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Abstract

The second author has put forward a theory of incom-
plete interval probabilities meant to give a common
framework to both interval probabilities and open-
frame bodies of evidence, as obtained by application
of the non-normalized (open-frame) Dempster rule.
Below we re-describe this proposal and then com-
pare two possible ways of \conditioning" based on
the open-frame Dempster rule: namely, we condition
the original (possibly incomplete) knowledge by pool-
ing it with new evidence which assigns certainty to
the conditioning event. The idea is trying to build a
probabilistic theory which would be able to cope not
only with uncertainty and ignorance, but also with
[forms of] contradictoriness, to be included into the
description of a possible state of knowledge.

Keywords. Open-frame beliefs, Dempster condition-
ing, incomplete probabilities, interval probabilities.

1 Introduction

In [3] the second author has put forward a theory
of incomplete interval probabilities meant to give a
common framework to both usual (complete) interval
probabilities and open-frame bodies of evidence, as
obtained by application of the non-normalized (open-
frame) Dempster rule. Below we re-describe this pro-
posal in section 3; then, in section 4, we compare two
possible ways of \conditioning" based on the open-
frame Dempster rule: namely, we condition the orig-
inal (possibly incomplete) knowledge by pooling it
with new evidence which assigns certainty to the \con-
ditioning" event. To avoid confusion, we shall reserve
the name \open-frame Dempster conditioning" only
to the second way, and call \slicing" the �rst way (cf
section 4). In Section 5 we comment on the purport
of our proposal.

The proposal in [3] has been inspired by three (com-

�Partially supported by MURST and CNR.

paratively) old ingredients: interval probabilities,
open-frame bodies of evidence and R�enyi's incomplete
probabilities (in the sequel \open-frame" and \in-
complete" are interchangeable; the same for \closed-
frame" and \complete"). In the second ingredient,
i.e. open-frame bodies of evidence as obtained by use
of the open-frame Dempster rule, a formal novelty
is introduced, which has also a conceptual bearing:
actually, it is precisely this formal change that lead
us to obtain a unifying approach to available theo-
ries, and this more or less \at no mathematical cost".
The uni�cation was obtained by putting forward an
interval-type theory of incomplete probabilities.

We defer philosophical comments meant to vindicate
our proposal to the �nal section 5, after the proposal
has been described and a few examples have been
given. However, we wish to make soon clear a few
points. If our proposal is taken as a merely formal
one, motivated only by mathematical convenience, we
think that it needs no special justi�cation. If instead
one wants to understand whether our formalism has
also some proper contents, then one has to be more
wary. We wish to stress soon that in this case one has
to accept at least the following three facts, as sort of
\working hypotheses", else the proposal falls. First
we are taking for granted the adequacy of the open-
world variant of Dempster rule for pooling opinions,
and so obtaining new, possibly incomplete, states of
knowledge. More precisely (and less assumingly), we
need only a very special case of Dempster rule, i.e.
Dempster conditioning without the normalization co-
e�cient, as defended by Smets in his seminal paper
[6] (cf section 3 and 4). Dempster rule has been
the object of an extensive debate in the literature,
cf e.g.[9] or [6]; if it is rejected (or rather: if even
the special case we need is rejected) our proposal be-
comes largely irrelevant. It is by Dempster-pooling
two dissonant states of knowledge that one obtains a
new self-dissonant state of knowledge: the latter is an



open-frame body of evidence 1 and can be described
by means of a family of incomplete probability vec-
tors, which are a sort of epistemic counterparts to
R�enyi's incomplete probabilities (cf below subsection
3.4). These incomplete probability vectors are the
\building-blocks" of our proposal. The second work-
ing hypothesis is that the formal inclusion between
closed-frame evidence and interval probabilities has a
purport also at a philosophical level; if one �nds this
inclusion irrelevant, save on the formal plane, one will
hardly be ready to accept an inclusion such as ours,
which is even more assuming (cf subsection 3.4). The
third working hypothesis appears to be less assum-
ing, but we have to mention it explicitly all the same.
Namely, we assume that a state of knowledge is not
modi�ed when one adds what Smets calls in [6] impos-
sible propositions, that is if one enlarges the frame of
discernment by adding objects which have zero con-
�dence, be this con�dence a probability, a belief or a
plausibility (cf below subsection 3.2).

2 Notational Preliminaries

Our \universe", or frame of discernment, is a �nite
set X = fa1; a2; : : : ; aKg of K � 1 elements, or \ele-
mentary events" (generalizations to the countable and
the continuous case are feasible). We shall deal with
con�dence distributions, called also fuzzy measures,
or Choquet capacities, i.e.monotonic set-functions �
constrained to be non-negative and upper-bounded
by unity:

�(;) = 0; �(X ) � 1;

A � B ) �(A) � �(B) (1)

We list some additional properties � may have (the
arrow denotes implication). If �(X ) = 1, � is com-
plete (normal[ized], regular). If A \ B = ; ) �(A [
B) � �(A) + �(B), � is subadditive, while � is su-
peradditive if A\B = ; ) �(A[B) � �(A) +�(B).
If �(A [ B) + �(A \ B) � �(A) + �(B) whatever A
and B, � is strongly subadditive, while � is strongly
superadditive if �(A[B) +�(A\B) � �(A) +�(B)
(A;B � X ).

Actually we shall use couples f��; ��g of set-
functions as in (1), where �� is dominated by ��, i.e.
��(A) � ��(A), 8A � X ; �� is the lower con�dence,
while �� is upper con�dence; to each subset A we can
associate the interval [��(A); ��(A)]. Needless to

1So incompleteness signals \self-dissonance", or \self-
con
ict". The expression \self-contradictory" is also used
in the literature; this gives a pejorative connotation which
is harsh indeed. In a way, if interval-type theories add \ig-
norance" to \uncertainty" as covered by Bayesian point-
wise probabilities, incomplete theories allow one to de-
scribe also [forms of] contradictoriness.

say, a single set-function � can be viewed as an inter-
val set-function f��; ��g by letting all the intervals
boil down to points: ��(A) = ��(A) = �(A). With
more generality (i� stands for if and only if):

De�nition. f��;��g is 
at over A i� ��(A) = ��(A).

We shall omit mentioning the set, when 
atness is
over the entire frame X .

3 The Three Ingredients and the

New Recipe

3.1 The First Ingredient: Complete Interval

Probabilities

(Cf e.g. [7].) Let P be a non-empty family of prob-
ability vectors P = (p1; p2; : : : ; pK) over the universe
X (pi � 0,

P
i pi = 1); without real restriction one

can assume that P is convex and topologically closed.
One de�nes the lower and the upper probability of A,
P�(A) and P

�(A), respectively, as

P�(A) = min
P :P2P

P (A) ; P �(A) = max
P :P2P

P (A) (2)

3.2 The Second Ingredient: Open-frame

Bodies of Evidence

(Cf e.g. [4] and [6].) We go to a subtheory of interval
probabilities called evidence theory2. One assigns a
(formal!) probability vector m over 2X � ;, rather
than over X . The meaning of the number m(A) is
the weight of evidence the expert has in support of A,
while she is ignorant about how to divide this support
among strict subsets of A. If m(F ) 6= 0, F is called
a focal set. The weight m de�nes a body of evidence
over X . Two more numbers are associated with A;
the belief of A cumulates all the evidence that directly
supports A, while the plausibility of A cumulates all
the evidence that does not directly oppose A:

Bel(A) =
X

F :F�A

m(F ) ;

Pl(A) =
X

F :F\A6=;

m(F ) = 1� Bel(A) (3)

Some see the interval [Bel(A);Pl(A)] as the inter-
val probability of A, its point probability remaining
unspeci�ed (actually, in a way which is both easy
and natural, one can construct a family P such that

2It is a moot point whether the inclusion between the
two theories is only formal, or also conceptual. More or
less everybody, however, agrees that a Bayesian probabil-
ity vector and the corresponding Bayesian body of evi-
dence describe the same state of knowledge.



Bel = P� and Pl = P �; cf subsection 3.4). All the in-
tervals boil down to points when the body of evidence
is Bayesian, i.e. when all the focal sets are singletons.

In evidence theory, to pool two bodies of evidence,
m1 and m2, into a new body of evidence m one uses
Dempster rule, which is the chief inferential engine of
the theory:

m(A) /
X

F;G:F\G=A

m1(F )�m2(G); A 6= ; (4)

If any focal set of the �rst body of evidence intersects
any focal set of the second, the proportionality sign
/ in the formula simply becomes an equality sign =.
Unfortunately, when the two bodies are instead dis-
sonant, some di�culties, also conceptual, are found,
so far as one insists on having m(;) = 0. A bold way-
out has been taken in the literature by dropping this
requirement and allowing

m(;) =
X

F;G:F\G=;

m1(F )�m2(G) > 0

The enlarged theory is an open-frame theory, which
allows for an open frame of discernment X (open-
frame assumption

P
F : F 6=;m(F ) � 1 as opposed to

the closed-frame assumption
P

F : F 6=;m(F ) = 1; cf

[6]3). This way, however, the interpretation of beliefs
and plausibilities as lower and upper probabilities is
lost, or so it would appear (cf instead subsection 3.4).

In open-frame evidence theory beliefs are de�ned as
in (2), only ruling out the (possible) focal set ; from
the �rst summation, which is taken over fF : ; 6=
F � Ag. Following [3], we shall adopt a slightly dif-
ferent, and we think more convenient, approach: we
demand m(;) = 0, just as in the closed-frame theory,
but allow

P
F m(F ) � 1. In other words, the weight

1�
P

F : F 6=;m(F ) needed to reach unity (the \degree
of incompleteness" of the frame) is left lacking, rather
than being given to the empty set. We stress that the
di�erence between m(;) = 0,

P
F m(F ) � 1 on one

side andm(;) � 0,
P

F m(F ) = 1 on the other is more
formal than conceptual, sincem(;) does not concur in
forming beliefs and plausibilities, anyway. So we are
pleading for a formal change, such as to make life eas-
ier; however, as is often the case, this formal change
suggests a conceptual change.

To sum up: in our setting an incomplete body of ev-
idence (an open-frame body of evidence), will be de-
scribed through an incomplete weight m:

m(F ) � 0 ; m(;) = 0 ;
X

F

m(F ) � 1

3In [6] the rule is defended by putting forward a set of
axioms, or \desirable properties", which an adequate rule
for pooling opinions should verify, and which are veri�ed
only by rule (4).

Incomplete beliefs and plausibility are computed ex-
actly as in (3), and are interpreted in the same way
as there:

Bel(A) =
X

F :F�A

m(F ) ;

Pl(A) =
X

F :F\A6=;

m(F ) (5)

If the reader is ready to accept the following state-
ment: two bodies of evidence over X and X [ fzg
(z =2 X ) coincide when they are described by the same
focal sets with the same weights (z cannot belong to
any focal set), then it is straightforward to prove that
any incomplete body of evidence m over X can be ob-
tained by Dempster-pooling two complete ones, m1

and m2, say; to see this, just de�ne m1 by setting
m1(z) = 1 �

P
F m(F ), else m1 = m, and de�ne

m2 by setting m2(X ) = 1. In particular, if m1 is a
Bayesian body of evidence, one obtains an incomplete
state of knowledge m of a type which is the base for
the subsequent discussion.

Note that we have just used the rule in a very special
case, i.e. when one of the two bodies of evidence to be
pooled is unifocal (and complete): 9C : m2(C) = 1.
This is the only case when we need the Dempster rule,
and so we shall be more speci�c; in [6] it is argued
that this special form is actually a more basic and
fundamental principle than the rule as a whole. Below
m1 is a possibly incomplete body of evidence to be
pooled with m2; m2(C) = 1; m = m1 
 m2 is the

resulting weight after pooling m1 and m2; Bel
(1) and

Pl(1) refer to beliefs and plausibilities with respect to
m1, that is before pooling, while Bel and Pl refer to
beliefs and plausibilities after pooling. We assume to
no restriction ; 6= A � C

�
else m(A) = 0, Bel(A) =

Bel(A \ C) and Pl(A) = Pl(A \ C)
�
. One has from

(4):

m(A) =
X

F : F\C=A

m1(F ) ;

and so (5) becomes

Bel(A) = Bel(1)(A [ C)� Bel(1)(C) ;

Pl(A) = Pl(1)(A \ C) (6)

These identities are soon checked; the expression for
Bel(A) can be obtained by �rst writing it as a sumP

m1(F ) taken over the focal sets F such that ; 6=
F \C � A. In Section IV the equalities in (6) will be
extended and re-interpreted as a form of conditioning,
to be compared with yet another form of conditioning
called \slicing".



3.3 The Third Ingredient: Incomplete

Probabilities

(Cf e.g. [2].) It is not generally known that incomplete
frames of discernment have a long-standing tradition
in probability theory: incomplete probability vectors
P for which

P
i pi � 1 have been studied by no less

than A. R�enyi; actually R�enyi had in mind an objec-
tive view of probability, based on observed frequen-
cies, rather than an epistemic view, based on degrees
of con�dence, such as the one we are pursuing here,
and so in his vision empirical non-observability takes
the place of epistemic self-dissonance. Non-negativity
for the components pi of vector P is of course as-
sumed; P is additive:

P (A) =
X

A

pi �
X

ai2A

pi

and so P (;) = 0. We shall call P (X ) =
P

i pi the load
of the probability vector.

We observe that an incomplete probability vector P
�a la R�enyi can be accomodated into evidence theory
in two ways: in a closed-frame setting one can set
m(ai) = pi, m(X ) = 1�P (X ), while in an open-frame
setting one can set m(ai) = pi, m(X ) = 0, which
preserves the additivity of the monotonic set-function
P = Bel = Pl. In these pages the default choice is
the second, i.e. the open-frame one with m(X ) =
0. To our view the �rst way appears to be even less
\philological" than the second, since R�enyi had clearly
in mind an open-frame setting (cf examples 1 and 2
below). We stress that in the sequel an incomplete
probability vector will be used to represent the same
state of knowledge as the corresponding open-frame
body of evidence whose focal sets are all singletons (cf
note 2).

We wish to draw the attention of the reader to an
extreme case of (non-)knowledge, i.e. the case of in-
complete bodies of evidence when there are no focal
sets at all. It is obtained when one Dempster-pools
two bodies of evidence which are totally dissonant, in
the sense that any focal set in the �rst body has void
intersection with any focal set in the second. We �nd
it suggestive to dub this situation of a totally self-
dissonant body of evidence as total disconcertment,
to distinguish it from total ignorance, a closed-frame
evidence when the only focal set is X , m(X ) = 1.

3.4 The Recipe: Incomplete Interval

Probabilities

If P is a closed and convex set of incomplete prob-
ability vectors, one can de�ne the incomplete lower
probability P�(A) as a minimum over P and the in-
complete upper probability P �(A) as a maximum, ex-

actly in the same way as in (2). One soon checks
that P� and P � are both monotonic set-functions as
in (1), P � dominating P�; P� is superadditive, while
P � is subadditive. More than that, one soon proves
that A\B = ; implies the four inequalities to follow:

P�(A) + P�(B) � P�(A [ B) � P�(A) + P �(B)

� P �(A [ B) � P �(A) + P �(B) (7)

P�(X ) will be called the lower load of P , while P �(X )
will be its upper load. If all the probability vectors in
P have the same load P (X ), we shall say that P is

at; then duality holds:

P�(A) + P �(A) = P�(X ) � P �(X ) 8A (8)

Observe that we are relaxing the usual de�nition of
duality, where one requires that the sum be 1, rather
than P�(X ) = P �(X ) � 1. Mathematically, 
at fam-
ilies are nothing really new with respect to complete
interval probabilities: just normalize, i.e. divide ev-
erything by the constant load P (X ), assumed positive
(we stress that in general incomplete interval proba-
bilities do not obey any duality rule, when they are
not bound to be 
at). More generally, 
atness over
C, i.e. P�(C) = P �(C), holds i� all vectors P in P
have constant load P (C) over C.

One can prove that, at least formally, open-frame evi-
dence theory is a sub-case of incomplete interval prob-
abilities exactly in the same way as one proves that
closed-frame evidence theory is a sub-case of complete
interval probabilities [3]; the interval probability one
arrives at is always 
at with load P (X ) =

P
F m(F ).

More precisely, incomplete beliefs and plausibilities
can be obtained as minima and maxima over the fam-
ily P of incomplete probability vectors P such that:

Bel(A) � P (A) � Pl(A)

We �nd it useful to hint at the easy proof: if one
\splits" an incomplete weight m over the singletons
of F (this can be achieved in in�nite ways, unless F
is itself a singleton), and then, for each element ai of
X , one sums up the splits inherited from the focal sets
F where ai belongs, one obtains an incomplete prob-
ability vector P with load equal to

P
F m(F ). Now,

P is equal to the family of incomplete probability vec-
tors which are obtainable in this way; one soon checks
that P� = Bel, P � = Pl (to achieve Bel(A), give F -
shares to elements of A only when the focal set F is
included into A; to achieve Pl(A), give all F -shares to
elements of A whenever the focal set F intersects A).

The (formal) inclusion between the two theories is
strict, even if the interval probabilities are constrained
to be 
at, as easily shown [3]. Unlike in the gen-
eral case of interval probabilities, beliefs are always



strongly superadditive, and plausibilities are always
strongly subadditive. As soon checked:

Proposition 1 A body of evidence is 
at over C i�
there is no focal set F which intersects both C and C.

Incomplete probability vectors �a la R�enyi, or better
their epistemic counterparts, can be identi�ed with in-
complete interval probabilities whenever jPj = 1, and
so the promised uni�cation has been achieved: com-
plete interval probabilities, complete and incomplete
bodies of evidence and incomplete point probabilities
are all special cases of incomplete interval probabil-
ities, at least formally. The \elementary building
blocks" which the new formalism imposes on us are in-
complete probability vectors, which we have assumed
to be legitimate descriptions for a state of knowledge.
To those who see the inclusion closed-frame evidence
theory � closed-frame interval probabilities as purely
formal, the corresponding open-frame inclusion will
appear to be quite unappealing; however, the inter-
section is not void even at the conceptual level, as
soon as one is ready to identify \R�enyian" bodies of
evidence (focal sets are singletons) with open-frame
interval probabilities for which jPj = 1. Two of the
current interpretations of interval probability are so
\general-purpose" that to our mind they extend also
to our open-frame setting:

i) unpooled opinions: several experts have described
their states of knowledge through incomplete proba-
bility vectors; we wish to keep their opinions unpooled,
so as to know which is the minimum incomplete prob-
ability and which is the maximum incomplete proba-
bility given to each event by the team of experts as
a whole (presumably the number of experts will be
�nite, in which case P will be the convex hull of a
�nite number of \points", or incomplete vectors)

ii) approximation: the \true" state of knowledge is
an incomplete probability vector which we are unable
to describe exactly; P simply contains all its possible
descriptions (cf example 3 below)

The following examples are taken from [3]; example 2
is re-worked:

Example 1 Assume the agent (the expert, and at the
same time the experimenter) knows a priori that there
are K distinct observables and n experiments are
made. Some of the experiments are however \hazy".
If ai is observed ni times, the observed relative fre-
quencies give rise to an incomplete probability vector
P = f: : : ; ni

n
; : : :g with nT =

P
i ni < n; the corre-

sponding state of knowledge �ts into closed-frame evi-
dence theory, by setting m(ai) =

ni
n
, m(X ) = 1� nT

n
,

so that Bel(ai) = ni
n
, Pl(ai) = ni

n
+ m(X ) = 1 �P

j 6=i
nj
n
. The interpretation of Bel and Pl in terms

of frequencies is obvious: had one been able to see
through the haze, the observed frequencies would have
fallen between ni

n
and 1�

P
j 6=i

nj
n
, i.e. somewhere in

between beliefs and plausibilities.

Example 2 One assigns the missing mass 1�
P

i
ni
n

to an extra-element z which has been appended to the
closed frame X of example 1; z is a sort of tag meant
to take into account all the observables which are still
unknown, i.e. the unknown propositions as in [6].
One obtains an incomplete, or self-dissonant, state
of knowledge if one Dempster-pools with a complete
unifocal body of evidence m1 for which m1(X ) = 1.
In the language of [6], one is Dempster-conditioning
over the frame X of all possible and impossible propo-
sitions, whose (mere) existence is well-known to the
agent (in section 4 we shall describe two forms of
Dempster conditioning, but they coincide in this case,
as follows from theorem 1 below). So doing, we have
curtailed plausibilities, which are now as small as the
beliefs: Pl(ai) = Bel(ai) = ni

n
; with respect to ex-

ample 1, we got rid of \ignorance" (intervals boiled
down to points), at the price however of replacing it
with incompleteness. The new situation corresponds
to the open-frame body of evidence de�ned by setting
m(ai) =

ni
n
, while m(X ) = m(z) = 0. This example

is crucial to assess the purport of the theory; note
there is no need to think that the incomplete vector
is a \second-step" state of knowledge: the mechanism
of Dempster pooling might have taken place, possibly
unconsciously, inside the brain of one and the very
same agent.

Example 3 Assume the data are communicated in
a slightly imprecise way, up to an error � > 0: fi =
ni
n
��. To take this into account one may replace point

values by small intervals: P = fP : fi�� � pi � fi+
�;
P

fi � � �
P

i pi �
P

i fi + �g, the last constraint
being useless when � � K�. Such an approximate
state of knowledge is not 
at, and as such lies outside
the capacity of incomplete bodies of evidence (for a
speci�cation of the consistency constraints to impose
on � and �, cf [3]). Again, \noisy communication"
might have taken place inside the brain of the agent.

4 Slicing versus Open-frame

Dempster Conditioning

As usual in evidence theory, we interpret condition-
ing a state of knowledge with respect to event C as
pooling that state of knowledge with respect to the
closed-frame evidence m2(C) = 1. Even so, we are
given two alternatives: either conditioning separately
each \building-block" P 2 P , or conditiong the state
of knowledge taken as a whole. The latter is one of
the standard ways of conditioning, especially when



the state of knowledge to be conditioned is a complete
body of evidence, and when one uses the closed-frame
Dempster rule with the normalization coe�cient; the
�rst is more directly inspired by our new approach.

We begin by the �rst form of open-frame Dempster
conditioning, which, to avoid confusion with the sec-
ond, we call slicing. Consider the new sub-universe
(conditioning event) C, ; 6= C � X , and set:

PC = fPC : PC(A) = P (A \ C); P 2 Pg

The vectors in PC are the same as those in P , after
turning to zero the components pi relative to elemen-
tary events ai =2 C. It is as if X � C were \lost into
haze"; less imaginatively: to each \building block"
P 2 P we are separately appling Dempster rule with
respect to the body of evidence m2(C) = 1. Not to
overcharge our notation, we shall not use any sym-
bol for conditioning, and write simply P�(A\C) and
P �(A\C). Notice that \sliced" lower and upper prob-
abilities are obtainable as extrema on the new family
PC , and so have all the formal properties which per-
tain to usual lower and upper incomplete probabil-
ities. Unless P�(C) = 1, slicing turns closed-frame
knowledge into strictly open-frame knowledge.

Now we go to the second form of open-frame Demp-
ster conditioning. If P is derived from (formally equal
to) a body of evidence m, one can apply directly
Dempster rule with respect to m2(C) = 1, and ex-
press the resulting beliefs and plausibilities as in (6)
(we stress that these expressions can be obtained di-
rectly, without using duality). By a formal analogy,
we can extend the expressions of (6) to any incom-
plete interval probability P to obtain a new kind of
open-frame Dempster conditioning for any incomplete
interval probability, to be compared with slicing. We
shall set for any family P , but only formally when P
is not a body of evidence:

P�(AjC) = P�(A [ C)� P�(C) ;

P �(AjC) = P �(A \ C) (9)

The upper conditional probability is the same as for
slicing, and so can be obtained as a maximum over
PC . Unfortunately (but not surprisingly), the lower
conditional probability does not coincide with P�(A\
C), as given by slicing. One has only:

P�(A \ C) � P�(AjC)

as soon follows from the superadditivity of P� applied
to A \ C and C .

Below, a comparison between slicing and open-frame
conditioning is carried on, so as to understand when
the two are one and the same thing. We �rst list

some basic properties of P�(AjC); up to the last, they
do not assume 
atness of P , the interval probability
to be conditioned. It turns out that P�( jC) gives
a con�dence distribution over the sub-frame C (and
also over the entire frame X ), which is dominated by
P �( jC):

Properties

P�(;jC) = 0; P�(AjC) = P�(A \ CjC)

P�(CjC) = P�(XjC) � 1; P�(AjX ) = P�(A)

A � B ) P�(AjC) � P�(BjC)

P�(AjC) � P �(AjC)

P�(C) � P�(CjC) � P �(C)

if P is 
at P�(CjC) = P �(C)

Proofs soon follow from de�nitions (9); to prove
P�(AjC) � P �(AjC) use the second inequality in (7)
applied again to A\C and C. If P is 
at the inequality
P�(CjC) � P �(C) can be strengthened to equality by
using the de�nition of P�(CjC) and duality (8). The
following corollary is soon obtained:

Corollary 1 If the family P is 
at, any conditional
P�( jC) is 
at, whatever the conditioning event C; if
P is 
at over C, the conditional P�( jC) is 
at.

Proof.

The �rst implication is a re-phrasing of the last prop-
erty. As for the second implication, use the property
before the last. In both cases recall that P �(C) =
P �(CjC).

Now we come to a property which unfortunately does
not hold in general, that is superadditivity of P�( jC);
superadditivity does hold, however, when the uncon-
ditional P� is strongly superadditive, e.g. because it
is derived from a body of evidence m and so can be
interpreted as a belief:

Proposition 2 The conditional P�( jC) is superaddi-
tive whatever the conditioning event C i� the uncon-
ditional P� is strongly superadditive.

Proof. Without restriction assume A [ B � C. One
has to prove: P�(A[C)+P�(B[C) � P�(A[B[C)+
P�
�
[A\B][C

�
; this is precisely strong superadditivity

on A [ C and B [ C.

Theorem 1 If the family P is 
at, the following
statements are equivalent:

i) open-frame Dempster conditioning over C coincides
with slicing over C

ii) P is 
at over C



Proof.

i) ) ii) Take A = C to obtain P�(CjC) = P�(C), i.e.
P�(X ) = P�(C) + P�(C); this, by duality (8) applied
to P�(C), becomes P�(C) = P �(C).

ii) ) i) First observe that 
atness over X and C im-
plies 
atness over C . Now, 
atness over C always
implies i) (use the �rst two inequalities in (7) with
A \ C and C rather than A and B).

If P is not 
at, neither does i) imply ii) (just take C =
X ), nor does ii) imply i), as shown by the following
example:

Example Take X = fa; b; cg, C = fa; bg, A = fag, P
equal to the segment with endpoints P = ( 13 ;

1
4 ;

1
4 ) and

Q = ( 14 ;
1
3 ;

1
3 ). One has P�(AjC) =

1
3 > P�(A \ C) =

1
4 .

Proposition 1 and theorem 1 soon imply:

Corollary 2 In the case of a body of evidence, open-
frame Dempster conditioning over C coincides with
slicing over C i� there is no focal set intersecting both
the conditioning event C and its negation C.

5 Final Comments

Incomplete interval probabilities, as expounded in [3],
originated as a purely formal proposal. Actually, one
of the arguments, if not the most solid one, which
is used to maintain that evidence theory is not a
subtheory of interval probabilities, is precisely that
the latter have to stop when evidence theory can in-
stead go on, by \puncturing" the frame so as to let
in what Smets calles \unknown propositions", to be
added to the possible and the impossible ones [6]: we
have shown that this formal objection falls, as soon
as one is ready to make use of a nice mathematical
object called an incomplete probability vector (or an
incomplete probability distribution), which has a re-
spectable pedigree, since it goes back to no less but
Alfred R�enyi. This as far as form is concerned; should
it turn out that our proposal is only a formal one, all
the same it would help to understand the relation, or
the lack of relation, between probability and evidence.
As a historical remark, R�enyi himself did come across
incomplete probability vectors because of merely for-
mal snags, but soon got interested in \�lling them
up" with proper contents [1], and so became a fore-
runner of \unorthodox probabilities", even if his point
of view was not an epistemic one.

Let us turn to contents. The basic demand is this:
is there any place for incompleteness or contradictori-
ness also inside interval probabilities, which have al-
ready proved able to represent and manage not only
uncertainty, as does the usual pointwise Bayesian the-

ory, but also ignorance and imprecision, as happens
in [complete] interval probabilities (and also in closed-
frame evidence theory)? Incompleteness and contra-
dictoriness are indispensable facets of human reason-
ing, which have been brilliantly brought into evidence
theory by Smets, when he showed how to open the
frame of reference, and, by so doing, cut the link be-
tween evidence and probabilities, at least apparently
(we refer to [6] for a discussion).

We come to our proposal. In a way, one might even
object that our \new" notions are not so new, af-
ter all: they just re-formalize and somewhat extend
old notions, and so do not really need any new de-
fence. To begin with, R�enyian incomplete probabili-
ties already have a place in open-frame evidence the-
ory, when the focal sets are singletons: actually, it is
not a great requirement to agree that such a body of
evidence and the corresponding R�enyian probability
vector represent the very same state of knowledge,
this being little more than a convention (compare
with note 2). On the other hand, even if (epistemic-

avoured) R�enyi's incomplete probability vectors are
given a right of citizenship by this unassuming con-
vention, this is not enough to accept them as the
\elementary components" of a theory such as ours;
the stumbling block is precisely this. In both open-
frame and closed-frame evidence theory the \elemen-
tary building blocks" are felt to be unifocal bodies
of evidence, while in complete interval probabilities
this role is taken on by Bayesian probability vectors;
the new building blocks generalize the latter. We feel
that a philosophical justi�cation of our proposal goes
necessarily through a careful evaluation of the epis-
temic meaning of a R�enyian probability distribution,
as meant to take into account uncertainty and con-
tradictoriness (self-dissonance) when there is no igno-
rance (no imprecison). R�enyian incomplete probabil-
ity vectors do represent special states of knowledge,
namely those when con�dence intervals boil down to
points: this is the feature which \R�enyian probabil-
ities", i.e. the epistemic counterparts to the incom-
plete frequentist probabilities put forward by R�enyi,
have in common with Bayesian probabilities. Now,
the decomposition of incomplete bodies of evidence
into R�enyian probability vectors such that

Bel(A) � P (A) � Pl(A) 8A

and the fact that each incomplete belief is a minimum
over such vectors, while each plausibility is a maxi-
mum, are mathematical facts, very easy to prove, on
top of that (cf subsection 3.4). If the body of evidence
is complete, the R�enyian probabilities in its decompo-
sition happen to be also Bayesian probabilities; some
see this as a meaningful decomposition into pointwise,
not interval-like, states of knowledge. Acceptance of



this point of view is a preliminary step to the ac-
ceptance of the general decomposition into R�enyian
probabilities as a meaningful one, and the general de-
compositions unavoidably point to an extension when
the family P of probability vectors is not necessarily
derived from an incomplete body of evidence m.

The two ways of conditioning considered in this paper,
one being inspired by usual arguments about bodies
of evidence, while the other, i.e. slicing, appears to
be more internal to probabilities and nearer to Bayes
conditioning, may help understanding the purport of
incomplete probabilities. As far as decisions are con-
cerned, i.e. when one goes to the pignistic level, pre-
sumably incomplete states of knowledge have to be
�rst \forced" into completeness along lines as those
shown by Smets for bodies of evidence [5]; cf also [3].
This, however, is a step to be taken at a later stage,
when and if our approach will be better vindicated.
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