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Abstract

This paper surveys results of a research program
investigating human judgments of imprecise probabilities
under sample space ignorance. The framework used for
comparisons with human judgments is primarily due to
Walley [9, 10]. The five studies reported here investigate
four of Walley’s prescriptions for judgment under sample
space ignorance, as well as assessing the impact of the
number of observations and types of events on subjective
lower and upper probability estimates. The paper
concludes with a synopsis of future directions for
empirical research on subjective imprecise probability
judgments.
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1 Introduction

As Hogarth and Kunreuther [3] observed, most studies
and theories of decision making under uncertainty
investigate only very restricted forms of uncertainty.
Although there is a growing body of research on
imprecise probabilities (cf. Camerer & Weber [1]), all
such research assumes that the sample space has been
partitioned uniquely. In the extreme case where there is
no information on how to partition the sample space, we
will use the phrase “sample space ignorance.” Sample
space ignorance implies that the decision maker has no
prior information about the nature of the possible
outcomes on relevant dimensions. The main focus of this
paper is on how people make subjective probability
judgments under sample space ignorance.

The primary stimulus for the research reported here has
been the framework developed by Walley [9, 10]. He
proposes four principles for judgment under sample
space ignorance:

1. Vacuous Prior Probabilities [9]. Under complete
ignorance, the upper probability of any conceivable
event should be 1 and the lower probability should
be 0.

2. Embedding Principle [9]. The initial (prior) upper
and lower probabilities assigned to an event A
should not depend on the sample space in which A is
embedded.

3. Symmetry Principle [10]. In the absence of any prior
information, the same prior upper and lower
probabilities should be assigned to all elements of
the sample space.

4. Representation Invariance Principle [10]. The
posterior upper and lower probabilities assigned to
an observable event A should not depend on the
sample space in which A and the previous
observations are embedded.

Walley [10] provides an imprecise Dirichlet model
(IDM) for discrete events. Suppose we have no idea what
events could occur, but we are interested in event A.
Then given N trials and n occurrences of A, Walley
proposes upper and lower probabilities:
P+(A|n) = (n+s)/(N+s), and
P-(A|n) = n/(N+s),
where s > 0 is a subjective parameter, indicating how
cautious the decision maker is. Where possible, we will
just use P- for the lower probability and P+ for the upper
probability. Regardless of the value given to s, all four
principles above are satisfied. Also:
• When N = 0, P- = 0 and P+ = 1.
• When n = 0, P- = 0 and P+ = s/(N+s). The same holds

for the union of two heretofore unobserved events, A
and B, or indeed “any new event”.

• When n = N, P- = N/(N+s) and P+ = 1.

The five studies reported in this paper investigate various
aspects of Walley’s prescriptions, focusing initially on
the four principles outlined above and comparing
people’s subjective estimates with the IDM and related



imprecise probability formalisms. Before proceeding to
the studies themselves, we briefly outline some issues
regarding the elicitation and/or evaluation of subjective
imprecise probabilities. These issues are largely
unresolved, and so the merits of the elicitation methods
adopted in our studies are debatable. Nonetheless, these
remarks and our findings may encourage further debate
and experimentation on these matters.

First, many previous studies of imprecise probability
judgments have used comparative evaluations rather than
direct estimations. Moreover, most such comparisons
have asked subjects to evaluate probability intervals
against a pointwise alternative (see [1] for a review).
Only in the last decade or so have comparisons between
intervals become a major focus (cf. Curley and Yates
[2]). Almost all of these studies have used these
comparisons for investigating “ambiguity aversion”, i.e.,
whether people prefer more precise estimates to
supposedly equivalent but less precise estimates.

More recently, Yaniv and Foster [11] have asked subjects
to choose between two interval estimates (not of
probabilities but other quantities such as dates or
distances) when given the true value of the parameter
being estimated. Their object was an accuracy-
informativeness tradeoff, but there is no reason that this
could not be extended to an accuracy-decisiveness
tradeoff even when the true probability of an event is
unknown.

It is not clear from the literature whether estimation tasks
would yield patterns consistent with comparisons. Under
what conditions would people display ambiguity
aversion, for instance, when they have produced interval
probability estimates themselves rather than being
presented with them? More importantly, reliance on
comparisons has impoverished our understanding of
issues that cannot be studied via comparisons, such as
people’s preferences for representing uncertainty or
ignorance, and how they respond to their own
representations.

Regardless of whether comparisons or estimates are
involved, several fundamental issues have not been
clarified in the empirical literature on imprecise
probabilities, of which two deserve mention here. One is
stochastic dominance. When should one interval
probability be regarded as dominating another? Most of
the comparative evaluation studies have assumed that the
dominating interval is the one with the higher midpoint.
Thus, most studies of this kind have presented subjects
with choices between two intervals that share a midpoint
but have different widths, under the belief that those
intervals are ‘equivalent’ gambles. This is at odds with
many imprecise probability models, and is
contraindicated by evidence in one of the studies reported
here (Study 5, although there is insufficient space to
elaborate on this aspect of the study in this paper).

The second issue concerns the reference-class of events
being estimated. Reichenbach [4] was among the first to
systematically eludicate the problem, and Kyburg’s
comments on Walley’s [11] paper raised it anew. For
example, we may ask subjects to estimate the probability
of event A occurring in the next draw from a population
of unknown composition, or we may ask them to estimate
the proportion of that population consisting of A’s. In
Walley’s IDM, the lower and upper expected values for
θA, the probability of getting event A under random
sampling, are identical to P-(A|n) and P+(A|n) given n
occurrences of A in N draws ([10]: 17). What is not
known is whether people in fact give different estimates
in response to these two tasks. We report some tentative
but pertinent findings on this issue in this paper.

Finally, there is the problem of how best to elicit lower
and upper probability estimates. Little is known about
how people intuitively produce lower and upper
estimates, or what the gap between such estimates means
to them. There is a small, scattered empirical literature
involving subjective lower, upper, and ‘best’ estimates of
various quantities, but it is not oriented towards
subjective probability and lacks a psychometric
foundation. In the studies reported here, we have simply
used direct estimates rather than undertaking systematic
psychometric scaling approaches.

2 Sample Space Ignorance Aversion

To start with, we wished to ascertain whether people
prefer partial to complete sample-space ignorance, and
whether sample space ignorance has behavioral
consequences for decision makers. This issue does not
pertain directly to any of Walley’s four principles, but
instead to the question of whether people behave as if
they distinguish between a situation in which there is no
sample-space information and one in which at least some
such information has been provided. Accordingly, Study
1 presented 46 volunteer undergraduate participants with
two tasks (with the order counterbalanced), as described
below.

Task 1
Urn A contains 1000 marbles whose colours may be

either Red or various other colours, but you
don’t know how many are Red or what any of
the other colours are.
You will receive $100 if the next marble drawn
is Red, otherwise you pay $5.

Urn B contains 1000 marbles whose colours are
unknown.
You will receive $100 if the next marble drawn
is Red, otherwise you pay $5.

Which urn would you choose for your bet? Why?



Task 2
Urn A contains 1000 marbles whose colours may be

either Green or various other colours, but you
don’t know how many are Green or what any
of the other colours are.
You will receive $100 if the next marble drawn
is Black, otherwise you pay $5.

Urn B contains 1000 marbles whose colours are
unknown.
You will receive $100 if the next marble drawn
is Black, otherwise you pay $5.

Which urn would you choose for your bet? Why?

The hypothesis was that people will prefer Urn A in task
1 (i.e., partial ignorance) but Urn B in task 2 (complete
ignorance), thereby switching their preference from
partial to complete ignorance. Table 1 shows that 71.7%
of the participants’ choices were as hypothesized. In Task
1 most of them chose the urn with partial information
about the sample space, whereas in Task 2 most chose
the urn with no information. This demonstrates that
sample space ignorance has behavioral consequences.
However, there is also a mild tendency for people to
favor partial ignorance over complete ignorance.

Task 1
Urn A Urn B Total

Task
Urn A 9

19.6%
2

4.3%
11

23.9%
2 Urn B 33

71.7%
2

4.3%
35

76.1%
Total 42

91.3%
 4

8.7%
46

Table 1: Choice Patterns for Tasks 1 and 2

3 Vacuous Priors and Symmetry
Principles.

Studies 2-5 investigated when people are willing to
assign vacuous priors under complete ignorance, and two
other related rules.
1. The Vacuous Priors and Symmetry Principles were

investigated by comparing lower and upper
probability assignments for simple versus compound
events.

2. Given a sequence of N events, people’s upper and
lower assignments for unobserved events (n = 0)
were examined to see whether P- = 0.

3. Given a sequence of N events, people's upper and
lower assignments for observed events (0 < n < N)
were examined to see whether P+ < 1 and P- > 0.

3.1 Prior Probabilities

Two tasks in Study 2 tested the Vacuous Priors Principle
and a strong version of the Symmetry Principle by
eliciting prior probability estimates from participants.
The strong version of the Symmetry Principle holds in
Walley’s IDM, and stipulates that in the absence of prior

information the same prior upper and lower probabilities
should be assigned to all conceivable events. In the two
tasks concerned, participants were asked to consider a
bag of marbles of unknown colors, and to estimate the
lower and upper probability of drawing a red marble on
the first draw (in one task) and the lower and upper
probability of drawing a blue or yellow marble (in the
other task). The order of the tasks was counterbalanced.

Table 2 shows that a majority of participants in both tasks
assigned vacuous probabilities (59.6% for the Red task
and 66.3% for the Blue-Yellow task). No one assigned a
lower probability greater than .5 nor an upper probability
less than .5. Interestingly, in both tasks any participant
who gave P- = 0 was almost certain to give P+ = 1 (59 out
of 60 in the Red task and 63 out of 64 in the Blue-Yellow
task), but the converse was not as likely (59 out of 73 in
the Red task and 63 out of 71 in the Blue-Yellow task).
A plausible explanation is that mere mention of an event
makes some people reluctant to assign a lower prior
probability of 0 to it.

Red P+

.5
>.5

& <1 1 Total
.5 6 2 2 10

P- >0 & <.5 3 14 12 29
0 1 0 59 60

Total 10 16 73 99

Blue or
Yellow P+

.5
>.5

& <1 1 Total
.5 3 2 2 7

P- >0 & <.5 7 11 6 24
0 1 0 63 64

Total 11 13 71 95

Table 2: Prior Probabilities for Two Tasks

The most direct test of whether the strong version of the
Symmetry Principle is violated is to determine whether
each participant gave the same lower and upper
probabilities for both tasks, which was the case in 58 out
of 95 participants (61%) whose responses on both tasks
were valid. In fact, 65% of the participants gave the same
lower probabilities whereas 78% of them gave the same
upper probabilities.

Finally, adherence to the Vacuous Priors Principle and
the strong Symmetry Principle were closely linked. Of
the 62 participants who gave identical lower
probabilities, 55 (89%) of them assigned 0; and of the 74
who gave identical upper probabilities, 65 (88%) of them
assigned 1. Both of these percentages are substantially
higher than the respective marginal percentages of people
assigning a lower probability of 0 or an upper probability
of 1.



3.2 Posterior Probabilities

In another part of Study 2, participants’ subjective
estimates were elicited after they had been provided with
some observations. Participants were asked to consider a
bag of marbles of unknown colors, and were shown eight
marbles that had been drawn from the bag. Two were red.
They were asked to provide a lower and an upper
probability of drawing a red marble from the bag on the
next turn, and lower and upper probabilities of drawing
an orange marble on the next turn (none of the eight
marbles were orange). They were then shown eight more
marbles. Again, two were red and none were orange.
They were asked for their estimates once again.

First, we examine whether participants were willing to
assign a lower probability of 0 for a heretofore
unobserved event (i.e., an orange marble). For N = 8 this
assignment was made by 33 (71.7%) out of 46
participants, and for N = 16 it was made by 36 (78.3%).
Turning now to whether participants observed the P- > 0
rule for an observed event (i.e., a red marble), in Study 2
the rate of conformity with this rule was similar to the
foregoing.  For N = 8 an assignment of P- > 0 was made
by 30 (65.2%) participants, and for N = 16 this increased
to 34 (73.9%).

Study 3 (by Takemura) partly replicated Study 2 (by
Smithson), with a Japanese sample of undergraduate
students (Study 2 participants were Australian
undergraduates). Participants were given identical
marble-draws (N = 8 and N = 16) to those in Study 2 and
they were likewise asked to provide a lower and an upper
probability of drawing a red marble on each occasion.
However, they were also asked for lower and upper
probabilities of drawing a marble of any new color (i.e., a
color that has not yet been observed, rather than an
orange marble). A greater percentage of this sample
observed the P- > 0 rule for an observed event than the
Australian sample on both occasions. In fact, 116 out of
122 (95.2%) did so for N = 8, and 96.0% did so for N =
16.

However, only a minority of participants were willing to
assign a lower probability of 0 for any new color. This
assignment was made by 20 (16.4%) for N = 8 and 26
(21.3%) for N = 16.  A substantial number of participants
chose nonzero lower probability estimates of 0.1 or less
(27, or 22.1% for N = 8, and 42, or 34.3% for N = 16).
These percentages were greater than those found in the
Australian sample. One obvious possible explanation for
these findings is that the Japanese participants simply
preferred to use lower probabilities of greater than 0 to a
greater extent than Australians. Another explanation,
however, is that people are more reluctant to assign 0 as a
lower probability for  “any new color” than they are for a
specifically named color (such as “orange”).

This latter possibility was explored in Study 4 (by
Smithson). This study had a similar pair of marble-draw
scenarios to Studies 2 and 3, but this time N = 4 and then
N = 16. However, there is also an important
methodological difference between this study and the
others in this paper, namely that participants were asked
to provide lower and upper estimates of the percentage of
marbles in the bag that were, say, red. We recognize that
this is not the same as asking for lower and upper
probabilities of getting a red marble on the next draw,
and pertains to people’s hypotheses about possible values
of the population percentage of red marbles instead. We
were interested in comparing how subjects responded to
the two different estimation tasks, for reasons that space
precludes from elucidating here. Although we realize that
an airtight empirical investigation requires an additional
study which uses lower-upper probability elicitation
rather than percentage estimation, we nevertheless claim
that the results of Study 4 are suggestive and usable for
our purposes here.

Participants were asked to give estimates for both orange
and any new color. The guiding hypothesis in this study,
as suggested by results from Studies 2 and 3, was that
conformity with the P- = 0 rule for “any new color” may
be lower than for a named (specific) color. Table 3 shows
that this hypothesis was supported, with lower rates of
conformity for the any new color task than for the orange
task. The difference is close to 10% for both N = 4 and N
= 16, as well as jointly.

Orange N = 16

P- 0 >0 Total

N = 4
0 45

43.7%
2

1.9%
47

45.6%
>0 18

17.5%
38

36.9%
56

54.4%
Total 63

61.2%
40

38.8%
103

Any new color N = 16

P- 0 >0 Total

N = 4
0 33

32.0%
3

2.9%
36

35.0%
>0 20

19.4%
47

45.6%
67

65.0%
Total 53

51.5%
50

48.5%
103

Table 3: Assignment Patterns for N = 4 vs. N = 16

Finally, Study 5 (by Bartos) used a game-like scenario to
elicit estimates from a sample of Australian
undergraduate participants over time. Participants were
‘fishing’ for a particular kind of microorganism from a
pool. They were asked to estimate the lower and upper
probability of finding the target organism on the next
trial.



The P- = 0 rule for a heretofore unobserved event (the
target organism) was adhered to in about half of the trials
as was the P+ = 1 rule for an always observed event; and
the P- > 0 and P+ < 1 rules for an (intermittently)
observed event were adhered to in a very large majority
of trials.

Event
Occurrence

Total
Trials

Vacuous
Estimate

Non-
vacuous

P-

Never

seen

254 123

(48%)

131

(52%)

Sometimes

seen

847 103

(12%)

744

(88%)

P+

Always

seen*

38 19

(50%)

19

(50%)

Sometimes

seen

1063 14

(1%)

1049

(99%)

*  Usually this meant that the Target had appeared on the
first trial and the participant on the second trial
therefore gave an Upper Estimate for an event which
had never failed to occur.

Table 4: Lower and Upper Estimates in Study 5.

3.3 Discussion

The findings in Study 2 indicate that a sizable percentage
of people seem to conform with the Vacuous Priors
Principle and the strong version of the Symmetry
Principle, and if a person gives 0 as a lower prior
probability then they are very likely to give 1 as an upper
bound. Moreover, those conforming with the Symmetry
Principle are quite likely to also adhere to the Vacuous
Priors Principle. Based as they are on a single study
involving only one task, these are tentative conclusions
entailing replication and extensions in future research.

Studies 2-5 found that the P- = 0 rule for an unobserved
event is adhered to by a substantial percentage of
participants, but not always a majority of them. Many
prefer to give a value of P- that is slightly above 0.
However, compliance with the P- > 0 rule for observed
events is quite high. Compliance with 0 as a lower
probability for an unobserved event has a lower rate for
smaller N and for an unspecified (rather than a named)
event. Moreover, there is a moderately strong positive
association between nominating a lower bound of 0 for
larger N and smaller N, and likewise across tasks.

Finally, although Study 4 involved eliciting lower and
upper estimates of population percentages rather than
lower and upper probabilities of an event occurring on
the next trial, the pertinent aspects of the results did not
differ much from Study 2 which sampled subjects from
the same population.

4 Representation Invariance Principle

Studies 2-4 investigated one test of the Representation
Invariance Principle by randomly assigning participants
to a homogeneous sample of marbles (blue and red only)
or to a heterogeneous sample (greater variety of colors).
Subjects did not know beforehand what colors the
marbles would have, and our hypothesis was that a
heterogeneous sample might make them more inclined to
assign a greater probability of a heretofore unobserved
color than a sample with only two colors occurring. The
primary psychological interest in this manipulation stems
from the possibility that prior information could
influence subjective probabilities of novel phenomena.
However, in all three studies we found no differences in
subjects’ lower or upper probability assignments for
either observed or unobserved events.

On the other hand, in Study 4 participants’ upper and
lower percentage estimates for a specific unobserved
event (orange colored marble) versus an unspecified
event (any new color) suggested that the Representation
Invariance Principle might be violated by at least some of
them. Both the mean lower and upper probabilities for
orange were significantly lower than those for any new
color. One interpretation of this finding is that any new
color is regarded as a more inclusive event than orange
and therefore more likely to occur.

A repeated-measures ANOVA on the lower probabilities
gave main effects for N and the type of event, with a
small interaction effect. The main-effect F(1,102) =
26.004 for the type of event, with p < .0005.  The same
kind of result was obtained for upper probabilities (but
without the interaction effect). The main-effect F(1,102)
= 10.332 for the type of event, with p = .002. Both of
these are sizeable effects, with η2 = .203 for the first and
η2 = .092 for the second.

Clearly we have only just begun to explore the
Representation Invariance Principle, and these tests are
merely two among a myriad of possibilities. Nonetheless,
those tests occupy what we argue is one of the most
interesting subcategories, in which the posterior
probabilities refer to novel (or previously unobserved)
events. This type of estimation is important because it
pertains to human abilities to cope with the novel or
unexpected. In the next section, we focus on a
comparison between the precision of subjective estimates
for these probabilities and probabilities of previously
observed events.

5 Unobserved Event Probabilities

Studies 2 - 5 provided opportunities to compare
imprecision for observed events (red marble) and
unobserved events. A motivation for doing this was to
ascertain whether people tend to underestimate the
likelihood of an unobserved event, compared to their
estimates for observed ones. This hypothesis was



suggested by a related phenomenon called the “Catch-All
Underestimation Bias” (CAUB, cf. Russo & Kozlow [5]),
which is a tendency for people to provide lower estimates
for grouped alternatives than the sum of the estimates
they provide for each ungrouped alternative.

The CAUB is one of the few commentaries provided to
date by psychological research on how people estimate
the likelihood of novel events. One of the primary
reasons for the paucity of research in this area, of course,
is the lack of normative consensus on this topic. After all,
what are “reasonable” odds that the sun won’t rise
tomorrow morning?

Walley’s IDM , on the other hand, provides us with one
important guideline which is that one’s precision in
estimating lower and upper probabilities should not be
affected by the sample space in which the previous
observations are embedded. Any systematic inclination
for people to be less or more precise in estimating
probabilities of unobserved events than in observed
events will have interesting implications for risk
assessment and fault-tree analysis, among other topics.
Here, we investigate whether any such bias occurs and
whether it is linked with the number of observations (N).

5.1 Findings from Four Studies

Study 2 (Smithson) compared imprecision in assignments
for observed events (red marble) with imprecision for
unobserved events (orange). The effects of N=8 vs. N=16
and type of event on imprecision were tested in a 2x2
repeated measures ANOVA. The results indicated
significant main effects for N (F(1,45) = 4.14, p = .048,
η2 = .084) and for event type (F(1,45) = 8.08, p = .007,
η2 = .152) but no interaction effect (F(1,45) = 2.670, p =
.109).

Study 3 (Takemura) compared imprecision in
assignments for observed events (red marble) with
imprecision for unobserved events (any new color). The
effects of N=8 vs. N=16 and type of event on imprecision
were tested in a 2x2 repeated measures ANOVA. The
results indicated significant main effects for N (F(1,118)
= 19.521, p < .0005, η2 = .142) and for event type (F(1,
118) = 19.723, p < .0005, η2 = .143) and an interaction
effect (F(1, 118) = 4.198, p = .028, η2 = .040). It should
be noted that the effect-size for the interaction effect in
this study is similar to that obtained in Study 2 (η2 =
.056) even though it was not statistically significant,
perhaps due to that study’s smaller sample size.

Study 4 (Smithson) also compared imprecision in
assignments for observed events (red marble) with
imprecision for unobserved events (orange or any new).
The effects of N and type of event on imprecision were
tested in a 2x3 repeated measures ANOVA. The results
indicated significant main effects for N (F(1,102) =
78.160, p < .0005, η2 = .434) and for event type

(F(2,102) = 3.527, p = .033, η2 = .065) but no interaction
effect (F(2,101) = 2.137, p = .123).
Post-hoc contrasts indicate that imprecision differs
between red and the other two kinds of events
(red/orange contrast F(1,102) = 5.423, p = .022 and
red/any new contrast F(1,102) = 6.726, p = .011). Both
unobserved events' upper and lower probabilities are
closer together (more precise) than those for the observed
event.

Study 5 (Bartos), as mentioned earlier, used a game-like
scenario to elicit estimates from subjects over time. For
each subject, N ranged from 0 to whenever their game
ended. Here, we compare subjects’ imprecision in
estimating the lower and upper probability of finding the
target organism on the next turn when the organism had
not yet been observed versus when it had already been
observed. The data analyzed here are restricted to N < 4,
since cases where the subject had not yet seen the target
organism became rare for larger N. The results indicated
significant main effects for N (F(3,510) = 4.556, p =
.004, η2 = .026) and for event type (F(1,510) = 7.334, p =
.007, η2 = .014) and no interaction effect (F(1,510) =
0.169, p = .918).

5.2 Summary and Discussion

Studies 2-4 give a consensual picture of a tendency for
people to be less imprecise (and therefore less cautious)
about probability estimates for unobserved events than
for observed events. The effect-sizes in all studies are
fairly similar, whereas for Study 5 the effect-sizes are
rather small. Table 5 displays the means and standard
errors for the imprecision levels found for each task in
the three studies.

                         Event                    Mean            s.e.
Study 2 Red (observed) 0.558  .048

Orange (unobserved)  0.437  .052
                                                                               
Study 3 Red (observed)  0.381  .013

Any New Color 0.324  .016
                                                                               
Study 4 Red (observed)  0.292  .020

Orange (unobserved)  0.254  .024
Any New Color  0.251 .023

                                                                               
Study 5 Target observed  0.406  .013

Target not observed 0.371  .013
                                                                               

Table 5: Mean Imprecision Results in Studies 2-5

Again, although Study 4 elicited parameter estimates
rather than next-event probabilities, the overall pattern of
results is consistent with those for the other studies. The
balance of evidence thus far does not indicate any
interaction between the number of observations made and
the tendency to be less imprecise for heretofore
unobserved event probabilities.



6 Effect of N and Event Type on s-values

Since imprecision is P+ - P- = s/(N+s), we may impute s-
values to subjective lower and upper probability
estimates if we know N, by rearranging this formula to
yield
s = N(P+ - P-)/(1 - P+ - P-).
Although imprecision was found to decrease with N in
studies 2-5 as might be reasonably expected, this says
nothing about the behavior of s as a function of N. In this
section we focus on how large s-values are and whether
they vary with N. Studies 2, 3, and 5 provide direct
evidence concerning s, while the data from Study 4 may
be used for suggestive comparisons.

6.1 Findings from Studies 2-4

In Study 2, 20 subjects had P+ - P- = 1 for at least one
estimation task, so this analysis is based on the 25
subjects for whom s was a defined value. Repeated-
measures ANOVA indicated that s did not increase with
N, but there was an interaction effect such that s did
increase for the observed event (red) and decreased
slightly for the unobserved event (orange). That pattern
may be seen in Table 6 below.
Study 3 contained much fewer ‘pathological’ values for s
(only 11 out of 118 subjects had undefined s-values). For
the remaining 107 subjects, ANOVA results indicated
that the value of s increased with N. There was also an
interaction effect such that s increased more rapidly for
observed than for unobserved events. As can be seen in
Table 6, three of the mean s-values for Study 3 are fairly
similar to their counterparts in Study 2. The exception is
for the unobserved event when N = 16.

                         Event                    N        Mean            s.e.
Study 2 Red (observed) 8 6.168  1.225

Red (observed) 16 9.712  1.548
Orange (unobserved) 8  4.682 1.427
Orange (unobserved) 16  3.559 1.067

                                                                                           
Study 3 Red (observed) 8 5.305  0.276

Red (observed) 16 9.303  0.549
Any New Color 8  4.702 0.384
Any New Color 16  7.250 0.600

                                                                                           

Table 6: Mean s Values in Studies 2 and 3

Study 4, like Study 2, found no main effect for N but
strong evidence of an interaction effect. A repeated
measures ANOVA yielded a main effect for event type
(Multivariate F(2,81) = 14.227, p < .0005, η2 = .260) and
for the interaction (F(2,81) = 3.840, p < .025, η2 = .087),
but no main effect for N (F(1,82) = 1.340, p = .250).
Post-hoc contrasts reveal that the difference is really due
to the higher mean for Red when N = 4 and when N = 16.
Moreover, the s-value for red increases for higher N. The
results are summarized in Table 7.

                         Event                    N        Mean            s.e.
Red (observed) 4 2.288  0.286
Red (observed) 16 3.238  0.309

Orange (unobserved) 4  1.737 0.293
Orange (unobserved) 16  1.603 0.229

Any New Color 4  1.803 0.297
Any New Color 16  1.872 0.270

                                                                                           

Table 7: Mean s Values in Study 4

6.2 Findings from Study 5

For each subject in this study, N ranged from 0 to
whenever their game ended, thereby providing a range of
N’s for testing its effect on s. Figure 1 shows how log(s)
increased with N for those values of N with sufficiently
many cases to provide reliable estimates. Log(s) is used
here mainly to decrease the influence of outliers on the
analysis. A simple ANOVA with log(s) as the dependent
variable yielded F(12,1127) = 23.416 with p < .0005. The
effect-size was η2 = .200, so the effect is sizeable in
terms of variance explained. The graph shows a near-
monotonic increasing trend, with some evidence of
leveling-off around N = 10.
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Figure 1: Log(s) Values increasing in N

Now we turn to the comparison of observed with
unobserved events. As in the imprecision analysis, these
data are restricted to N < 4, since cases where the subject
had not yet seen the target organism became rare for
larger N. As in the other studies, s-values are lower for
unobserved events (the CAUB-like bias). Figure 2
displays the findings.

Unlike studies 2 and 4, s increased with N for both
observed and unobserved events. Neither main effect is
large in terms of variance, but they are significant
(F(3,510) = 8.581 with p < .0005 for the effect due to N,
and F(1,510) = 6.808 with p = .009 for the (un)observed
event effect; η2 for the former is .048 and for the latter is
.013).  Contrary to the findings in studies 2-4, there was
no interaction effect.
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6.3 Summary and Discussion

In all studies thus far, the typical s-value for a subject is
considerably higher than Walley’s recommendation of s
= 1 (or at most, 2). The only possible exception is in the
“improper” estimation tasks in Study 4, and even then
only for unobserved events! One possible implication of
this finding is that people are less decisive than
normative frameworks would advise them to be, in the
face of sample space ignorance or uncertainty.

All four studies found that for events that have been
observed, s increased with N even though imprecision
declined with N. For unobserved events, the findings
were less clear. Studies 3 and 5 found an increase in s
with N, whereas studies 2 and 4 did not. Studies 2-4
found evidence that the tendency for s to increase with N
is larger for observed than unobserved events, but Study
5 did not reproduce that finding, at least, not for values of
N from 1 to 4. It would seem that a study is required
which, like Study 5, extends subjects’ estimates over a
larger range of N than the rather limited ones used thus
far, and includes estimates of both specific a nonspecific
unobserved event probabilities.

7 Future Directions for Research

Our studies thus far indicate that while subjective
imprecise probability judgments agree in some aspects
with Walleyan prescriptions (e.g., the Vacuous Priors and
Symmetry Principles), they depart from them in several
important respects (e.g., violations of the Representative
Invariance Principle, a tendency to give less imprecise
estimates for unobserved than for observed events, and a
tendency for s to increase with N). These studies merely
scratch the surface, and there is much to be done. The
following list is not exhaustive, but comprises topics
immediately suggested by Walley’s framework and the
investigations reported in this paper.
Elicitation methods:

As indicated at the outset of this paper, there are several
outstanding issues concerning the elicitation of subjective
lower and upper probabilities. These issues should be
investigated with a goal of formulating an integrative
framework on elicitation methods.

Reference class:
Comparisons between Studies 4 and 2 suggest that when
people are asked for estimates of an unknown proportion
in a population they tend to provide narrower intervals
than when asked for estimates of an unknown probability
regarding a draw from that population. The issue of
reference class deserves further exploration and
clarification, preferably via within-subjects experimental
designs rather than the between-samples ad hoc
comparisons used here.

Similarity of unobserved to observed events:
The hypothesis that the upper (and perhaps lower)
probability of an unobserved event would be judged to be
greater if the event is similar to one that has been
observed could easily be tested. This hypothesis is
suggested by Tversky & Kahneman’s [7] work on the
representativeness heuristic, which indicates that the
subjective probability of an event often is based on its
similarity to events that have already occurred.

Calibration and coherence:
Coherence in the sense of [9] has not yet been tested
directly. However, a related topic, calibration, could be
addressed by the data from studies 2-5. Space limitations
preclude elaborating on this point here. Calibration
assessment is based on the following relationship that
holds in any e-contaminated Walley’s [10] framework: P-

/(1-P+) = n/(N-n). Similar odds-like relationships can be
shown for certain related imprecise probability schemes.
Since these relationships are independent of s, they
provide a calibration benchmark independent of
cautiousness. That is, we may assess how close the odds-
like expression is to n/(N-n) and whether there is any
systematic bias towards over- or under-estimation.

Modeling lower and upper probability judgments:
Study 5 provided data suitable for modeling lower and
upper probability judgments, and these results, along
with those for calibration, will be reported elsewhere.
There are two related enterprises involved: Modeling
lower and/or upper subjective probabilities as a function
of n/N; and using lower and upper subjective
probabilities to model subjective 'best estimate'
probabilities. This is an area where much more work is
needed, preferably integrating mathematical imprecise
probability frameworks with psychological work on
weighted-average and anchoring-and-adjustment models.

Subadditivity:
Pointwise subjective probability estimates often exhibit
subadditivity (cf. Tversky & Koehler [8]). Are subjective
lower probability estimates also subadditive (which
would contradict Walley's and others' frameworks)?



Accuracy-informativeness tradeoff:
Yaniv and Foster [11] have tested models of how people
assess tradeoffs between accurate (but imprecise)
intervals and inaccurate (but precise) ones. This line of
research could be pursued in studying how people decide
on the level of imprecision when accuracy is unknown, or
how they trade off imprecision against decisiveness.

The ‘dilation' problem:
Under some conditions in various imprecise probability
frameworks,
P+(A|B) > P+(A) > P-(A) > P-(A|B).
Seidenfeld and Wasserman [6] coined the term “dilation”
for this issue, and also raised it in the Discussion in [10].
A related issue is that conditionalization can make
imprecise probabilities more imprecise, so that
P+(A|B) - P-(A|B) > P+(A) - P-(A).
Do people’s judgements adhere to this rule when it is
indicated by the IDM, for instance? Or are they always
less cautious about imprecision when given more
information? When additional information would be
regarded by people as nondiagnostic and increase
imprecision, under what conditions do they prefer not to
obtain that information?

The 'event horizon' problem:
In Walley's framework, predicting further ahead than one
turn (e.g., what's the probability of getting at most y A-
events in the next Y trials) widens imprecision to an
asymptotic limit that is well below 1. Do people exhibit a
limit such as this for an arbitrarily long prediction
horizon, or do they eventually broaden out to vacuity?

The ‘Monkey Trap’ problem:
Under sample space ignorance, when do people prefer to
stick with what they have or gamble on something better
coming along? Note that this problem has a special
formulation under sample space ignorance.
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