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Sharing Beliefs: Between Agreeing and Disagreeing
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Abstract

In an exchange economy with no aggregate uncer-
tainty, and Bayesian agents, Pareto optimal alloca-
tions provide full insurance if and only if the agents
have a common prior. It is hard to explain why there
is relatively so little betting taking place. One is
led to ask, when are full insurance allocations opti-
mal for uncertainty averse agents? It turns out that
commonality of beliefs, appropriately de�ned, is key
again. Speci�cally, consider agents who are uncer-
tainty averse and who maximize the minimal expected
utility according to a set of possible priors. Pareto op-
timal allocations provide full insurance if and only if
the agents share at least one prior.

Keywords. Betting, multiple prior, full insurance,
Pareto optimality

1 Introduction

When is it Pareto optimal for risk averse agents to
take bets? Under what conditions do they choose to
introduce uncertainty into an otherwise certain eco-

nomic environment? One obvious case is where they
do not share beliefs. As in the classical (theoretical)
example of horse lotteries, people who do not agree on
probability assessments do �nd it mutually bene�cial

to engage in uncertainty-generating trade.
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If the agents involved are Bayesian expected utility
maximizers and strictly risk averse, it is not hard to
see that disagreement on probabilities is the only way

that betting, understood as trade of an uncertain as-
set, may be Pareto improving when starting from a
full insurance allocation. On the other hand, any such

disagreement induces betting. Put di�erently, Pareto
optimality dictates either that there be no betting (in
case beliefs are common to all agents) or that there
be betting (in case of disagreement). This is some-

what puzzling, because there is no lack of allocation-
neutral, \sunspot" sources of uncertainty in the world
around us. If every disagreement on probabilities of

states of the world suggests a Pareto improving trade,
one might have expected to see much more betting
taking place.

Rather than believing that people who do not bet

necessarily share probabilistic beliefs about anything
they do not bet on (or, to be precise, share these
beliefs up to some slack allowed by transaction costs),

we tend to take the relative rarity of bets as a piece
of empirical evidence against the Bayesian model. It
seems that often people do not bet because they are

uncertainty averse, and they therefore tend to avoid
uncertainty that they know little about. It follows
that a person's willingness to bet will increase with

her subjective con�dence in her informationand in her
likelihood assessments. It is worth emphasizing that
Beweley's [1986] motivation for his work on Knightian
decision theory was partly this absence of observed

widespread betting.

While we do not attempt to argue that the full com-
plexity of betting behavior can be explained by the

type of models we study here, we are led to ask,
how much can be explained by these models if we re-
lax some of the more demanding assumptions of the
Bayesian model. Speci�cally, we consider maxmin ex-

pected utility with a non-unique prior (Gilboa and



Schmeidler [1989]) that captures Knightian uncer-
tainty (Knight [1921]). Assume that such uncertainty
averse agents who are also risk averse, give rise to an
economy in which there is no aggregate risk. When

does there exist full insurance, i.e., no-bet allocations
that are also Pareto optimal? When is it the case that
all Pareto optimal allocations are full insurance? Is

any betting due to di�erent beliefs, and, conversely,
does a di�erence in beliefs always trigger some bet-
ting?

In the multiple prior model an individual is charac-

terized by a utility function and a non-empty, closed
and convex set of probability measures. The individ-
ual evaluates every act by its expected utility accord-

ing to each possible probability measure, and chooses
an act whose minimal expected utility is the high-
est. The family of preference relations described by

this model strictly contains the relations described by
Choquet expected utility with a convex capacity (see
Schmeidler [1989]).

Consider now a pair of agents conforming to the multi-

ple prior model. It is an easy extension of the expected
utility analysis to show that these agents will not bet
against one another if they share at least one prior.

Moreover, in a general framework with more than two
agents and complex bets possibly involving several of
them, it is easy to show, following Dow and Werlang

[1992] early intuition, that Pareto optimal allocations
are indeed full insurance allocations whenever agents'
sets of priors have a non-empty intersection (see, e.g.,
Tallon [1998], Dana [1998]).

The question of whether the converse to this result
holds arises naturally: is commonality of beliefs, in
the sense of agents sharing a prior in common, exactly

what is needed to explain, within the framework of
the multiple prior model, the absence of betting on
the many possible sources of \extrinsic" uncertainty?
Di�erently put, is the observation of a Pareto optimal

allocation that is immune to sunspots enough to tell
us something about the intersection of agents' sets of
priors?

It turns out that we can answer this question a�r-
matively and that the result in the Bayesian model
has a conceptually identical counterpart in the mul-

tiple prior model. Under the same non-triviality con-
ditions, there exists a Pareto optimal full insurance
allocation if and only if all Pareto optimal allocations
provide full insurance, and this holds if and only if

all agents share a prior probability on the states of
the world. In other words, commonality of beliefs is
the necessary and su�cient condition to explain the

absence of betting. Whereas in the Bayesian model
\sharing a prior" could only mean \having an iden-
tical prior," in the multiple prior model this phrase
may be read as \having at least one prior in common."

With this grammatical convention in place, the result
holds verbatim.

Bayesian agents either agree on probability assess-

ments, or disagree enough to bet against each other.
By contrast, uncertainty averse agents can be in a
\grey area" between agreeing and disagreeing: they
may not agree in the sense of having the same set of

possible priors, yet not disagree in the sense of being
willing to bet against each other.

Finally, we emphasize another contribution of this

note. In showing that commonality of beliefs is the
minimal assumption explaining the absence of bets,
we prove a separation theorem for n convex sets that
might be of interest on its own.

The rest of this paper is organized as follows. Sec-
tion 2 provides the set up of the model. In section 3
we state the main result and the separation theorem.

Proofs are relegated to an appendix.

The economy we consider is a standard two-period
pure-exchange economy with uncertainty in the sec-
ond period, but for agents' preferences. There are S

possible states of the world in the second period, in-
dexed by superscript j. Let, with a slight abuse of
notation, S be the set of states of the world and 2S

its power set. There are n agents indexed by subscript
i. We assume (i) that there is only one good, which
can be interpreted as income or money; and (ii) that

there is no aggregate uncertainty. Trading an uncer-
tain asset is thus interpreted as betting rather than as
hedging. We denote Cj

i the consumption by agent i in
state j and Ci = (C1

i ; : : : ; C
S
i ). Denote by w > 0 the

constant-across-states aggregate endowment. An al-
location C = (C1; : : : ; Cn) is feasible if

Pn

i=1 C
j
i = w

for all j. An allocation is interior if Cj
i > 0 for all

i, all j. An allocation is a full insurance allocation if
Cj
i = Cj0

i for all i, and all j; j0.

In the multiple-prior approach, each agent i is en-

dowed with a utility index Ui : IR+ ! IR and a closed
and convex set Pi of probability distributions over S.
Ui is de�ned up to a positive a�ne transformation,
and is taken to be di�erentiable, strictly increasing

and strictly concave. The overall utility function Vi
de�ned over IRS

+ then takes the following form:

Vi(Ci) = min
�2Pi

E�Ui(Ci)

We assume throughout that all sets of priors consid-



ered here contain only probability distributions that
put strictly positive weights on any state, that is
� 2 Pi ) �� 0, (i.e., �j > 0 for all j). As discussed
below, this full support condition could be relaxed.

2 The main result

The following theorem states that the set of Pareto
optimal allocations and the set of full insurance al-

locations are either identical or disjoint. Moreover,
they are identical if and only if the agents share at
least one prior.

Theorem 2.1 Under the maintained assumptions,
the following assertions are equivalent:

(i) There exists an interior full insurance Pareto op-
timal allocation.

(ii) Any Pareto optimal allocation is a full insurance
allocation.

(iii) Every full insurance allocation is Pareto optimal.

(iv)
Tn

i=1Pi 6= ;

The intuition for the proof (and the role of some as-
sumptions) is as follows. We prove that (iv) ) (ii))

(iii) ) (i) ) (iv). If there is a common prior (iv),
one can use strict concavity to show that a risk bear-
ing allocation is Pareto dominated by the full insur-
ance allocation that equals its expectation at every

state, proving (ii).1 This step uses the full support
assumption. However, it is enough to assume that the
prior agents share has this property. If every Pareto

improving allocation provides full insurance (ii), the
converse (iii) also holds, since no two full insurance
allocations can be Pareto ranked (the fact that (iv)

implies (ii) and (iii) also appears in Dana [1998]),
and it follows trivially that there is at least one such
allocation (i). Finally, the crucial step and the main
contribution of the theorem is that the existence of

a full insurance Pareto optimal allocation (i) implies
that there is a common prior (iv). This step does not
require concavity of the utility index2 nor full support.

In proving this last part we make use of the follow-
ing theorem, which generalizes the standard separat-
ing hyperplane theorem, and may be of interest on

1This implication follows the logic of similar results
for Choquet expected utility in Chateauneuf, Dana and
Tallon [1997].

2Dana [1998] shows that if there is a full insurance com-
petitive equilibrium in this economy, then agents share a
prior in common. Her proof, however, uses the concav-
ity of the utility index and relies on the existence of a
competitive equilibrium.

its own. In the appendix we also comment on the
geometric interpretation of this result which may be
viewed as a separation theorem among n convex sets.

Theorem 2.2 Let X be a locally convex linear topo-
logical space and let Pi � X, 1 � i � n, be con-

vex, non-empty, and compact. Then, the following
are equivalent:

(i)
Tn

i=1 Pi = ;

(ii) There exist I � f1; : : : ; ng, I 6= ; and p 2

co ([i2IPi) and for each i 2 I, there exists a con-
tinuous linear functional hi : X ! IR such that:

(a) 8 i 2 I, hi(q � p) > 0 for all q 2 Pi

(b)
P

i2I hi = 0

An immediate corollary of Theorem 2.2 is that, under
the same assumption, if

Tn

i=1 Pi = ;, there exist con-
tinuous linear functionals hi, i = 1; : : : ; n and a point
p such that (a') hi(q � p) � 0 for all q 2 Pi, for all i,

(b')
Pn

i=1 hi = 0, and (c') there exist i, i0 such that
the inequality in (a') is strict.

It is worthy of note that a similar result, developed

independently and with a rather di�erent motivation,
is to be found in Samet [1998], for subsets of a �nite
dimensional simplex. Samet's result is weaker in the
sense that it guarantees the existence of linear func-

tionals as in our case, but does not guarantee that
the separating hyperplanes will intersect at one point
p in the convex hull of the sets, and therefore does not

yield itself to a straightforward geometric interpreta-
tion. Further, Samet's result can be easily derived
from the corollary above specialized to subsets of the

simplex. It does not appear that Samet's argument
could easily be amended to get ours.

Theorem 2.1 has two immediate corollaries. First, in
the Choquet expected utility model with convex ca-

pacities, non-empty core intersection is equivalent to
some, or all, Pareto optimal allocations being full in-
surance. Second, in the expected utility case, where

the sets of priors are reduced to one point, some, or
all, Pareto optimal allocations are full insurance al-
locations if and only if agents have the same beliefs

(i.e., the same prior).

Note that even though we cast the argument in the
multiple prior model, it should be clear from the proof
that a similar result holds for Bewley [1986] approach.

In Bewley's approach, agents are also endowed with a
set of priors and move away from a (exogenously de-
�ned) status quo situation only if the new situation is

better than the status quo for all the probability dis-



tributions in their set of priors. While Bewley char-
acterizes a partial order over acts, a proposed bet will
be preferred to a certain status quo if and only if this
preference holds in the multiple prior model of Gilboa

and Schmeidler.3

Our analysis is conducted for an economy with one
good. However, the only use we make of this assump-

tion is in arguing that all full insurance allocations are
Pareto optimal. Indeed, one can generalize our results
to an economy with m goods, with the slight modi�-
cation that full insurance allocations that are consid-

ered for optimality be assumed Pareto optimal in each
state. Finally, as suggested by Theorem 2.2, Theorem
2.1 extends straightforwardly to in�nite state spaces,

as long as the sets of priors are compact.

Appendix

Proof of Theorem 2.1:

We �rst prove (iv) ) (ii) (see Chateauneuf et al.
[1997] and Dana [1998]). Assume to the contrary
that there exists an agent (say agent 1) and states

j; j0 such that Cj
1 6= Cj0

1 . Let � 2 \iPi and de�ne
�Ci = E�Ci for all i. Abusing notation, let �Ci also
denote the constant allocation giving �Ci to agent i in

all states. �C = ( �Ci)i is a feasible allocation sinceP
i
�Ci =

P
iE�Ci = E� (

P
iCi) = E�w1S = w.

Now,

Vi(Ci) = min
'2Pi

E'Ui(Ci) � E�Ui(Ci)

Furthermore,

E�Ui(Ci) � Ui(E�(Ci)) = Ui( �Ci) = Vi( �Ci)

for all i since Ui is concave. For i = 1 one gets,
since U1 is strictly concave, � � 0 and Cj

1 6= Cj0

1 :
V1(C1) < V1( �C1), a contradiction.

To see that (ii) implies (iii), let C be a full insurance

allocation. Assume, contrary to (iii), that it is not
Pareto optimal, and is dominated by another alloca-
tion C0. By the same argument as above, �C0 is at least
as desirable as C0 for every agent. By transitivity of

Pareto domination, �C0 Pareto dominates C. But this
is a contradiction since both provide full insurance
and there is only one good in the economy.

3Bewley [1989] contains a similar no-trade result for
agents whose preferences are given by partial orders as in
Bewley [1986]. His proof is very similar to Samet's, and
his result his weaker than Theorem 2.2 in the same sense
that Samet's is.

That (iii) implies (i) is obvious, and it remains to
prove that (i) implies (iv). Suppose to the contrary
that \iPi = ;, and let C be an interior Pareto optimal
allocation that is a full-insurance allocation (Cj

i =

Cj0

i for all i and all j; j0). By Theorem 2.2, since
\iPi = ;, there exists a non-empty set I, a point p

and functionals hi, i 2 I such that:

(a) 8i 2 I, hi(q � p) > 0 for all q 2 Pi

(b)
P

i2I hi = 0

Construct the allocation
� bCi

�
i=1;:::;n

as follows:

bCi = Ci i =2 IbCj
i = Cj

i + "
h
hji � hi(p)

i
i 2 I; j = 1; : : : ; S

with " > 0 small enough so that bC is an alloca-
tion, where hji are the coe�cients of hi, i.e., hi(q) =P

j h
j
iq

j.

It can be readily checked that this allocation is feasi-
ble. Indeed,

"

"X
i2I

hji �
X
i2I

hi(p)

#
= 0

since, by construction,
P

i2I hi = 0, henceP
i2I hi(p) = 0 and for each j,

P
i2I h

j
i =P

i2I hi(e
j) = 0 where ej is the jth unit vector.

Now, for i 2 I, one has:

Vi

� bCi

�
=

SX
j=1

bqjUi

�
Cj
i + "(hji � hi(p))

�
for some bq 2 Pi

=
SX
j=1

bqjUi

�
Cj
i

�

+
SX
j=1

bqj"(hji � hi(p))U
0
i

�
Cj
i

�
+ "�(")

= Vi(Ci) + "U 0
i (Ci)

24 SX
j=1

bqjhji � hi(p)

35
+ "�(")

= Vi(Ci) + "U 0
i (Ci) [hi(bq � p)] + "�(")

> Vi(Ci)

This last inequality is true because " > 0 and

hi(bq � p) > 0 for i 2 I since bq 2 Pi. Hence, we

found a Pareto dominating allocation
� bCi

�
i=1;:::;n

, a

contradiction. Q.E.D.



Proof of Theorem 2.2: We start with the following
lemma:

Lemma: LetX be a locally convex linear topological
space and let Pi � X, 1 � i � n be convex, non-

empty, and compact. Assume that \i�nPi = ; but
that for all ` � n, \i6=`Pi 6= ;. Then, there exist
p 2 co ([ni=1Pi) and a continuous linear functional

hi : X ! IR for each i � n such that:

(a) 8 i � n, hi(q � p) > 0 8q 2 Pi

(b)
P

i�n hi = 0

The geometric interpretation of this lemma is as fol-
lows. Assume that n convex and compact sets have an

empty intersection, but that every subset of them has
a non-empty intersection. Then, we can �nd a point p
which is not included in any set, but which is \in the

middle" in the following sense: one can �nd, for each
set Pi, a hyperplane hi that passes through p which
is in the convex hull of the union of the Pi and leaves

the entire Pi on one side, such that the normals of
these hyperplanes add up to zero. In the case n = 2,
our lemma reduces to a standard separation theorem
between two disjoint sets, and any point on the sep-

arating hyperplane may be considered \in between"
the sets. For n > 2, the lemma may be considered as
an n-way separation among n convex sets. See �gure

1 for an illustration of the case n = 3.

Figure 1: Separation among three convex sets
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Proof of the lemma: The proof is by induction

on n. For n = 2, we have P1 \ P2 = ; and we
use a standard separation theorem (cf Kelley and
Namioka [1963], p.119, theorem on strong separation)

to conclude that there is a continuous linear functional
h : X ! IR and a number � 2 IR such that h(q) > �

for q 2 P1 and h(q) < � for q 2 P2. Choose p such

that h(p) = �, and set h1 = h and h2 = �h. By con-

tinuity of h it is possible to choose p 2 co (P1 [P2).

Assume that the lemma holds for every n0 < n. Let
there be given (Pi)

n

i=1. Set A = \i<nPi and B = Pn.
Observe that A and B are convex, non-empty, and

compact. Furthermore, they are disjoint since \iPi =
;. Apply the same separation theorem to conclude
that there exist a continuous linear ehn : X ! IR and

� 2 IR such that

ehn(q) > � 8 q 2 B and ehn(q) < � 8 q 2 A

Choose q0 2 X such that ehn(q0) = �. We shift the
origin to q0. Speci�cally, de�ne for each i � n, bPi =

fp � q0 j p 2 Pig = Pi � q0. Naturally,
� bPi

�n
i=1

and their intersections inherit all relevant properties
of (Pi)i. Denote bB = B � q0 = bPn and bA = A �

q0 = \i<n
bPi and observe that ehn(q) > 0 8q 2 bB andehn(q) < 0 8q 2 bA. Consider X0 = fq 2 X j ehn(q) =

0g. X0 is a locally convex linear topological space.
Focusing on this subspace, de�ne bP0

i = bPi \ X0 for

i < n. Obviously, bP0
i is convex and compact for every

i < n. We argue that it is also non-empty. Indeed,bPi contains bA. On the other hand, bPi has a non-

empty intersection with bB = bPn. By convexity ofbPi and continuity of ehn, bP0
i 6= ;. Similarly, for ` < n,

\i6=`;n bPi contains bA and intersects bB and we therefore
get

\i6=`;n bP0
i 6= ; 8 ` < n

However, X0 is an hyperplane separating bB from bA.
Hence \i<n

bP0
i = ;.

It follows that
� bP0

i

�
i<n

on X0 satisfy the conditions

of the lemma for n0 = n � 1. Therefore, there ex-

ist a point bp 2 co
�
[n�1i=1

bP0
i

�
and continuous lin-

ear functionals h0i : X 0 ! IR, i < n, such that

h0i(q � bp) > 0 8q 2 bP0
i; i < n, and

P
i<n h

0
i = 0

on X0. Using standard arguments (see Fact 1 below),
we conclude that, for every i < n, h0i on X0 can be
extended to hi on all of X such that:

hi(q � bp) > 0 8q 2 bPi

De�ne h =
P

i<n hi on X. Observe that for every
q 2 X 0,

h(q) =
X
i<n

hi(q) =
X
i<n

h0i(q) = 0

Hence ehn and h are continuous linear functionals on

X satisfying:

ehn(q) = 0) h(q) = 0 8q 2 X



By standard arguments (see Fact 2 below), there ex-
ists � 2 IR such that h(q) = �ehn(q) 8 q 2 X.

We wish to show that � < 0. Consider q 2 bA =
\i<n

bPi. Since hi(q � bp) > 0 8 i < n and h(bp) = 0, we

obtain

h(q) = h(q � bp) =X
i<n

hi(q � bp) > 0

On the other hand, ehn(q) < 0 since q 2 bA. It follows
that � < 0.

De�ne hn = (��)ehn. Since (��) > 0, hn(q � bp) =
hn(q) > 0 8 q 2 bPn.

To conclude, set p = bp + q0. Observe that p 2
co
�
[n�1i=1 Pi

�
and hence p 2 co ([ni=1Pi). We claim

that p and (hi)i�n satisfy (a) and (b). Indeed, for
every i � n, and every q 2 Pi:

hi(q�p) = hi

�
(q�q0)�(p�q0)

�
= hi

�
(q�q0)�bp� > 0

since q � q0 2 bPi. Finally,
P

i�n hi = 0 by construc-

tion of hn. Q.E.D.

The following two facts, which are used in the proof
above, are straightforward and/or well-known.

Fact 1: Let X be a locally convex linear topological

space. Let bh be a continuous linear functional and
X0 = fp 2 X j bh(p) = 0g. Assume that C � X

is convex and compact, and that C \ X0 6= ;. Fur-
ther assume that h0 : X0 ! IR is a continuous linear

functional such that h0(p) > 0 8 p 2 C \X0. Then,
h0 can be extended to a continuous linear functional
h : X ! IR such that h(p) > 0 8 p 2 C.

Proof of Fact 1: Set D = fp 2 X0 j h0(p) = 0g.
Observe that D 6= ; since the origin is in D. Thus
C and D are disjoint non-empty closed and convex
sets in X, and C is compact. Let a continuous linear

functional eh : X ! IR and d 2 IR be such that:

eh(p) < d 8 p 2 D and eh(p) > d 8 p 2 C

We claim that eh has to be constant on D. Indeed,
assume that for some p; q 2 D, eh(p) 6= eh(q). Since

p; q 2 D implies bh(p) = bh(q) = 0 and h0(p) = h0(q) =
0, we conclude that p + �(q � p) 2 D for all � 2 IR.
Hence feh(p+�(q�p)) j � 2 IRg = IR, a contradiction

to the fact that eh(p) < d 8 p 2 D. Thus there is a
c 2 IR such that eh(p) = c 8 p 2 D. Since the origin
is in D, we obtain c = 0. It follows that d > 0 and

therefore eh(p) > d > 0 8 p 2 C

We now wish to show that, up to multiplication by a
positive constant, eh extends h0 on X. Restrict atten-
tion to X0. If p 2 X0 satis�es h0(p) = 0, then p 2 D

and we know that eh(p) = 0. By Fact 2 below, there

exists � 2 IR such that eh(p) = �h0(p) 8 p 2 X0. How-
ever, on C\X0, both eh and h0 are positive. Therefore
� > 0. Hence h � 1

�
eh extends h0 on X and is positive

on all of C. Q.E.D.

Fact 2: Let X be a locally convex linear topological
space and let eh; h : X ! IR be linear. Assume that

eh(q) = 0) h(q) = 0 8 q 2 X

Then there exists � 2 IR such that h(q) = �eh(q)
8 q 2 X

We skip the proof of this Fact and now turn to the

proof of Theorem 2.2:

(i)) (ii). Assume that \i�nPi = ;. Let I be a mini-
mal (with respect to set inclusion) subset of f1; : : : ; ng
with the property that \i2IPi = ;. Since \ni=1Pi = ;,

but Pi 6= ; for every i, such a set I exists and for every
such set jI j� 2. Apply the Lemma to I.

(ii) ) (i). Assume that a point p 2 X, a set
I�f1; : : : ; ng and functionals (hi)i2I exist as required,

and suppose, contrary to (i), that there exists q 2
\i�nPi. Then, by (a),

P
i2I hi(q � p) > 0, contrary

to (b). Q.E.D.
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