = Fn [
fEn+1jHn+1g is a coherent extension of Pn if and only
if pn+1 2 [p0; p00].

In the case of unconditional events, the above result
is known as the fundamental theorem of de Finetti
and, for convenience, we will refer in this way also to
Theorem 1.
Concerning the study of the consistency and of the
extension of imprecise probabilistic assessments, more
general results and principles have been stated in the
framework of upper and lower previsions of random
quantities (see [34], [36]). In particular, in the context
of imprecise probabilities the fundamental theorem of
de Finetti can be seen as a special type of natural ex-
tension (see [34], Corollary 3.4.3; see also [35]). Some
de�nitions of coherence and some algorithms for im-
precise probability assessments have been studied in
[9] and [19]. In [33], where an approach more adher-
ent to that one proposed in [34] has been adopted, an
algorithm to check coherence and to compute natu-
ral extensions for upper and lower probabilities has
been examined. Moreover, in [30] an algorithm to
check the avoiding sure loss property of a lower prob-
ability ([34]) and to determine its "least-committal"
correction has been given. The concept of coherence
introduced in [19] is weaker than that one adopted

by other authors (e.g. [34], [36]) and is equivalent to
the avoiding sure loss property of a lower probability
([34], [33]), which can be de�ned in the following way.

De�nition 1 A lower probability P de�ned on a
family of conditional events K avoids sure loss (ASL)
i�, 8n;8F = fE1jH1; : : : ; EnjHng � K;8si � 0; i =
1; : : : ; n; de�ning P (EijHi) = pi; H0 = H1 _ � � � _Hn

and

G =

nX
i=1

sijHij(jEij � pi);

it is MaxGjH0 � 0.

To avoid confusions, the concept of coherence adopted
in this paper will be denoted by the term ASL-

coherence or g-coherence (generalized-coherence). A
stronger concept (total coherence) has been intro-
duced in [21].
Given a family Fn = fE1jH1; : : : ; EnjHng and a vec-
tor An = (�1; : : : ; �n) of lower bounds P (EijHi) �
�i, with i 2 Jn = f1; : : : ; ng, we consider the follow-
ing de�nition ([19]).

De�nition 2 The vector of lower bounds An on Fn
is said g-coherent if and only if there exists a precise
coherent assessment Pn = (p1; : : : ; pn) on Fn, with
pi = P (EijHi), which is consistent with An, that is
such that pi � �i for each i 2 Jn.

We denote by �n the set of coherent precise assess-
ments Pn on Fn which are consistent with An. The
De�nition 2 can be also applied to imprecise assess-
ments like

�i � P (EijHi) � �i ; i 2 Jn;

since each inequality P (EijHi) � �i amounts to the
inequality P (Ec

i jHi) � 1 � �i, where E
c
i denotes the

contrary event of Ei.
Given the pair (Fn;An), associated with the set Jn,
denote by IP the partition of 
 obtained by expanding
the expression^

i2Jn

(EiHi _ E
c
iHi _H

c
i ) (1)

and by C1; : : : ; Cm the atoms or constituents of IP
contained in H0 =

W
j2Jn

Hj . For r = 1; : : : ;m and
i 2 Jn de�ne

vri =

8<
:

1 ; if Cr � EiHi ;
0 ; if Cr � Ec

iHi ;
�i ; if Cr � Hc

i :

Given an imprecise assessment An = (�1; : : : ; �n) on
Fn, we denote by (Sn) the following system with non-
negative unknowns �1; : : : ; �m.� Pm

r=1 �rvri � �i; i 2 Jn;Pm
r=1 �r = 1; �r � 0; r = 1; : : : ;m:

(2)



We say that (Sn) is associated with the pair (Fn;An).
In an analogous way, given a set J � f1; 2; : : : ; ng, we
denote by (FJ ;AJ ) the pair associated with J and by
(SJ ) the system associated with (FJ ;AJ). Then, the
following result can be proved ([19]).

Theorem 2 The imprecise probability assessment
An on Fn is g-coherent if and only if, for every J � Jn,
the system (SJ ) is compatible.

We denote respectively by � and S the vector of un-
knowns and the set of solutions of the system (2).
Moreover, for every j we denote by �j the set of sub-
scripts r such that Cr � Hj ; by Fj the set of sub-
scripts r such that Cr � EjHj and by �j(�) the
linear function (associated with Hj)

P
r2�j

�r. More-

over, we denote by I0 the (strict) subset of Jn de�ned
as

I0 = fj 2 Jn :Max�2S�j(�) = 0g: (3)

Then, we have the following necessary and su�cient
condition ([19]).

Theorem 3 The imprecise assessment An on Fn is
g-coherent if and only if the following conditions are
veri�ed:

1. the system (Sn) is compatible ;

2. if I0 6= ;, then A0 is g-coherent.

Denoting by (F0;A0) the pair associated with the set
I0, the following procedure can be used to check (in a
�nite number of cycles) the g-coherence of An.

Algorithm 1 Let be given the triplet (Jn;Fn;An).

1. Construct the system (2) and check its compati-
bility;

2. If the system (2) is not compatible then An is
not g-coherent and the procedure stops, other-
wise compute the set I0 de�ned by (3);

3. If I0 = ; then An is g-coherent and the procedure
stops, otherwise set (Jn;Fn;An) = (I0;F0;A0)
and repeat steps 1-3.

The Algorithm 1 is a modi�ed version of a previous
one (see [16], [17], [18]) proposed for checking the co-
herence of precise conditional probability assessments.

3 Extension of imprecise probability

assessments

In this section we examine the extension of a
g-coherent imprecise probability assessment, de�ned
on a �nite family of conditional events, to a further
conditional event. We give the following de�nition.

De�nition 3 Let An = (�1; : : : ; �n) be a
g-coherent imprecise assessment on a family Fn =
fE1jH1; : : : ; EnjHng. Given a conditional event
En+1jHn+1 and a real number �n+1, the assessment
P (En+1jHn+1) � �n+1 is a g-coherent extension of
An on Fn to En+1jHn+1 i� the imprecise assess-
ment An+1 = (�1; : : : ; �n; �n+1) on Fn+1 = Fn [
fEn+1jHn+1g is g-coherent.

Notice that the extension �n+1 = 0 is g-coherent,
therefore (g-coherent) imprecise assessments are al-
ways extendible. We also observe that, as it follows
from Theorem 3, the following result holds.

Theorem 4 Given �n+1 > 0, a necessary condition
for the g-coherence of the imprecise assessment An+1

on Fn+1 is the compatibility of the following system� Pm
r=1 �rvri � �i; i = 1; : : : ; n+ 1Pm
r=1 �r = 1; �r � 0; r = 1; : : : ;m:

(4)

Moreover, we have

Lemma 1 Given a g-coherent imprecise assessment
An on Fn and an extension An+1 of it to Fn+1, if
the system (4) is compatible and Max�n+1 > 0 then
An+1 is g-coherent.

Proof. From g-coherence of An it follows the g-
coherence of every sub-assessment of An on the cor-
responding subfamily. Then, applying the Algorithm
1 to An+1 we have that n + 1 =2 I0, so that the sub-
assessment A0 associated with I0 is g-coherent and
hence, based on Theorem 3, An+1 is g-coherent. }

We also have the following result.

Theorem 5 Given two real numbers p; p, with p < p,
assume that the following imprecise assessments

(A0) : P (EijHi) � �i ; i 2 Jn; P (En+1jHn+1) = p ;
(A00) : P (EijHi) � �i ; i 2 Jn; P (En+1jHn+1) = p ;

de�ned on the family Fn+1 are g-coherent. Then, for
every pn+1 2 [p; p] the following assessment A

P (EijHi) � �i; i 2 Jn; P (En+1jHn+1) = pn+1; (5)

on Fn+1 is g-coherent.

Proof. Given J � Jn, denote by H� the event
(
W
j2J Hj) _ Hn+1 and by G� the following random

quantity (which in the betting scheme can be inter-
preted as a random gain)P

j2J sj jHj j(jEj j � �j) + sn+1jHn+1j(jEn+1j � pn+1)

= GJ + sn+1jHn+1j(jEn+1j � pn+1);

where sj � 0; j 2 J . Based on the equivalence be-
tween our concept of g-coherence and the ASL prop-
erty, we need to prove that, for every J � Jn, it is

Max G�jH� � 0 : (6)



We observe that, considering the quantities

G1 = GJ + sn+1jHn+1j(jEn+1j � p) ;
G2 = GJ + sn+1jHn+1j(jEn+1j � p) ;

from the hypotheses it follows

Max G1jH
� � 0 ; Max G2jH

� � 0 :

Assuming sn+1 � 0, we have

Max G�jH� � Max G2jH
� � 0 :

On the contrary, if sn+1 < 0, we have

Max G�jH� � Max G1jH
� � 0 :

Therefore, the condition (6) is always satis�ed and the
assessment (5) is g-coherent. }

Given a g-coherent assessment An, for each precise
assessment Pn on Fn such that Pn 2 �n (that is Pn
consistent with An) we denote by [p0; p00] the interval
of g-coherent extensions of Pn to En+1jHn+1. Then,
introducing the set � =

S
Pn2�n

[p0; p00] and consider-
ing the interval (p�; p

�), where

p� = inf
Pn2�n

p0; p� = sup
Pn2�n

p00; (7)

from the Theorem 5 it follows

Theorem 6 For every pn+1 2 (p�; p
�) the imprecise

assessment (5) on Fn+1 is g-coherent.

Actually, based on some general results, one has

Theorem 7 For every pn+1 2 [p�; p
�] the imprecise

assessment (5) on Fn+1 is g-coherent, that is

� = [p�; p
�] : (8)

A direct proof of (8) is given below.
Proof. For each given pn+1 > p�, the imprecise as-
sessment A

P (EijHi) � �i ; i 2 Jn; P (En+1jHn+1) � pn+1 ;

on Fn+1 is not g-coherent. Therefore, there exist a
subset J � Jn, some non negative real numbers sj ,
j 2 J , and a positive real number sn+1 such that,
de�ning H� = (

W
j2J Hj) _Hn+1 and

G =
X
j2J

sj jHj j(jEj j��j)+sn+1jHn+1j(jEn+1j�pn+1);

it is
Max GjH� < 0:

Then, for a su�ciently small � > 0, de�ning

G� = G+ �sn+1jHn+1jjEn+1j =X
j2J

sj jHj j(jEj j��j)+sn+1jHn+1j(jEn+1j�(pn+1��));

it is
Max G�jH

� < 0:

Therefore, the imprecise assessment

(A�) :
P (EijHi) � �i ; i 2 Jn;
P (En+1jHn+1) � (pn+1 � �);

on Fn+1 is not g-coherent. This means that, if for
pn+1 = p� the corresponding assessment A were not
g-coherent then, for a suitable pn+1 = p� � �, A
would be not g-coherent too. But, this contradicts the
Theorem 6, therefore the assessment A�

P ((EijHi) � �i ; i 2 Jn; P (En+1jHn+1) = p�

on Fn+1 is g-coherent.
By a symmetrical reasoning, considering the g-
coherent extensions of An to Ec

n+1jHn+1, we have
that the assessment

(Ac) :
P (EijHi) � �i ; i 2 Jn;
P (Ec

n+1jHn+1) = (1� p�);

on Fn [ fEc
n+1jHn+1g is g-coherent, so that the as-

sessment A�

P (EijHi) � �i ; i 2 Jn; P (En+1jHn+1) = p�

on Fn+1 is g-coherent too and hence (8) follows. }

Now, we will explicitly consider interval-valued proba-
bility assessments. Given on a family Fn a g-coherent
imprecise probability assessment

(An) : �i � P (EijHi) � �i ; i 2 Jn; (9)

denoted An = f[�i; �i]; i 2 Jng, let us examine the
g-coherence of the extension [�n+1; �n+1] of An to a
further conditional event En+1jHn+1. We still denote
by [p�; p

�] the set of values of pn+1 such that the as-
sessment

(A) :
�i � P (EijHi) � �i ; i 2 Jn;
P (En+1jHn+1) = pn+1

(10)

on Fn [ fEn+1jHn+1g is g-coherent. Then, based on
the previous theorems and on the De�nition 3, we
obtain the following result which can be looked at
as a generalization of the fundamental theorem of de
Finetti to the case of interval-valued conditional prob-
ability assessments.

Theorem 8 Given a g-coherent imprecise assess-
ment An = f[�i; �i]; i 2 Jng on the family Fn =
fEijHi; i 2 Jng, the extension [�n+1; �n+1] of An to
a further conditional event En+1jHn+1 is g-coherent
if and only if the following condition is satis�ed

[�n+1; �n+1] \ [p�; p
�] 6= ; : (11)

Remark 1 If in particular �i = �i = pi for each
i 2 Jn; then An coincides with the precise assessment
Pn = (p1; : : : ; pn) and it follows [p�; p

�] = [p0; p00].
Moreover, if �n+1 = �n+1 = pn+1, then the condition
(11) is satis�ed if and only if pn+1 2 [p0; p00]. There-
fore, in this particular case the Theorem 8 amounts
to the fundamental theorem of de Finetti.



We recall that a necessary condition for the g-
coherence of an imprecise assessment like (10) on Fn+1
is the compatibility of the following system8>><

>>:

P
r2Fn+1

�r = pn+1
P

r2�n+1
�r ;

�j �
Pm

r=1 vrj�r � �j ; j 2 Jn;Pm
r=1 �r = 1;

�r � 0; r = 1; : : : ;m:

(12)

Then, it obviously holds

Lemma 2 Given an imprecise g-coherent probability
assessment An on Fn and a further conditional event
En+1jHn+1, consider the values p0; p

0 de�ned by (7)
and the interval [
0; 
00] of the values pn+1 such that
the system (12) is compatible. Then [p0; p

0] � [
0; 
00].

By Lemma 2 we also obtain

Lemma 3 If the probability assessments

�i � P (EijHi) � �i ; i 2 Jn; P (En+1jHn+1) = 
0

and

�i � P (EijHi) � �i ; i 2 Jn; P (En+1jHn+1) = 
00

on Fn+1 are g-coherent, then [p0; p
0] = [
0; 
00].

Moreover, from [p0; p
0] � [
0; 
00] it follows

Proposition 1 If 
0 = 
00 = 
, then p0 = p0 = 
.

We also have

Proposition 2 If there exists a solution � of the sys-
tem (12) such that �n+1(�) = 0, then [
0; 
00] = [0; 1].

From the previous results it follows

Theorem 9 If An = ([�1; �1]; : : : ; [�n; �n]) is a
g-coherent assessment on Fn = fE1jH1; : : : ; EnjHng
and for pn+1 = 0 the system (12) is not compatible,
then p0 = 
0. Moreover, if for pn+1 = 1 the system
(12) is not compatible, then p00 = 
00.

Proof. Assuming An g-coherent, if for pn+1 = 0
the system ( 12) is not compatible then 
0 > 0.
This implies �n+1(�) > 0 for every solution � of
(12), so that by Lemma 1 the assessment A0

n+1 =
([�1; �1]; : : : ; [�n; �n]; [


0; 
0]) on Fn+1 is g-coherent
and 
0 2 [p0; p

0]. Then, by Lemma 2 it follows
p0 = 
0.
Concerning the value p0, if for pn+1 = 1 the sys-
tem ( 12) is not compatible then 
00 < 1. This
implies �n+1(�) > 0 for every solution � of
(12), so that by Lemma 1 the assessment A00

n+1 =
([�1; �1]; : : : ; [�n; �n]; [


00; 
00]) on Fn+1 is g-coherent
and 
00 2 [p0; p

0]. Then, by Lemma 2 it follows
p0 = 
00. }

The determination of 
0 (when 
0 > 0) and/or 
00

(when 
00 < 1) can be carried out by solving two
fractional programming problems, which can be trans-
lated (see [7]) in the following linear programming

ones:

Compute: 
0 =Min
P

r2Fn+1
�r;

and/or: 
00 =Max
P

r2Fn+1
�r;

subject to:

8><
>:

P
r2Fj

�r � �j
P

r2�j
�r j 2 Jn;P

r2Fj
�r � �j

P
r2�j

�r; j 2 Jn;Pm
r2�n+1

�r = 1; �r � 0; r = 1; : : : ;m:

(13)

The determination of p0 (respectively p0) when for
pn+1 = 0 (respectively pn+1 = 1) the system (12) is
compatible, that is when 
0 = 0 (respectively 
00 = 1),
is based on some theoretical results given below.

Theorem 10 Given a g-coherent imprecise assess-
ment An on Fn and a further conditional event
En+1jHn+1, assume that for pn+1 = 0 the system
(12) is compatible. Moreover, consider the following
alternatives :

1. Mn+1 > 0;

2. Mn+1 = 0;Mj > 0 for every j 6= n+ 1;

3. Mj = 0 for j 2 I0 = J [ fn+ 1g, with J 6= ;.

In the �rst two cases it is p0 = 0. In the third
case, denoting by (FJ ;AJ ) the pair associated with
J there exists an interval [p�; p

�] such that each given
extension [�n+1; �n+1] of AJ on FJ to En+1jHn+1 is
g-coherent if and only if [�n+1; �n+1] \ [p�; p

�] 6= ;.
Then, it is p0 = p�.

Proof. If Mn+1 > 0 then by the Lemma 1 the assess-
ment An+1 = ([�1; �1]; : : : ; [�n; �n]; [0; 0]) on Fn+1 is
g-coherent and hence p0 = 0.
In the second case, applying the Algorithm 1 to the
pair (Fn+1;An+1), at step 3 one has I0 = fn + 1g.
Then the Algorithm 1 is applied again to the pair
(F0;A0), with F0 = fEn+1jHn+1g;A0 = [0; 0], and
at step 3 it results I0 = ;, so that the assessment
An+1 is g-coherent and hence p0 = 0.
Now assume that the third alternative holds and
consider the pair (FJ ;AJ) associated with the set
J . Of course, the g-coherence of An implies the
g-coherence of AJ . Moreover, since FJ � Fn it is
[p0; p

0] � [p�; p
�], so that p� � p0.

To prove that p0 = p� it is enough to verify that the
assessment An+1 = ([�1; �1]; : : : ; [�n; �n]; [p�; p�]) on
Fn+1 is g-coherent.
We denote the system (12) respectively by (S0) when
pn+1 = 0 and by (S 0) when pn+1 = p�. Moreover,



we denote by S0 and S0 the corresponding sets of so-
lutions. Finally, we denote by I00 and I

0

0 the set of
subscripts determined in Step 2 of the Algorithm 1
when applied to An+1 = ([�1; �1]; : : : ; [�n; �n]; [0; 0])
and A0

n+1 = ([�1; �1]; : : : ; [�n; �n]; [p�; p�]), respec-
tively. Since n+1 2 I00 , then the system (12), for each
real number pn+1 and in particular for pn+1 = p�, is
compatible. If I

0

0 = ; or I
0

0 = n+ 1 and Mj > 0 for
every j 6= n+1, then A0

n+1 is g-coherent and p0 = p�.
Therefore, we only need to examine the case when
Mj = 0 for j 2 I

0

0 = J
0

[ fn + 1g, with J
0

6= ;. For
each vector � = (�1; : : : ; �m), since it isMn+1 = 0 for
both systems (S0) and (S 0), then � 2 S0 if and only
if � 2 S0; that is S0 = S0. Then it follows I00 = I

0

0

and, based on the Theorem 3, from g-coherence of A0

on F0 we obtain the g-coherence of A0
n+1 on Fn+1, so

that p0 = p�. }

By a similar reasoning we can prove

Theorem 11 Given a g-coherent imprecise assess-
ment An on Fn and a further conditional event
En+1jHn+1, assume that for pn+1 = 1 the system
(12) is compatible. Moreover, consider the following
alternatives :

1. Mn+1 > 0;

2. Mn+1 = 0;Mj > 0 for every j 6= n+ 1;

3. Mj = 0 for j 2 I0 = J [ fn+ 1g, with J 6= ;.

In the �rst two cases it is p0 = 1. In the third
case, denoting by (FJ ;AJ) the pair associated with
J there exists an interval [p�; p

�] such that each given
extension [�n+1; �n+1] of AJ on FJ to En+1jHn+1 is
g-coherent if and only if [�n+1; �n+1] \ [p�; p

�] 6= ;.
Then, it is p0 = p�.

Based on the previous results, the computation of p0
(respectively p0) can be made by the following proce-
dure.

Algorithm 2 Let be given the pair (Fn;An) and the
conditional event En+1jHn+1. Moreover, denote by
Jn+1 the set f1; : : : ; n+ 1g.

� Step 0. Expanding the expression^
j2Jn+1

�
EjHj _ E

c
jHj _H

c
j

�
;

denote by C1; : : : ; Cm the constituents contained
in H0 =

W
j2Jn+1

Hj . Then, construct the system

(12) in the unknowns �1; : : : ; �m; pn+1.

� Step 1. Check the compatibility of system
(12) under the condition pn+1 = 0 (respectively
pn+1 = 1). If the system (12) is not compatible
go to Step 2, otherwise go to Step 3;

� Step 2. Solve the following linear programming
problem

Compute : 
0 = Min
X

r2Fn+1

�r

(respectively : 
00 = Max
X

r2Fn+1

�r )

subject to:

�j �
Pm

r=1 vrj�r � �j ; j 2 Jn;P
r2�n+1

�r = 1; �r � 0; r = 1; : : : ;m:

The minimum 
0 (respectively the maximum 
00)
of the objective function coincides with p0 (re-
spectively with p0) and the procedure stops;

� Step 3. For each subscript j, compute the max-
imum Mj of the function �j , subject to the con-
straints given by the system (12) with pn+1 = 0
(respectively pn+1 = 1). We have the following
three cases:

1. Mn+1 > 0;

2. Mn+1 = 0 ; Mj > 0 for every j 6= n+ 1;

3. Mj = 0 for j 2 I0 = J [ fn + 1g , with
J 6= ;.

In the �rst two cases it is p0 = 0 (respectively
p0 = 1) and the procedure stops.
In the third case, de�ning I0 = J [ fn + 1g,
set Jn+1 = I0 ; (Fn;Pn) = (FJ ;PJ) and go
to Step 0.

The procedure ends in a �nite number of cycles by
computing the value p0 (respectively p

0).

Remark 2 We observe that, starting with a g-
coherent assessment An on Fn, the Algorithm 2 can
be exploited to make the "least-committal" correction
(see [30]) of An, obtaining in this way the coherent
(lower and upper) probability A�

n on Fn which would
be produced by applying the natural extension prin-
ciple proposed in [34]. In order to determine A�

n, we
just need to apply, for each j 2 Jn, our algorithm
to En+1jHn+1 = Ej jHj , using as probabilistic con-
straints on the conditional events of Fn the g-coherent
assessment An.

4 A comparison with other

approaches

In this section we compare our approach to similar
ones, like probabilistic logic, probabilistic deduction,
or probabilistic satis�ability (see, e.g., [28], [29], [14],
[24], [27]). The approach developed in the framework
of probabilistic logic or probabilistic satis�ability is
based, like ours, on the linear programming technique.



Actually, the probabilistic entailment problem in prob-
ability logic essentially coincides with the methodol-
ogy based on the fundamental theorem of de Finetti
(in particular, for what concerns the case of uncon-
ditional events see [5]). The basic di�erence between
our approach based on coherence and the other ones
is that, within our framework, conditional probabili-
ties can be assigned directly, with no need of assuming
positive probability for the conditioning events. On
the contrary, in many approaches not based on co-
herence often some inconsistent de�nitions are given
when conditioning events have zero probability. No-
tice that allowing that some (or possibly all) condi-
tioning events may have zero probability not only pro-
vide us with a more general approach, but also with
general algorithms by means of which, as suggested
in [11], zero probabilities could be exploited to reduce
the computational complexity. The approach based
on linear programming is globally complete, that is it
produces the tightest bounds entailed by the initial
probability assessment. Hovewer, it generally runs in
exponential time on the size of the given family of
(conditional or unconditional) events. To overcome
these problems, many researchers have worked on lo-
cal techniques based on inference rules (see, for exam-
ple, [1], [15]). In [27] four inference rules are exam-
ined and it is shown that they are locally complete for
probabilistic deduction under taxonomic knowledge.
We can frame our approach from the probability logic
point of view. Given, on a family Fn of n conditional
events, an interval-valued probability assessment An

like (9), we can look at the pair (Fn;An) as a proba-
bilistic knowledge base, where each imprecise assess-
ment �i � P (EijHi) � �i is a probabilistic formula
denoted by (EijHi)[�i; �i]. In our approach a prob-
abilistic interpretation is just a coherent precise con-
ditional probability assessment Pn on Fn. A prob-
abilistic interpretation Pn = (p1; : : : ; pn) is a model

of a probabilistic formula (EijHi)[�i; �i] i� Pn j=
(EijHi)[�i; �i], that is �i � pi � �i. Pn is a model
of the probabilistic knowledge base KB = (Fn;An),
denoted Pn j= KB, i� Pn j= (EjH)[�; �] for every
(EjH)[�; �] 2 KB. Therefore, Pn is a model ofKB =
(Fn;An) i� Pn is consistent with An. A set of prob-
abilistic formulas KB is satis�able i� a model of KB
exists, therefore the concept of satis�ability of KB =
(Fn;An) coincides with that of g-coherence of An on
Fn. A probabilistic formula (En+1jHn+1)[�n+1; �n+1]
is a logical consequence of KB = (Fn;An), denoted
KB j= (En+1jHn+1)[�n+1; �n+1], i� denoting by I
the set of real values p such that there exists a model
of KB [ f(En+1jHn+1)[p; p]g it is

�n+1 � inf I ; �n+1 � sup I :

As shown by the condition (11), in our approach this
means that the following equality is satis�ed

[�n+1; �n+1] \ [p�; p
�] = [p�; p

�]:

A probabilistic formula (En+1jHn+1)[�n+1; �n+1] is a
tight logical consequence of KB = (Fn;An), denoted
KB j=tight (En+1jHn+1)[�n+1; �n+1], i�

�n+1 = inf I ; �n+1 = sup I ;

that is

�n+1 = p� ; �n+1 = p� :

Considering a probabilistic query (En+1jHn+1)[�; �],
where � and � are two di�erent variables, to a proba-
bilistic knowledge base KB = (Fn;An) a correct an-

swer is any [�; �] = [�n+1; �n+1] � [p�; p
�], that is

such that KB j= (En+1jHn+1)[�n+1; �n+1]. The tight
answer is [�; �] = [p�; p

�]. Notice that our technique
for probabilistic deduction is (obviously) sound and
globally complete because for any given probabilistic
query it determines all the correct answers and also
the tight answer. Moreover, in our approach we can
manage all the types of logical relations among events
because the taxonomic knowledge is given as an input
to the automatic procedure which generates the con-
stituents.
Of course, being based on the linear programming
technique, our method has the same computational
limits of other similar approaches. But, concern-
ing this point, some promising procedures for a lo-
cal checking of coherence have been proposed in some
recent working papers (see [2], [6]). Other methods
have been proposed in [24]. Further work is needed
to integrate these results in our algorithms.

5 Examples

In this section we apply our algorithm, implemented
with Maple V, to some well known inference rules (see
[1], [13], [15], [27]) assuming some taxonomical knowl-
edge, that is some logical relations among the given
events.

Example 1 (Chaining rule).
Let us consider the family F = fBjA;AjB;CjB;
BjCg, with AC � B, and the vector

A = ([
3

5
;
4

5
]; [0;

1

3
]; [
1

5
;
2

5
]; [
4

5
; 1])

of lower and upper probability bounds on F . It can
be veri�ed that A is coherent.
Then, consider the extension of A to the conditional
event CjA.
The constituents, C0; : : : ; C6, are respectively

AcBcCc; ABcCc; AcBCc;



ABCc; AcBC; ABC; AcBcC:

Then, we have

�A = �1 + �3 + �5; �B = �2 + �3 + �4 + �5;

�C = �4 + �5 + �6:

The associated system8>>>>>>>>>><
>>>>>>>>>>:

�5 = p(�1 + �3 + �5);
�3 + �5 �

3
5
(�1 + �3 + �5);

�3 + �5 �
4
5
(�1 + �3 + �5);

�3 + �5 �
1
3
(�2 + �3 + �4 + �5);

�4 + �5 �
1
5
(�2 + �3 + �4 + �5);

�4 + �5 �
2
5
(�2 + �3 + �4 + �5);

�4 + �5 �
4
5
(�4 + �5 + �6);

�1 + �2 + �3 + �4 + �5 + �6 = 1; �r � 0;

with the position p = 0 is compatible.
Moreover, Max�A is positive and the value p� is 0.
Concerning the computation of p�, we observe that
the previous system with the position p = 1 is compat-
ible and J = f1g; I0 = f1; 5g. Then, applying again
the algorithm we extend the assessment AJ = [ 3

5
; 4
5
]

de�ned on FJ = fBjAg to CjA. The constituents,
C0; : : : C3, are respectively

Ac; ABC; ABCc ABcCc

Then, we have

�A = �1 + �2 + �3;

The associated system8>><
>>:

�1 = p(�1 + �2 + �3);
�1 + �2 �

4
5
(�1 + �2 + �3);

�1 + �2 �
3
5
(�1 + �2 + �3);

�1 + �2 + �3 = 1; �r � 0;

with the position p = 1 is incompatible.
Then, the following linear programming problemmust
be solved.

Compute Max �1; subject to:8<
:

�1 + �2 �
4
5
(�1 + �2 + �3);

�1 + �2 �
3
5
(�1 + �2 + �3);

�1 + �2 + �3 = 1; �r � 0:

The value p� is 4
5
.

Example 2 (Combination rule).
Given the family F = fBjA;AjB;CjB, BjCg, with
A � C, and the imprecise assessment

A = ([
3

5
;
4

5
]; [
1

4
;
1

3
]; [0;

2

5
]; [

7

10
;
4

5
]);

on F , consider the extension of A to the conditional
event ABjC. It can be veri�ed that A is g-coherent,
but is not coherent. Applying the algorithm we can
determine its least committal coherent correction by

considering the extension of A to every conditional
event of F , obtaining

A� = ([
3

5
;
4

5
]; [
1

4
;
1

3
]; [
1

4
;
2

5
]; [

7

10
;
4

5
]):

Now, we can examine the extension of A� to the con-
ditional event ABjC.

The constituents, C0; : : : ; C5, are respectively

AcBcCc; AcBCc; AcBC; ABC; AcBcC; ABcC:

Then, we have

�A = �3 + �5; �B = �1 + �2 + �3;

�C = �2 + �3 + �4 + �5:

The associated system

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�3 = p(�2 + �3 + �4 + �5);
�3 �

3
5
(�3 + �5);

�3 �
4
5
(�3 + �5);

�3 �
1
4
(�1 + �2 + �3);

�3 �
1
3
(�1 + �2 + �3);

�2 + �3 �
1
4
(�1 + �2 + �3);

�2 + �3 �
2
5
(�1 + �2 + �3);

�2 + �3 �
7
10
(�2 + �3 + �4 + �5);

�2 + �3 �
4
5
(�2 + �3 + �4 + �5);

�1 + �2 + �3 + �4 + �5 = 1; �r � 0;

with the position p = 0 is incompatible.

Then, the following linear programming problemmust
be solved.

Compute Min �3; subject to:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�3 �
3
5
(�3 + �5);

�3 �
4
5
(�3 + �5);

�3 �
1
4
(�1 + �2 + �3);

�3 �
1
3
(�1 + �2 + �3);

�2 + �3 �
1
4
(�1 + �2 + �3);

�2 + �3 �
2
5
(�1 + �2 + �3);

�2 + �3 �
7
10
(�2 + �3 + �4 + �5);

�2 + �3 �
4
5
(�2 + �3 + �4 + �5);

�2 + �3 + �4 + �5 = 1; �r � 0:

The value p� is 7

16
. Concerning the computation of

p�, we observe that the system (2) with the position
p = 1 is incompatible.
Then, the following linear programming problemmust
be solved.

Compute Max �3;
subject to the previous constraints:

The value p� is 4
5
.



Example 3 The aim of this last example is to point
out that, given a probabilistic assessment A de�ned
on a family F , before propagating A to further events
a preliminary checking of its coherence is necessary,
otherwise some inconsistency may arise. In [15](see
Example 4, pp. 107-108), among other examples, the
following imprecise assessment A6

([0:6; 1]; [0:8; 0:9]; [0:9; 1]; [0:5; 0:8]; [0:8; 0:9]; [0; 0:2])

is considered on the family

F6 = fA;A! B;A! C;B ! D;C ! D;Dg;

where A ! B is the event Ac _ B, and so on. Then,
by iteratively applying some inference rules, in the
quoted paper it is examined the extension of A to
the event BC, obtaining the tightest entailed interval
[0:3; 0:4]. But, as it can be veri�ed, the assessment A
is not g-coherent. In fact, extending the assessment

A5 = ([0:6; 1]; [0:8; 0:9]; [0:9; 1]; [0:5; 0:8]; [0:8; 0:9])

de�ned on the family

F5 = fA;A! B;A! C;B ! D;C ! Dg

to the event D we obtain the interval [0:3; 0:8]. Then,
as the intervals [0:3; 0:8] and [0; 0:2] are disjoint the
assessment A6 is not g-coherent. Notice that if we
consider the assessment A�

6, obtained from A6 by re-
placing the interval [0; 0:2] with [0:3; 0:8], then the
tightest entailed interval obtained for BC is [0:3; 0:9].
The same interval is also obtained, by applying some
inference rules, at an intermediate step in the example
examined in [15]. It can be veri�ed that the assess-
ment A�

6 is coherent.

6 Conclusions

In this paper we have considered the problem of the
extension of g-coherent imprecise probability assess-
ments de�ned on �nite families of conditional events.
We have generalized some theoretical results and an
algorithm, already obtained for precise assessments,
to the case of imprecise assessments. Moreover, we
have proposed a version of the fundamental theorem
of de Finetti for g-coherent imprecise assessments. We
have remarked that, with reference to the principle
proposed in [34], our algorithm can be also exploited
to compute natural extensions of g-coherent imprecise
assessments. We have compared our approach with
similar ones, like probability logic, and we have given
some applications to some well known inference rules
under taxonomic knowledge. Further work is needed
to improve the computational e�ciency of our algo-
rithms. For what concerns this aspect some promising
local methods for checking coherence have been pro-
posed in recent working papers.
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