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Abstract

Inferential problems that arise in the empirical analysis
of treatment response induce ambiguity about the identity
of optimal treatment rules.  This paper describes a
research program that begins with general themes about
decisions under ambiguity, next specializes to problems
of treatment choice under ambiguity, and then shows
how identification problems and statistical issues induce
ambiguity in treatment choice.
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1  Introduction

A decision maker with a known choice set but an
unknown objective function  is said to face a problem of
decision under ambiguity. A common source of
ambiguity is lack of knowledge of a probability
distribution describing a relevant population.  Empirical
research seeks to draw conclusions about such
distributions by combining assumptions with data.
Inferential problems occurs when the available prior
information and data do not suffice to reveal the
distribution of interest.  Thus, inferential problems
induce ambiguity in decision making. 1

I describe here my recent research connecting the
empirical analysis of treatment response with the
normative analysis of treatment choice under ambiguity.

In [25], [26], and [27], I have studied the decision
problem faced by a planner must choose a treatment rule
assigning a treatment to each member of a heterogeneous
population of interest.  The planner might, for example,
be a physician choosing medical treatments for each
member of a population of patients or a judge deciding
sentences for each member of a population of convicted
offenders.  The planner observes certain covariates for
each person; perhaps demographic attributes, medical or
criminal records, and so on.  Each member of the
population has a response function mapping treatments
into a real-valued outcome of interest; perhaps a measure
of health status in the case of the physician or a measure
of recidivism in the case of the judge.  The planner wants
to choose a treatment rule that maximizes the population
mean outcome; that is, the planner wants to maximize a
utilitarian social welfare function.

In this setting, an optimal treatment rule assigns to each
member of the population a treatment that maximizes
mean outcome conditional on the person’s observed
covariates.  It is unusual, however, for planners to have
the knowledge needed to implement optimal rules.
Identification problems and statistical issues in the
empirical analysis of treatment response commonly
combine to prevent planners from knowing the relevant
conditional mean outcomes.  Hence planners commonly
face problems of treatment choice under ambiguity.

My concern has been to characterize this ambiguity in
settings of practical interest.  The program of research on
nonparametric analysis of treatment response initiated in
[18] and [19] and carried forward in [20], [21], [22],
[23], [24], and [28] derives sharp bounds on conditional
mean outcomes under alternative treatments, the form of
the bounds depending on the available data and the
maintained assumptions.  These bounds determine the
nature of the ambiguity that the planner faces.

Here is the organization of this paper. Sections 2 and 3
lay the normative foundations. Section 2 develops
general themes about decisions under ambiguity and
Section 3 formalizes the planner’s treatment choice
problem. Sections 4 and 5 describe how inferential

1  The term ambiguity appears to originate in [7].  Ellsberg’s famous
experiment required subjects to draw a ball from either of two urns, one
with a known distribution of colors and the other with an unknown
distribution of colors. [13] and [14] used the term uncertainty, but
uncertainty has since come to be used to describe optimization problems
in which the objective function depends on a known probability
distribution.  Some modern authors have used ignorance as a synonym for
ambiguity (e.g., [1] and [30]). Authors writing on decision making with
unknown subjective probability distributions may refer to robust Bayesian
analysis (e.g., [3] or to decision making with lower/upper probabilities
(e.g., [5], [6], [35]), subjective probability domains (e.g., [16]), or
imprecise probabilities (e.g., [38]).  



problems induce ambiguity.  Section 4 sets forth the
fundamental identification problem arising in empirical
analysis of treatment response. Section 5 addresses the
statistical problem of induction from finite samples to
populations.

2  Decisions Under Ambiguity

2.1  Basic Ideas

We begin with a choice set C and a decision maker who
must choose an action from C.  The decision maker
wants to maximize on C an objective function f(·): C 6 R
mapping actions into real-valued outcomes.  The
decision maker faces an optimization problem if he
knows the choice set C and the objective function f(·).
He faces a problem of decision under ambiguity if he
knows the choice set but not the objective function.
Instead, he knows only that f(·) , F, where F is some set
of functions mapping C into R.  

Knowing that f(·) , F, how should the decision maker
choose among the feasible actions?  Clearly he should
not choose a dominated action.  Action d , C is said to
be dominated (also inadmissible) if there exists another
feasible action, say c, such that g(d) # g(c) for all g(·) , F
and g(d) < g(c) for some g(·) , F.

Let D denote the undominated subset of C.  How should
the decision maker choose among the elements of D?
Let c and d be two undominated actions.  Then either
[g(c) = g(d), all g(·) , F] or there exist g'(·) , F and g"(·)
, F such that [g'(c) > g'(d), g"(c) < g"(d)].  In the former
case, c and d are equally good choices and the decision
maker is indifferent between them.  In the latter case, the
decision maker cannot order the two actions.  Action c
may yield a better or worse outcome than action d; the
decision maker cannot say which.  Thus the normative
question "How should the decision maker choose?" has
no unambiguously correct answer.

2.2  Transforming Decisions under Ambiguity into
Optimization Problems

Although there is no optimal choice among undominated
actions, decision theorists have not wanted to abandon
the idea of optimization.  So they have proposed various
ways of transforming the unknown objective function f(·)
into a known function, say h(·): C 6 R, that can be
maximized on D.  Three leading proposals  –  the
maximin rule, Bayes decision rules, and imputation rules
–  are discussed here.  Although these proposals differ in
their details, they share a key common feature.  In each
case the solvable optimization problem, max i , D h(·),

differs from the problem that the decision maker wants
to solve, namely max i , D f(·).  The welfare level that is
attained under the solvable optimization problem is
f[argmax i , D h(·)], not max i , D f(·). 

The Maximin Rule: Wald [37] proposed that the decision
maker should choose an action that maximizes the
minimum welfare attainable under the functions in F.
Formally,

Maximin Rule: For each d , D, let  h(d) /  inf g(·) , F g(d).
Maximize h(·) on D.

The maximin rule has a clear normative foundation in
competitive games.  In a competitive game, the decision
maker chooses an action from C.  Then a function from
F is chosen by an opponent whose objective is to
minimize the realized outcome.  A decision maker who
knows that he is a participant in a competitive game does
not face ambiguity.  He faces the problem of maximizing
the known function h(·) specified in the maximin rule.

There is no compelling reason why the decision maker
should or should not use the maximin rule when f(·) is a
fixed but unknown objective function.  In this setting, the
appeal of the maximin rule is a personal rather than
normative matter.  Some decision makers may deem it
essential to protect against worst-case scenarios, while
others may not.  Wald himself did not contend that the
maximin rule is optimal, only that it is "reasonable."
Considering the case in which the objective is to
minimize rather than maximize f(·), he wrote ([37], page
18): "a minimax solution seems, in general, to be a
reasonable solution of the decision problem."

Bayes Decision Rules: Bayesian decision theorists assert
that a decision maker who knows only that f(·) , F
should choose an action that maximizes some average of
the elements of F.  Formally, 

Bayes Decision Rule: Place a F-algebra E and some
probability measure B on the function space F.  Let h(·)
/ Ig(·)dB.  Maximize h(·) on D.

Bayesian decision theorists recommend that B should
express the decision maker's personal beliefs about where
f(·) lies within F.

Bayesians offer various rationality arguments for use of
Bayes decision rules.  The most basic of these is that
Bayes decision rules generally yield undominated actions
provided that the expectations Ig(·)dB are finite ([3],
page 253).  This and other rationality arguments do not,
however, fully answer the decision maker’s bottom-line
question: how well does the rule perform?

Consider, for example, the famous axiomatic approach of
Savage [34].  Savage shows that a decision maker whose
choices are consistent with a specified set of axioms can
be interpreted as using a Bayes decision rule.  Many



decision theorists consider the Savage axioms, or other
sets of axioms, to be a priori appealing.  Acting in a
manner that is consistent with these axioms does not,
however imply that chosen actions yield good outcomes.
Berger [3] calls attention to this, stating (page 121): "A
Bayesian analysis may be 'rational' in the weak axiomatic
sense, yet be terrible in a practical sense if an
inappropriate prior distribution is used."

Even use of an "appropriate" prior distribution B does
not imply that the decision maker should choose an
action that maximizes the B-average of the functions in
F.  Suppose that B has actually been used to draw f(·)
from F; that is, let B describe an objective random
process and not just the decision maker's subjective
beliefs.  Even here, where use of B as the prior
distribution clearly is appropriate, Bayesian decision
theory does not show that maximizing the B-average of
F is superior to other decision rules in terms of the
outcome it yields.  A decision maker wanting to obtain
good outcomes might just as reasonably choose an action
that maximizes a B-quantile of F or some other
parameter of F that respects stochastic dominance (see
[17]).

Imputation Rules: A prevalent practice among applied
researchers is to act as if one does know f(·).  One admits
to not knowing f(·) but argues that pragmatism requires
making some "reasonable," "plausible," or "convenient"
assumption.  Thus one somehow imputes the objective
function and then chooses an action that is optimal under
the imputed function.  Formally, 

Imputation Rule: Select an h(·) , F.  Maximize h(·) on D.

Imputation rules are essentially Bayes rules placing
probability one on a single element of F.

2.3  Ambiguity Untransformed

Decision theorists have long sought to transform
decisions under ambiguity into optimization problems.
Yet the search for an optimal way to choose among
undominated actions must ultimately fail.  Let us face up
to this.  What then?

Simply put, normative analysis changes its focus from
optimal actions to undominated actions.  In optimization
problems, the optimal actions and the undominated
actions coincide, the decision maker being indifferent
among all undominated actions.  In decisions under
ambiguity, there may be undominated actions that the
decision maker cannot order. 

3  Treatment Choice Under Ambiguity

I now formalize the problem of treatment choice.  I

suppose that there is a finite set T of treatments and a
planner who must choose a treatment rule assigning a
treatment in T to each member of a population J.  Each
person j 0 J has a response function yj(·): T 6 Y mapping
treatments into real-valued outcomes yj(t) , Y.  A
treatment rule is a function J(·): J 6 T specifying which
treatment each person receives.  Thus, person j's outcome
under rule J(·) is yj[J(j)]. 2

The planner is concerned with the distribution of
outcomes across the population, not with the experiences
of particular individuals.  With this in mind, I take the
population to be a probability space, say (J, S, P), where
S is the F-algebra on which probabilities are defined and
P is the probability measure.  Now the population mean
outcome under treatment rule J(·) is 

(1)  E{yj[J(j)]}  /  I yj[J(j)]dP(j).

I assume that the planner wants to choose a treatment
rule that maximizes E{yj[J(j)]}.

I suppose that the planner observes certain covariates xj

, X for each member of the population.  The planner
cannot distinguish among persons with the same
observed covariates.  Hence he cannot implement
treatment rules that systematically differentiate among
these persons.  With this in mind, I take the feasible rules
to be the set of functions mapping the observed covariates
into treatments.3

To formalize this, let Z denote the space of all functions
mapping X into T.  Then the feasible rules have the form

(2)  J(j)  =  z(xj),       j 0 J,

where  z(·) 0 Z.  Let P[y(@), x] be the probability measure
on YT × X induced by P(j) and let  E{y[z(x)]} /
Iy[z(x)]dP[y(@), x] denote the expected value of y[z(x)]
with respect to this induced measure.  The planner wants
to solve the problem

(3)    max   E{y[z(x)]}.
        z(·) , Z

2  This notation maintains the assumption of “individualistic treatment”
made commonly, albeit often only implicitly, in analyses of treatment
response.  Individualistic treatment means that each person's outcome may
depend on the treatment he receives, but not on the treatments received by
other persons. 

3 Although the planner cannot systematically differentiate among persons
with the same observed covariates, he can randomly assign different
treatments to such persons.  Thus the set of feasible treatment rules in
principle contains not only functions mapping covariates into treatments
but also probability mixtures of these functions.  Explicit consideration of
randomized treatment rules would not substantively change the analysis of
this paper, but would complicate the necessary notation.  A simple implicit
way to permit randomized rules is to include in x a component whose value
is randomly drawn by the planner from some distribution.  The planner can
then make the chosen treatment vary with this covariate component. 



The solution to this problem is to assign to each member
of the population a treatment that maximizes mean
outcome conditional on the person’s observed covariates.
Let 1[@] be the indicator function taking the value one if
the logical condition in the brackets holds and the value
zero otherwise.  For each z(·) 0 Z, use the law of iterated
expectations to write

(4)  E{y[z(x)]}  = E{E{y[z(x)]*x}}

                          =  E{  E t 0 T  E[y(t)*x]·1[z(x) = t]}

                          = I E t 0 T E[y(t)*x]·1[z(x) = t] dP(x).

For each x 0 X, the integrand Et 0 T E[y(t)*x]·1[z(x) = t]
is maximized by choosing z(x) to maximize E[y(t)*x] on
t 0 T.  Hence a treatment rule z*(·) is optimal if, for each
x 0 X, z*(x) maximizes E[y(t)*x] on t 0 T.  The
optimized population mean outcome is E{max t 0 T

E[y(t)*x]}. 

A planner who knows the conditional mean outcomes
E[y(·)*x], x 0 X can implement an optimal treatment
rule. The planner faces a problem of treatment choice
under ambiguity if he does not know E[y(·)*x],  x 0 X.
Suppose the planner knows only that the population
(covariate, response function) distribution P[x, y(·)] lies
within a specified set M of possible (covariate, response
function) distributions.  The planner may then partition
the feasible treatment rules into dominated and
undominated subclasses.  A feasible treatment rule z(·) is
dominated if there exists another feasible rule, say z’(·),
such that

(5a)  Iy[z(x)]dN  #  Iy[z’(x)]dN,      all  N , M,

(5b)  Iy[z(x)]dN  <  Iy[z’(x)]dN,      some  N , M.

A treatment rule z(·) is undominated if no such z’(·)
exists.  A planner facing a problem of treatment under
ambiguity can eliminate dominated rules as sub-optimal
but cannot choose optimally among rules that are
unordered.

4  Identification of Treatment Response

I now turn to the problem of empirical inference on
E[y(·)*x],  x 0 X.  My first concern is identification.

4.1  The Observability of Response Functions

Empirical inference on treatment response faces a
fundamental difficulty.  Consider any person j , J.  By
definition, treatments are mutually exclusive.  Hence it
is logically impossible to observe the vector [yj(t), t , T]
of outcomes that person j would experience under all
treatments.  It is at most possible to observe the outcome
that j realizes under the treatment that this person

actually receives.4

Even the realized outcome is observable only
retrospectively, after a person's treatment has been
chosen.  Nothing about response function yj(·) is
observable prospectively, before the treatment decision.
Facing this further difficulty, empirical researchers
commonly (albeit often only implicitly) assume the
existence of two populations having the same distribution
of covariates and response functions, or at least the same
conditional mean response functions.  One is the
population of interest, which I have denoted J.  The other
is a treated population, say K, in which treatments have
previously been chosen and outcomes realized.

Let s(·): K 6 T denote the status quo treatment rule; that
is, the rule actually applied in the treated population.
Then the realized (covariate, treatment, outcome) triples
{xk, s(k), yk[s(k)]; k , K} are observable.  Under the
assumption that populations J and K are distributionally
identical, observation of the treated population can reveal
the distribution P[x, s, y(s)] of (covariate, treatment,
outcome) triples that would be realized in the population
of interest if treatment rule s(·) were to be applied there.

In this section, which focuses on identification, I
maintain the idealized assumption that the planner
observes the entire treated population, or at least an
infinite random sample, and so knows the distribution
P[x, s, y(s)].  Section 5 addresses the problem of
statistical inference that arises when a finite sample from
this population is available.

4.2  All Feasible Treatment Rules Are Undominated

What is the set of undominated treatment rules given
empirical knowledge of P[x, s, y(s)] but no maintained
assumptions about the process generating realized
treatments and outcomes?  A straightforward extension
of the analysis of [18], [19] shows that this question has
a simple but unpleasant answer: All feasible treatment
rules are undominated.  

Let K0 and K1 denote the lower and upper endpoints of
the logical range of the response functions.  If outcomes

4 The mutual exclusivity of treatments has been a central theme of
empirical research on the analysis of treatment response. Mutual
exclusivity of treatments is the reason why the term experiment is
generally taken to mean a randomized experiment, in which each person
receives one randomly chosen treatment [8].  A different perspective is
found in the economic theory literature on revealed preference analysis.
Here, it is sometimes assumed that treatments are not mutually exclusive
or, equivalently, that persons receiving different treatments have the same
response function.  Varian [36], for example, supposes that an analyst
observes multiple realized (treatment, outcome) pairs for a given individual
j.  He investigates how these observations may be used to learn about j's
response function yj(·).



are binary, for example, then K0 = 0 and K1 = 1.  If
outcomes can take any non-negative value, then K0 = 0
and K1 = 4.  For each t , T and x , X, use the law of
iterated expectations to write 

(6)  E[y(t)*x]  =  E[y(t)*x, s = t]·P(s = t*x)

                              + E[y(t)*x, s /= t]·P(s /= t*x).

Empirical knowledge of P[x, s, y(s)] implies knowledge
of E[y(t)*x, s = t], P(s = t*x), and P(s /= t*x) but reveals
nothing about E[y(t)*x, s /= t].  We know only that the
last quantity lies in the interval [K0, K1].  Hence E[y(t)*x]
lies within this sharp bound: 

(7)    E[y(t)*x, s = t]·P(s = t*x) + K0·P(s /= t*x)

                    #  E[y(t)*x]

                     #  E[y(t)*x, s = t]·P(s = t*x) + K1·P(s /=
t*x).

Now let us compare two treatment rules.  Under one rule,
all persons with covariates x receive treatment t'.  Under
the other rule, all such persons receive a different
treatment, say t".  In the absence of any empirical
evidence on treatment response, we would be able to say
only that E[y(t")*x] - E[y(t')*x] 0 [K0 - K1, K1 - K0].
With the available empirical evidence, (7) yields a
narrower bound on E[y(t")*x] - E[y(t')*x].  The sharp
lower (upper) bound is the lower (upper) bound on
E[y(t")*x] minus the upper (lower) bound on E[y(t')*x].
Thus

(8)  E[y(t")*x, s = t"]·P(s = t"*x) + K0·P(s /= t"*x)

                   - E[y(t')*x, s = t']·P(s = t'*x) - K1·P(s /= t'*x)

         #  E[y(t")*x] - E[y(t')*x]

         #  E[y(t")*x, s = t"]·P(s = t"*x) + K1·P(s /= t"*x)

                  - E[y(t')*x, s = t']·P(s = t'*x) - K0·P(s /= t'*x).

This bound is a subset of the interval [K0 - K1, K1 - K0].
Its width is (K1 - K0)·[P(s /= t"*x) + P(s /= t'*x)], which
can be no smaller than (K1 - K0).  Hence the bound (8)
necessarily contains the value zero.  Thus the empirical
evidence alone does not reveal which treatment, t’ or t”,
yields the larger mean outcome.  The same reasoning
holds for all pairs of treatments and for all values of x.
Hence all feasible treatment rules are undominated.

It is important to understand that this negative finding
does not imply that the planner should be paralyzed,
unwilling and unable to choose a treatment rule.  What
it does imply is that, using empirical evidence alone, the
planner cannot claim optimality for whatever treatment
rule he does choose.  The planner might, for example,
apply the maximin rule.  This calls for each person with
covariates x to receive the treatment that maximizes the
lower bound in (7).  The planner cannot claim that this

rule is optimal, but he may find some solace in the fact
that it fully protects against worst-case scenarios.

4.3  Credibility of Identifying Assumptions 

Although there are fundamental limits to the
observability of response functions, there are no limits
other than internal consistency to the assumptions that
one can impose.  Further conclusions about the mean
response functions E[y(@)*x], x , X can be deduced, and
ambiguity in treatment choice reduced, if empirical
knowledge of P[x, s, y(s)] is combined with maintained
assumptions.

The prevailing practice in the literature on treatment
response has been to combine observations of realized
(covariates, treatments, outcomes) with assumptions
strong enough to identify mean response functions.
Researchers applying these strong assumptions, however,
have commonly found it difficult to justify them.  There
is a need to face up to the fact that imposing assumptions
that are not credible does not really eliminate ambiguity
in treatment choice.  I discuss the three main approaches
below.

Exogenous Treatment Selection: Certainly the most well
known and often used way to identify mean response
functions is to impose the non-testable assumption 5 

(9)  E[y(t)*x]  =  E[y(t)*x, s = t].  

Empirical knowledge of P[x, s, y(s)] implies knowledge
of the right side of (9); hence E[y(t)*x] is identified.
Researchers asserting assumption (9) may say that
treatment selection is exogenous or random or ignorable
conditional on x.  See [10], [15], and [33].

The assumption of exogenous treatment selection is well-
motivated in classical randomized experiments [8].  Here
the status quo treatment rule s(·) involves a planner who
randomly assigns treatments to the members of the
treated population, all of whom comply with the assigned
treatment.  Hence s is necessarily statistically
independent of [x, y(·)].  Equation (9) is an immediate
consequence of this statistical independence.

The assumption is typically difficult to motivate in
experiments that deviate from the classical ideal and in
non-experimental settings, especially those in which the
status quo treatments are self-selected by the members of
the treated population (see[22] and [9]).  In these cases,
the assumption is often no more than an imputation rule
(see Section 2.2).   

5 Assumption (5) is not testable because E[y(t)*x, s /= t] is not observable.
Hence there is no empirical basis for refutation of the hypothesis E[y(t)*x,
s /= t] = E[y(t)*x, s = t], which implies (9).  



Latent-Variable Models: When status quo treatments are
self-selected, it is easier to argue that treatment selection
is not exogenous than to find a credible alternative
assumption that identifies mean outcomes.  Some
researchers have proposed latent-variable models that
jointly explain treatment and response.  These models
make assumptions about the form of P[s, y(·)*x].  If the
assumptions are sufficiently strong, combining them with
empirical knowledge of P[x, s, y(s)] identifies the mean
outcomes E[y(t)*x].  See, for example, [4], [10], and
[15]. 

The use of latent-variable models to identify treatment
effects has been quite controversial.  Some researchers
have regarded these models as ill-motivated imputation
rules whose functional form and distributional
assumptions lack foundation. Others have viewed them
as credible assumptions.

Instrumental Variable Assumptions and Constant
Treatment Effects: In situations where outcomes are
continuous, mean outcomes can be identified by
combining an instrumental variable  assumption with the
assumption of constant treatment effects.  The classical
econometric research on linear response models that
began in the 1920s and crystallized by the early 1950s
invokes these assumptions.

An instrumental variable assumption holds that mean
response is constant across sub-populations defined by
different values of some covariate.6  Let x / (w, v).
Covariate v, taking values in a space V, is said to be an
instrumental variable if, for t 0 T, each value of w, and
all (u, u’) 0 (V × V),

(10)  E[y(t)*w, v = u’]  =  E[y(t)*w, v = u].

The constant-treatment-effect assumption is that the
response functions yj(·), j , J are parallel to one another.
That is, there exists a function g(·): T 6 R and a set of
real constants "j, j , J, such that

(11)  yj(t)  = g(t) + "j.

The controversy surrounding latent-variable models re-
appears in applications that assume constant treatment
effects.  Whereas applied researchers sometimes feel that
they can plausibly assert an instrumental variable
assumption, the assumption of constant treatment effects
usually strains credibility.  In particular, this assumption

implies that it is optimal to assign the same treatment to
every member of the population, namely the treatment
that maximizes g(@) on T.

4.4  Instrumental Variable Bounds

I have thus far described two polar informational cases.
In the absence of prior information, observation of a
treated population reveals something about mean
treatment response but not enough to conclude that any
rule is dominated (Section 4.2).  Empirical knowledge
combined with strong assumptions can identify mean
response and enable optimization, but these strong
assumptions are only rarely credible (Section 4.3).

Consideration of intermediate cases opens new
inferential possibilities, with implications for treatment
choice.  Empirical knowledge combined with weak
assumptions may imply non-overlapping bounds for
mean outcomes under some alternative treatments.
When this happens, the planner can partially order the
feasible rules.

In the past ten years, a literature deriving bounds under
various assumptions has begun to take form.. To
illustrate  the possibilities, I describe here the simple
sharp bound under the instrumental variable (IV)
assumption (10) obtained in [19].7  This bound
characterizes the identifying power of an IV assumption
alone, not combined with the constant treatment effects
assumption or any other prior restriction.  Thus, it speaks
to the situation of a planner who finds an IV assumption
credible but does not want to predicate his choice of
treatment rule on other assumptions. 

The starting point for determination of the identifying
power of an IV assumption is the no-assumptions bound
on E[y(t)*w, v] given in equation (7). Under the IV
assumption, E[y(t)*w, v = u] is constant across u 0 V.  It
follows that the common value of E[y(t)*w, v = u], u 0 V
lies in the intersection of the bounds (7) across the
elements of V  Any point in this intersection is feasible.
Thus, for all u 0 V, we obtain the common sharp bound

(12)  sup u’0 V [E(y*w, v = u’, s = t)·P(s = t*w, v = u’)

                                               + K0·P(s … t*w, v = u’)]

        #  E[y(t)*w, v = u]  #

         inf u’ 0 V [E(y*w, v = u’, s = t)·P(s = t*w, v = u’)

                                               + K1·P(s … t *w, v = u’)].

This is also the sharp bound on E[y(t)*w].  The IV bound
(12) is necessarily a subset of the no-assumptions bound

6 Consider, for example, the literature in labor economics on the returns to
schooling.  Here treatments are different levels or forms of schooling that
a child may receive.  The outcome of interest is the net benefit of each
schooling treatment, commonly measured by life-cycle earnings. Labor
economists often use attributes of a person’s parents as instrumental
variables.  The argument is that, although parental attributes may affect
the schooling treatment that children receive, they should not, on average,
affect the life-cycle earnings that children would experience if they were
to receive a given schooling treatment.

7Bounds under related assumptions are reported in [2], [12], [29], [31],
and [32].



(7).  It is a proper subset for some u 0 V if and only if the
no-assumptions bounds for u 0 V do not all coincide.

Now compare two treatment rules.  All persons with
covariates w receive treatment t' under one rule, and  all
such persons receive a different treatment t" under the
other rule.  We may use (12) to obtain a sharp bound on
the average treatment effect E[y(t")*w] - E[y(t')*w], just
as we did in deriving (8) from (7).  This bound, however,
need not cover zero.  If the lower IV bound on E[y(t")*w]
exceeds the upper IV bound on E[y(t')*w], we may
conclude that the rule mandating treatment t" dominates
the rule mandating t', and vice versa.

I know of no general way to determine a priori whether
a given IV assumption will be sufficiently powerful to
yield non-overlapping bounds.  It seems that one must
compute the bound case-by-case.  There is, however, an
important special case in which an IV assumption has
full identifying power.  This is the case of exogenous
treatment selection discussed in Section 4.3.  Exogenous
treatment selection is an IV assumption in which the
instrumental variable v is the realized treatment s.

5  Statistical Treatment Rules

In Section 4, I supposed that the planner knows the
distribution P[x, s, y(s)].  In practice, planners may
observe only a finite sample of the treated population.
The problem of statistical induction from sample to
population then arises. 

In [27], I apply Wald’s concept of statistical decision
functions to analyze the problem of treatment choice
using sample data.  Let Q denote a sampling process and
let Q denote the associated sample space; that is, Q is
the set of data samples that may be drawn under Q.  Let
- denote the space of functions mapping X × Q into T.
Then each function . (·, @)  0 - defines a statistical
treatment rule, or STR.  Thus, an STR is a feasible rule
whose identity depends in some way on the sample
drawn.

One’s perspective on a statistical treatment rule depends
on whether one evaluates it before or after the sampling
process is engaged.  Let R 0 Q denote a sample that may
potentially be drawn under Q and let R0 0 Q denote the
sample that is actually drawn.  Ex ante R is a random
variable, so . (·, R) is a random function of X.  Ex post
R0 is a determinate element of Q, so . (·, R0) is a
determinate function of X.  Thus an STR is ex ante a
random member of the set Z of feasible rules and ex post
a determinate member of Z.

As did Wald, I evaluate statistical treatment rules from
the ex ante perspective.  In particular, I analyze the
expected value under Q of the (ex ante random)

population mean outcome

(13)  E{y[.(x, R)]}   = 

                        I   3t 0 T  E[y(t)*x]·1[. (x, R) =  t] dP(x)
.

This is

(14)  W(P, Q, .)   /  I E{y[. (x, R)]} dQ(R)

       =  I [ I  3 t 0 T E[y(t)*x]@1[.(x, R)  =  t] dP(x)] dQ(R)

      =  I  3t 0 T E[y(t)*x]@Q[.(x, R)  =  t] dP(x),

where Q[.(x, R)  =  t] / I1[.(x, R)  =  t]dQ(R) denotes
the Q-probability of the event [.(x, R) = t].  I refer to
W(P, Q, .) as the expected welfare under rule ..  In the
literature on statistical decision theory, -W(P, Q, .)
would be called the risk of statistical decision function ..8

   

One may in principle apply the expected welfare criterion
to evaluate alternative statistical treatment rules . under
varying assumptions and sampling processes.  In [27], I
apply the criterion in a simple setting of considerable
practical interest.  I evaluate two statistical treatment
rules when the sample data are generated by a classical
randomized experiment.  Both rules embody the
reasonable idea that persons should receive the treatment
with the best empirical success rate, but they differ in
their use of covariate and sample information.  

The conditional success (CS) rule selects treatments with
the best empirical success rates conditional on specified
covariates.  The unconditional success (US) rule selects
a treatment with the best unconditional empirical success
rate.  Whereas the US Rule constrains the planner to
choose the same treatment for all persons, the CS Rule
permits the planner to treat persons with different
covariates differentially.  Whereas the US Rule has the
planner compare success rates using the entire available
sample, the CS Rule requires that the planner compare
success rates in sub-samples.

There is an evident tension between use of covariate
information and available sample size.  I use the
expected welfare criterion to characterize this tension
and assess the implications for treatment choice.  The
main finding is a proposition giving finite-sample bounds
on expected welfare under the two rules.  The bounds,
which rest on a large-deviations theorem of [11], yield
explicit sample-size and distributional conditions under
which the CS Rule dominates the US rule.

I also briefly consider the situation of a planner who can

8  The convention in statistical decision theory has been to describe the
planner as minimizing expected loss rather than as maximizing expected
welfare.  The loss associated with rule . is -E{y[.(x, R)]} and the risk is
-W(P, Q, .).  



choose what covariate information to observe.  The
planner should, ideally, want to observe covariates that
best separate persons who differ in their optimal
treatments.
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